Zeebo Developer Guide

Gaming for the next billion

An in-depth guide for the Zeebo wireless gaming platform

Zeebo Developer Guide

Zeebo Inc. Confidential and Proprietary

Restricted Distribution:

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others
without the express written permission of Zeebo Inc.

Zeebo Inc reserves the right to make changes to the product(s) or information contained herein without
notice. No liability is assumed for any damages arising directly or indirectly by their use or application. The
information provided in this document is provided on an “as is” basis.

This document contains Zeebo Inc confidential and proprietary information and must be shredded when
discarded.

Zeebo is a registered trademark and registered service mark of Zeebo Inc. Other product and brand names
may be trademarks or registered trademarks of their respective owners. CDMA2000 and GSM are registered
certification mark of the Telecommunications Industry Association, used under license. ARM is a registered
trademark of ARM Limited. Adreno, QXEngine, QXProfiler, BREW are registered trademarks of QUALCOMM
Incorporated in the United States and other countries.

2 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Contents

1 INtrodUCioN ... ——————————— 6
I I 1T o T X - 6
S T o oY o1 6
I B O 07 4 T o = 6
T 8 AV =T 10T T 4 =3 o 6
1.5 REfEIrENCES........ e s s e e e e e e e e e s e e e e e e nm e n e e e e e e e rnnn e s 7
1.6 Technical asSiStANCEe..........uu 7
T o o)7/ 1 = 7

2 Z€D0 OVEIVIEW......cceeiiiiiiiiiiiiiiiiss s n e e e e e e n e 8
2.1 Zeebo Technical Specificationso.e.eciiiiiiiiiii e e 8
2.2 USEr INterfacCeccoi s e rrrr s s s s e e s s s s s s s s e e e e rrnm e e s e e e e e e rmnnna e e e e e e e nnnanan 10

2.2.1 User Interface Navigationuuuuiiiiiiiiiiiiiiiiiiiiiiiieiiieiieeeieeeeeeeeeee e e eeeeeeeeeeeeeees 10
2 T € - 4 U= T (=T - PP 12
b Ty I o T e g (o= 0= 1 £ T o) PP 12
2.3.2 Standard PriCe CatEgOrY..... ... i uuuiuuiiiiiiiiiiiitiiieteeeeeeeeeeeeeeseeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeees 12
2.3.3 Premium PriCing Cat@gOryuuuuuuuiieiiiiiiiiiiiiitiieeteetseeeaeesseeeeeesseeseeeseeeeeeeeeeeeeeeeeeeees 13
72 S I o Yo - PP 13
b By IO) = g T | = PP 13
2.4.2 AAren0 Profiler ... e e e e e aeea 13

3 Zeebo System Architecture...........ccooimmmiii i ——————— 15

3.1 Hardware Architecturecccccoiiii 15
3.1 MemOry INtErfacCeoooiiiiiiie 16
3.1.2 RENAEING FIOW ... 17
B g I 71 0 1o T PSRRI 18
31,4 RiNG BUFTEI .. 19
3.1.5 POWEr ManagemeENnt........ociiiiiiiiiiiiiiiiiiiee et 19
B T I 1T o] = YA U o o Lo i P 20

3.2 Software Architecture...........cccccoiiiiii———————— 20
3.2.1 3D Graphics ArChiteCIUreccoe e e e e e e eeeeees 20
3.2.2 Fixed-point Math SUPPOIt.... oo e e e e eeaeees 21

4 Operating Systems OVEIrVIEWoiiiiiiiiiiniissessrrrrrrrr s sssnsnses 24
4.1 Creating and releasing BREW object instances..........cccccviriiiiiiiiiiiiiennnn, 24
T M8 7Y 43 Qo = 1 T |1 3 T 24
4.3 Cross Platform Programming...........ceueuieeimmmimmmmmsssssssssssssssssssssssss s 25
L N] 3T PP 26
1 LT 1L = = QT T 27
T 0 0 T= o1 ¥ T 1 T 27

5 Basic Memory Management............cccoiiimiimmmmmmmessss s 29
5.1 File System, Heap and Stack Sizes.............ccciiiiiiiiiiiinninns 29
5.2 Memory Alignment Issues on ARM Processorscccvvininnnninnnnnnnnnnsnnnnsnsssssssssnsnns 29

L B3 41 o] (o] 41 SRR 30
5.2.2 COMMON CAUSES ...ttt ettt ettt ettt ettt ettt e et e ettt e et e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaens 30

3 Zeebo Confidential and Proprietary

Zeebo Developer Guide

5.2.3 Recommended SOIULIONScooiiiiiiiiiiie e e e e e e e e e eeaeees 31
5.2.4 Testing With the BREW Simulator ... 33

L 0 TU 70 T L o 1 U 34
6.1 Understanding the Zeebo Gamepadsccei i 34
6.2 THID OVEOIVIEWcceeeeciieieerrrccmes s s s s e s e e s s sss s s s e e s e e s s mma s as s s s e r e e nnmmnssssssssennnrnnnmnnssssnsnnnnnns 34
6.2.1 USING [SIGNAI ... 34
6.2.2 Using IHID to determine which devices are attachedcooooiiiiiiiciiii e, 35
6.3 Understanding System 1Occccoiiiiiii s 37
6.3.1 Creating a IHIDDevice referenCe ... 37
6.3.2 BULION EVENES...eii e aaea 37
6.3.3 AXIS EVENTS e a e e e e e e aearna 37
6.3.4 DEVICE EVENES ..euii it e e e e e e eeanaa 38
6.3.5 Gamepad RUMDIEcooiiiiiii e e e e e e e e e e e e e e e eeaenes 38
6.3.6 EXCIUSIVE ACCESS .. ittt e e e ettt e e e e e e e e e e aaaan e e e aeeeeeannes 38
6.3.7 Default Event HandliNgooooiiiiiiiiiii 39
(I W4-T-Y o To M CT-T4 g T=Y o 2= T I3 =Y 4 F=1 0] o1 4 T [P 39
5T 21 - T 4 1= 41
7.1 OPENGL ES OVEIVIEWoceeeeeieecciiriererrnccasssss s s s s sss s s mmssssssss s s e e s e nnmnnsssssssssennsnnmmssssssssnnnnnns 41
7.1.1 Frame BUfer (COlOr)o i i 41
7.1.2 Color BUffer EXTENSION ..c.uvueiii e e e e e e e e e e e e e eeaenes 41
A% T T =« 0T = PSR 41
7.1.4 Back-Tace CUIINGceeeiiiiiiiiiiiieiiieeiee e 42
4 < 0 o T TSP 42
7.1.6 Clearing the Color BUTfercoiiiiiiiiiii 42
A A A== (o1 1o T RSP RPPURRR 42
74851 8 205 (=1 o o | PSR 43
IR T =111 o To 110 T RSP RUR 43
4% e L e 111 T SRR 43
7.1.11 Data Types and PreCiSiONoviiiiiiiiiiiiiiii e 43
7112 Extended Data TYPES .oeeiiiiiiiiiiiiiiiieieee ettt 44
7.2 Supported OpenGL ES eXteNSIiONSccouuiiiiiiiiiirrceccser s s e sr s s e e s e s e s e e eeees 44
7.3 Using OpenGL ES and EGL APIs in BREW. ... 45
7.3.1 Steps for using standard OpenGL ES AP ... 45
7.4 Supported 3D Graphics APL........ e s 46
7.4.1 Summary of 3D Accelerated Rendering Support ... 46
7.4.2 3D Graphics Limitationsccooeiiiiiiiciis e e 47

8 3D Graphics Optimization and TuNING..........cccoiiiiiiiiirrrrrr 48
8.1 Working with Vertex Buffer Objects (VBO’S)ccoiviiiniinininininnnnnrsnnns 48
8.1.1 Preparing the VBO function extensions ... 48
8.1.2 INitializiNg @ VBO ... 49
8.1.3 Drawing With @ VBOcceiiiiiiiiiiiiiie 49
8.2 TeXture COMPIESSIONccovieeeecceiir i rrerre e sese s s e e s e e s s mma s sa e s s e e e e e nrmnnsssssssssnnnrnnnannssssssnnnnnns 50
I IO D Q= U] =Y @0 oY= o (= PR 50

L I N 1= Y O] o] o] {=Y=1=T 0] o =1 o] SRR 51
L B N I I O] 3 o =TT PSR 51
8.3 Rescaling OpenGL ES Rendering Surfaces..........ccceviiiiiiiniinniisnnnssccsccccsnns 51
9 Zeebo AUIOoiiiiiiiiiciiii 54
9.1 Playback of MIDI and encoded audio objects..........ccccevrrriiiiiiiiiiiin 54

4 Zeebo Confidential and Proprietary

Zeebo Developer Guide

9.1.1 Supported encoded audio fOrmMatS..........coooviiiiiiiiiii s 54
9.1.2 Supported MIDI file TOrmatscouvueiiiiii e 56

9.2 Multisequencing — Simultaneous playback of audio objects............ccccceviiiiiiiiiiiinnnn, 58
9.2.1 Restrictions with MP3 and simultaneous audioccccevviiiiiiieiieeiccee e, 58
9.2.2 Exceeding number of resources with simultaneous audio.............cceevvviiciiiinieeineennes 59
9.2.3 Decoder allocation algorithm with simultaneous audiocccovvevviiiiiiin e, 59

9.3 QAUIOFX — 3D QUAIO ..cceeeceeeiiii e rerec s s e e s e s esm s s s s e e e e s e mm s ss s s s e e e e e s mmm s snnn s e e nennnnnnnn 63
9.3.1 Audio objects and enVIirONMENtS............uuuuiiiiiiiiiiiiiiiiiiiii e 63
9.3.2 Positional audio and rolloff effects ... 64
9.3.3 Reverberation effeCtS.o 64
9.3.4 DOPPIer ffECES ... e 65

9.4 Summary of audio SUPPOrt 0N Zeebocoirieeieiciiirierrr e e 65
9.5 BREW APIS fOr AUGIO ...ccoveiiieiiiiiiiiiieeiiesisseseeesseeseeeesseseseessen 66
9.5.1 Playing multiple audio objects simultaneouslyuuueiiiiiiiiiiiiiiiiiiiiiiieeeeeee 66
9.5.2 Global Loading and Unloading Of DLS............uuiiiiiiiiiiiiiiiiiiiieiiieiieeieeeeeeeeeeeeeeeeeeeeeeeeee 70
9.5.3 SeNAING MIDI MESSAUES uuuuuuiiuiiiiiiiiiiiiiititeittetteeteeeeeeeaeeseeeeseeseeeeeeeeeeeeeeeeeeeeeeeeeeeeees 72
9.5.4 QAUAIOFX — 3D AUIOuuuii e i ee ettt eenn s s e e eaeeeeeanees 75

10 Zeebo.lib System Library ... s 88
10.1 Suspend and RESUMEcoiiiiieiieciirirerrrrrccsss e s s e e s e s s s s s e s e e r e mas s s s s e e e e r s mmannssnnns 88
10.2 Virtual Keyboard ... r s e s e e s e s s s s s s e r e e e e s e e e e e rnmm s 88
10.3 Controller Discovery and Removalocooeeeciiiiiiiiiiecccerrr e 89
11 Additional Information and Requirementscccceeiiiiiiiiiiiiiniinnssscce 90
11.1 Compiling Zeebo Gamees.........cccciiiiiiiini s nrnnne 90
11.2 TUNING FOr TV=O UL nn e 90
11.3 Saving data to CONSOIe........cccciiiiii e 90
11.4 Using BREW APPLOAUET ... e s s erss s ss s s e r e e s s s s e e e e s mma s 91
11.5 USing BREW LOQQer.......ccciiiiiiiiaasssssassss s s s s n s nn s nn s nne 95
11.6 Understanding USB Download and Trace mode............cccccuemmmmmmmmmmmmmemmmmmnnennnnnnennnnn 97
11.7 Uploading games using SD Card...........ccccoiiiiunnnnnnnnnennnnneeneeeneseenneeneeen e 99
11.8 Power Button Behavior ... e 100
11.9 KNOWN ISSUES......ciiiieiceeiiiiierrrrric s s s s s s e s s rmms s s s s s e e e s s nmma s n s s s e e e e s nnmanssssaseeennnnnnmannsnnn 100
12 SUDMISSION PrOCESS....cciiiiiiieeeeenenisssssssss s s e r e s s s s ssssss s s s e e e s e e e e s e e nnnnnnsssssnn 102
Appendix A- Supported BREW API List..........ccccoiiiiiiiiimiinneircsessssssssssssssssssssnnnnns 103
Appendix B — Supported OpenGL ES API List........ccccmmmimiiiiiiinnnnnes 107
Appendix C — List of ACIrONYMScociieeeeeeciciiiisns nnnnns 119

5 Zeebo Confidential and Proprietary

Zeebo Developer Guide

1 Introduction

1.1 Purpose

This developer guide is intended to provide information for developing and optimizing
game content for the Zeebo wireless gaming platform.

1.2 Scope

This guide only covers software version 1.0 of the Zeebo wireless gaming platform, which
is based off of Qualcomm’s BREW 4.0.2 SDK. It also covers the usage of OpenGL ES and IHID
extensions. Qualcomm’s BREW 4.0.3 SDK, a new release version of BREW SDK, can also be

used as a base development Kkit.

1.3 Conventions

Function declarations, function names, type declarations, and code samples appear in a

different font, e.g., #include.

1.4 Revision history

The revision history for this document is shown in Table 1-1.

Table 1-1 Revision history

Version Date Description

Draft April 2008 Initial release

0.7 May 2008 Updated draft

0.8 June 2008 Updated audio and BREW API sections

0.9 August 2008 Updated Zeebo.lib and 3D rendering rescaling
0.92 October 2008 Updated Zpad Remapping and multiple sounds
0.95 January 2009 Updated Known Issues and limitations

0.97 May 2009 Sections review

6 Zeebo Confidential and Proprietary

Zeebo Developer Guide

1.5 References

Reference documents are listed in Table 1-2. Reference documents that are no longer
applicable are deleted from this table. Therefore, reference numbers may not be sequential.

Table 1-2 Reference documents

Reference | Document
R1 OpenGL ES 1.0 Specification http://www.khronos.org/opengles/spec
RO OpenGL ES Game Development ISBN-10: 1592003702

(book)

1.6 Technical assistance

For assistance or clarification on information in this guide, submit questions to Zeebo
developer support at devsupport@zeeboinc.com.

1.7 Acronyms

For definitions of terms and abbreviations, refer to Appendix C.

Zeebo Confidential and Proprietary

Zeebo Developer Guide

2 Zeebo Overview

2.1 Zeebo Technical Specifications

* Form-factor: Upright Standing Compact Video Game Console;
* Dimensions: 157 x 215.4 x 44 mm (L x W x D);
* Weight: 3 pounds or 1.3KG;
* Chipset:
o MSM7201A;
o RTR6280;
o PM7540;
* Applications Processing (Audio/Graphics):
o ARM 11 / QDSP-5 running at 528Mhz;
o Audio/Graphics Processing: ARM 11 / QDSP-5 running at 528Mhz;
o 3D Graphics Processing:
* Qualcomm Adreno 130 Graphics Core;

= Mobile Display Processor (MDP) (Concurrent 3D Rendering & Screen
Operations);

* Internal Memory:
o ROM: 1 GByte NAND Flash;

o RAM: 128 MBytes DDR SDRAM + 32Mbyte stacked DDR SDRAM in
MSM7201A;

* Polygon performance: 1.6M triangles per second;

* 3D pixel Fill Rate (textured): 63M polygons (2 textures);

* OQOutput Color System: PAL-M and NTSC;

* Video-Out resolution: VGA (640X480) - 4:3 aspect ratio;

* Banding:
o Quad Band GSM/GPRS/EDGE (850/900/1800/1900)MHz;
o Tri Band UMTS/HSDPA/HSUPA (850/1900/2100)MHz;

¢ Antenna: Internal;

8 Zeebo Confidential and Proprietary

Zeebo Developer Guide

* Modem Processing (Integrated in MSM7201A): ARM 9 CPU / QDSP-4;

* Power: Internal AC Power Adapter with External Wall Connected Power Cord
(Battery Not Required);

* Power supply: 100 - 240 V (50-60Hz) (universal);

* [/0 Connectors:

(@)

(@)

(@)

(@)

(@)

(@)

USB 2.0 Standard A (Accessories);

USB 2.0 Standard A (Accessories);

USB 2.0 Standard A (Accessories);

USB 2.0 OTG - Mini B (Accessible to Service Centers and Developers only);
RCA Connector (Video Composite TV Signal, x2 Stereo Audio);

SD Card Slot/Interface;

* Power Key Functions: Power On / Power Down / Power Off;

* External Light Bar (Blue LED) Functions:

(@)

(@)

(@)

Console on “power off” mode: LED is turned off (button press >5seconds);
Console on “power down” mode: LED is presented with half brightness;
Console on “Power On” mode: LED is on;

Console on “Sleep Mode” (Screen Saver): LED is slow pulsing (increasing the
brightness to 100% and decreasing to 0% in about 3 seconds);

Console receiving OTA updates / Receiving Data / Download: LED is fast
pulsing (increasing the brightness to 100% and decreasing to 0% in about 1
seconds);

* Operating System: BREW 4.0.2;

* Pre-Loaded content: 4 BREW games + 1 Free OTA Game;
* 3D Rendering API: OpenGL ES 1.0+ Common Profile;

* 2D Rendering API (BREW 2D API);

¢ Audio Formats:

(@)

(@)

(@)

(@)

(@)

(@)

MIDI (72 voice polyphony 512 kB wavetable, 44kHz sampling rate);
MP3;

PCM;

ADPCM;

CMX;

QCELP;

* Messaging: SMS is server initiated only;

9 Zeebo Confidential and Proprietary

Zeebo Developer Guide

* Ul Proprietary Zeebo User Interface (Updatable OTA);
* Console ID: International Mobile Equipment Identity - IMEI;

2.2 User Interface

The user interface design seen in Zeebo is an interpretation of a real world retail
experience for games. We have taken familiar nuances found in retail and have extended
those themes into the structure, look, and logic of the interface.

The console is designed to be connected via standard RCA cables to a non-high definition
color television, which is commonly found in developing countries of the world.

Updates will be made available only on certain screens and only certain elements within
those screens.

Each time the console is turned on there will be a sound effect and the Zeebo image will
flash and be illuminated. The interface may include other sound effects as well.

2.2.1 User Interface Navigation
During the UI navigation, the user will navigate using the buttons A, B1, C (1-2-3-4) and E

(Home). Buttons B2, D1 and D2 will be enabled only for game play, should the game require
them. Figure 2-1 illustrates the Zeebo gamepad.

10 Zeebo Confidential and Proprietary

Zeebo Developer Guide

D>

D\ (%

B-
B E

Figure 2-1 The Zeebo gamepad

A Directional pad:

Main buttons to navigate the Ul and within the game menus. Moves are possible only in 4
directions up, down, right and left.

B1 and B2 analog controls:

Both the right and left analog controls will be activated during the game when necessary.
These controls provide more precise movement.

Only the left analog control is enabled for UI navigation following the same dynamic of the
directional pad.

C Selectionpad1-2 -3 - 4:

1-2-3-4 buttons are mainly used during games featuring varied action and movement
options such as shooting, jumping, accelerating, breaking, etc.

1 button will be used for the Ul navigation as the enter button to confirm selections.

2 button will be used to go back to the immediate previous menu if the back button is not
included in the screen.

11 Zeebo Confidential and Proprietary

Zeebo Developer Guide

3 button will be a sub-menu button that is informational and provides relevant details
pertaining to the screen you are on. For example if the user is on the Game Data screen and
presses the 3 button, the file size, game statistics, and game ranking information will be
displayed. Informational details can be retrieved while on any screen by pressing the 3
button.

4 button will have different functionality according to each screen when needed. For
example the 4 button can be used if an additional button is required for the third and
fourth screens as a decision button.

D1 and D2 trigger buttons (left and right):

Special buttons used in some games for accelerated weapon selection, car wheel control,
etc.

E Home button:

The Home button redirects the user from any screen on the Ul to the Stage. Every time the
user presses this button, a confirmation screen will prompt the user to confirm the action.

For any menus inside your game, it is mandatory to follow the basic navigation guidelines
seen in the Zeebo User Interface. The idea is to give a seamless experience to the consumer
when navigating in the Ul and playing a game.

2.3 Game File Size

Zeebo uses wireless carriers to deliver your game OTA to end users. Game file size may be a
problem, due to airtime costs and also because some carriers might provide slow networks
in some areas to deploy large files.

The file size of the game you're developing must match the commercial policy used by
Zeebo Inc. in the target country.

The next sections describes the pricing categories that shall be followed by developers
regarding file size

2.3.1 Low Price Category

Used for budget or casual titles. Game file size must be equal or lower than 8MB to be
accepted by Zeebo Inc.

2.3.2 Standard Price Category

The category used for most titles available on the Zeebo deck. Game file size must be equal
or lower than 25MB to be accepted by Zeebo Inc.

12 Zeebo Confidential and Proprietary

Zeebo Developer Guide

2.3.3 Premium Pricing Category

Please ask your commercial department to discuss the possibility of developing a game for
Zeebo with more than 25MB of content.

Used in very rare cases where the developer needs a larger file size to provide the ultimate
experience to a Zeebo user. Regardless, game file size must be equal or lower than 50MB to
be accepted by Zeebo Inc.

2.4 Tools

2.4.1 QXEngine

QXEngine is a set of high level APIs for manipulating meshes and animations. A toolset is
included for exporting and optimize content from 3D modeling and animation software. It
is optimized for OpenGL ES on Qualcomm chipsets, providing content-side and engine-side
optimzations. The main optimizations features are provided as libraries, which can easily
be used in conjunction with existing engines.

The supported features includes:
* Meshes, exportable to Strips or Lists;
* Hierarchical and material animations;
* Shading: ambient, diffuse and specular;
* Blending: transparency and incandescence;

* Texture: all supported OpenGL ES formats, including compressed and
uncompressed;

* Multiple cameras;
e Multiple culling options;

* A set of utility libraries, including Math, Data Structures, Command Manager,
Diagnostics and Primitive Rendering;

A set of tools is also provided, including QStrip library, QXTextureConverter library and a
Particle Systems Editor. More information about the QXEngine can be found on the
documentation included with the installer.

QXEngine source-code is available upon signing an agreement with Qualcomm. If you want
to develop your game for Zeebo using QXEngine, please contact devsupport@zeeboinc.com.

2.4.2 Adreno Profiler

The Adreno Profiler is an application for profiling OpenGL ES 3D based games. It provides a
set of tools designed to detect bottlenecks and errors on the 3D graphics pipeline. Zeebo
has an auxiliary processor that enables on hardware debug. More information about how to

13 Zeebo Confidential and Proprietary

Zeebo Developer Guide

use the Adreno Profiler can be found on the Adreno Profiler - Quick Start Guide, which is
included with the installer.

14 Zeebo Confidential and Proprietary

Zeebo Developer Guide

3 Zeebo System Architecture

This chapter contains a description of the overall Zeebo system architecture. Sections on
hardware and software architectures are provided, describing the capabilities that define
the functionalities for the hardware and software present on the platform.

3.1 Hardware Architecture

The Zeebo wireless gaming platform uses the Qualcomm MSM7201A chipset, which is
comprised of the following components:

ARM11 processor @ 528Mhz - your application runs here. It also controls GPU and
display.

Adreno 130 Graphics Subsystem - provides the 2D and 3D feature set for graphics
acceleration and functionality.

DSP Application Subsystem - used to decode audio and implement some 3D
features.

MDP (Mobile Display Processor) - updates TV-Out from frame buffer.

ARMO processor - dedicated to modem duties.

These components are integrated on a 32 bit 133 Mhz bus.

Figure 3-1 below is a diagram of a high-level view of the Adreno 130 hardware architecture
as it fits into the MSM7201A. The key subsystems shown are:

ARM Subsystem with the ARM11 processor (applications processor) - main
processor involved in control of the Adreno 130 graphics subsystem and overall
display functionality.

Adreno 130 Graphics Subsystem - provides the 2D and 3D feature set for graphics
acceleration and hardware graphics functionality.

SMI memory - a 32-bit-wide DDR stacked memory operating at 133 MHz internal to
the MSM7201A, with 32MB of capacity.

EBI memory on the AXI EBI-1 bus - a 16/32-bit-wide DDR memory operating at 133
MHz, with 128MB of capacity.

IMEM - an internal SRAM consists of three banks of memory (128KB, 64KB, 64KB)
accessible by the Adreno 130 graphics core.

AMBA AXI buses - two 32-bit data buses, in the context of the graphics subsystem,
mastered by the ARM11, and the Adreno 130 graphics core.

15 Zeebo Confidential and Proprietary

Zeebo Developer Guide

EBI AXI SMI AXI

Bus Bus
A A
ARM11 i
»
16b/32b, | EBI
"1 Memory
QCOM
Adreno 130 =
o » 32b .| SMI
2D ° "1 Memory
3D 5 >
(o]
SRAM
(IMEM) === ——
256KB
» MDP —» Display
\ 4 \4

Figure 3-1 Graphics hardware block diagram

The Qualcomm Adreno 130 graphics core (GPU) has two AXI memory interfaces, one for
EBI and one for SMI. Both of these interfaces are bus masters.

The ARM11 can send both commands and data to the GPU over the AXI buses via the EBI or
SMI memory. Status information is transmitted over the AHB bus as well.

SMI and EBI memory are also used for display buffers (frame buffers). An image (2D or 3D)
is built up in a specified buffer, and then the MDP transfers the buffer contents to the
display when it is signaled from the GPU that a frame is ready.

For details of the memory usage, see chapter 5.

3.1.1 Memory Interface

The GPU has access to its local SRAM memory (which is external to the GPU core, but
internal to the MSM7201A system) also called IMEM. This 4-part 64KB memory is broken
into three logical sections of 128 KB, 64 KB, and 64 KB. This high-speed memory is used by
the GPU for, most notably, 3D graphics operations as follows:

e Z-buffer;

* Pixel local buffers;

¢ Stencil buffer;

* Triangle bin buffer;

* Setup acceleration block (SAB) to pixel-pipe FIFO;

16 Zeebo Confidential and Proprietary

Zeebo Developer Guide

The GPU also accesses to the EBI and SMI memory banks, which is system memory. The
current implementation allocates 2ZMB of SMI memory and 6MB of EBI memory for 3D
graphics usage. This parallelism of memory access is designed for performance benefits.

Gaming Console | EBI 6MB
Video Memory

—— GPU Memory Map

SMI 2MB

SRAM 256KB
Registers

Figure 3-2 Video Memory layout

In BREW, there is a distinction between System Memory and Video memory, and the GPU
has Memory Aperture into System Memory, making that memory region as Video Memory.

How BREW graphics software works:
* BREW places bitmaps into Video Memory as long as space exists.
* The display buffer(s) are located in Video Memory.

e The GPU accelerates BLTs where the source and destination are both located in
Video Memory.

* BLTs are also accelerated between System Memory and Video Memory, but there is
more than one copy involved.

* The more System Memory allocated to Video Memory, the more bitmaps can be
stored there, thus improving performance.

3.1.2 Rendering Flow

The frame buffers (color buffers), Z-buffer and stencil buffers are located in the EBI
memory. They will be copied to the SRAM for GPU to access for rendering. Once the
rendering is done, it will be copied back to the buffers in EBI and updated to the LCD via
MDP DMA engine directly (not going through the MDP internal buffers).

17 Zeebo Confidential and Proprietary

Zeebo Developer Guide

3.1.3 Binning

Since the 256KB of SRAM is not large enough to store all the different types of buffers,
‘binning’ mechanism was introduced. Binning renders subsections of the screen space to

optimize memory usage.

Figure 3-3 illustrates the logical flow of how the rendering is done via the binning

mechanism with QVGA frame buffers.

Step 1 — Render the1st bin

QVGA framebuffer1
(front buffen

QVGA framebuffer2
(back buffer)

\ 4

Step 1 —Render the 2nd bin

QVGA framebuffer1
(front buffer

Step 3 —Use MDP to update display

QVGA framebuffer2
(back buffer)

Figure 3-3 Binning with QVGA frame buffer

> SRAM -
Render Write back
QVGA framebuffer2
(back buffer)
Render SRAM Write back
LCD
> MDP >

The number of bins depends on the frame buffer size. Presently, 2 bins for QVGA display,
and 8 bins for VGA display, and 16 bins for WVGA display are used.

Zeebo will only support VGA (640x480) display configuration.

18

Zeebo Confidential and Proprietary

Zeebo Developer Guide

3.1.4 Ring Buffer

The ARM11 accesses the GPU via AHB interface for the transfer of status information and
Ring Buffer read and write pointer synchronization. AHB interface is a slow bus interface. A
Ring Buffer command mechanism is used for sending 2D/3D commands to the GPU
through system memory (SMI or EBI).

v
| E
I
an}
84'
.
ARMI11 aDSP DM CP_WPTR
GPU

| l AXI buses |

|

<] XN | Mem RPTR |
< (‘) l Mem_ WPTR l
M\ J d
Ring
| Buffer System Memory
(SMI and/or EBI-1)

Figure 3-4 Layout of ring buffer commands for general operation

Figure 3-4 illustrates how the ARM11 places a command list (packet) into the Ring Buffer
and updates the Mem_WPTR. Then the ARM11 writes CP_WPTR over the AHB bus to the
GPU. The GPU then reads Mem_WPTR across the AXI bus and compares with CP_WPTR,
then reads as appropriate the command stream from the ring buffer. Finally, the GPU
updates the Mem_RPTR.

The command packets can contain indirect references to additional command lists located
in other places (even in different memory). In this way, command lists can be reusable by
simply placing the reference multiple times in a set of command packets.

3.1.5 Power Management

The GPU has its own internal logic for power management, being able to power down
sections of the GPU when not in use. There is a GPU register that is used to enable this
feature for each of the internal subsystems. The drivers have this feature enabled.

For the 3D core, the graphics driver turns on the power at 3D initialization routine and
turns off at termination. In the actual implementation, eglinitialize() triggers the
power on, and eglTerminate() triggers the power off via the Clock Regime power control

19 Zeebo Confidential and Proprietary

Zeebo Developer Guide

register for the GPU. The EGL function eglinitialize() is used to initialize the EGL display
connection and eglTerminate () releases and terminates the EGL display connection.

For the 2D core, the current implementation is the display driver simply turns on the
power upon device boot-up and does not turn off until the device shuts down. Improved 2D
power management will be added in a later implementation to turn on and off the 2D core.

DCVS (Dynamic clock voltage system) is also used at a system level to affect the GPU power
management.

3.1.6 Display Support

Zeebo provides VGA support (640x480) and it is possible to achieve more than 30 frames
per second (fps) on the NTSC and PAL-M video systems used in most countries where the
product will be sold. Refer to section 8.3 for more details on rescaling the video output.

PAL-M signals are identical to North American NTSC signals, except for the encoding of the
color carrier. Therefore PAL-M will display in monochrome with sound on an NTSC set and
vice versa. You should be fine using a NTSC TV for testing purposes. MDP processor will
output signal in PAL-M as well.

Please dedicate a safe area for drawing - about 4-8 pixels each side (top and bottom). Older
CRT TVs may distort the edges of the screen and text closer to each edge might disappear
or be truncated. Refer to section 11.2 for more details on tuning your games for TV output.

3.2 Software Architecture

3.2.1 3D Graphics Architecture

The 3D Graphics standard OpenGL ES 1.0 Common Profile is supported on the Zeebo
platform. This section explains the high-level architecture and its design.

20 Zeebo Confidential and Proprietary

Zeebo Developer Guide

OpenGL ES
Application

v
‘ libgles_cm.lib ahi2dati.lib

ahi2dati.dll

i (O]
libgles_cm.dl (surface management ...)

v v

HARDWARE

Figure 3-5 OpenGL ES 1.x Adreno 130 driver architectural overview

(1) Note that the early version of MSM7201A releases used glesati.dll instead of libgles_cm.dll.

Figure 3-5 illustrates how rendering calls are made logically. A BREW 3D graphic
application makes calls through the OpenGL ES APIs.

The OpenGL ES driver (libgles_cm.dll) accesses the GPU for actual rendering. It also uses
the AHI 2D interface (ahiZdati.dll) for basic surface management and issues commands to
hardware.

3.2.2 Fixed-point Math Support

Floating point math is not hardware accelerated on the Zeebo wireless gaming platform, so
for fast math operations it is strongly recommended to use fixed-point math. Below are
some characteristics of the MSM7201A processor that might be useful for developers:

ARM processor emulates floating-point math, which turns the operations slow;
Integer math is fast but lacks fractional precision;

GLfixed Format used is s15.16;

Represented in a 32bit signed integer;

Other choices are possible (for higher precision internal calculations);

Below are listed the major problems using fixed point math:

Hard to interpret (when debugging). Some example values:
i. 1=0x00010000

21 Zeebo Confidential and Proprietary

Zeebo Developer Guide

ii. 2=0x00020000
iii. %2=0x00008000
iv. Pi=0x0003243F
* No standard math library available;

Qualcomm'’s Fixed Point Math Library is a C-style library (mathfixed.h and mathfixed.c),
which is highly optimized for the ARM. It supports the following basic math functions:

* Type Conversions (float to fixed, int to fixed);
e add, sub, mul, div;
* sq,sqrt;
* log, pow;
* sin, cos, tan, asin, acos, atan, atan?2;
e abs;
Note that there are no operators, for example:
x0*x1 +y0*yl +2z0 *z1;
turns into:
F_ADD(F_ADD(F_MUL(x0, x1), F.MUL(y0, y1)), F_MUL(z0, z1));

Float to Fixed conversion:

#define F2X(f) ((int32)((£f)*65536.0f))

Fixed F2X(float f)
{
//interpret our floating point as unsigned integer
uint32 data = *(uint32*)&f;
//extract the mantissa and add the leading 1
uint32 mant = (data & 0x007fffff) | 0x00800000;
//extract the exponent, de-normalize it (-127), shift by the
//precision of the mantissa (-23) and multiply by the precision
//of our fixed point (16)
int8 exp = (int8) ((data >> 23) & O0xff) -127 -23 + 16;
//shift our mantissa by the remaining exponent
mant = exp > 0 ? mant << exp : (exp < -23 ? 0xl : mant >> (-exp));
//apply sign bit
return (data & 0x80000000) ? O-mant : mant;
}

#define F_FACTOR 16

#define F _ADD(v1,v2) ((v1)+(v2))

#define F_SUB(vl,v2) ((vl)-(v2))

#define F_MUL(vl,v2) ((Fixed) ((((int64)(vl)) * (v2)) >> F_FACTOR))
#define F_DIV(vl,v2) ((Fixed) (((int64)(vl) << F_FACTOR) / (v2)))

F_MUL (pseudo assembly):

22 Zeebo Confidential and Proprietary

Zeebo Developer Guide

o [[[e[[[]] o [[[Jal [[[]
SMULL dD, dt:dz SMULL b, di:d2

[T 1 = 1] 1T =TT 1]
LSR dD, d2, 16 MOVENW .42

o[] [= 1 T

ORR d1, d0, LSL16 SWAP d2

N <[1]

Figure 3-6 F_MUL pseudo assembly

23 Zeebo Confidential and Proprietary

Zeebo Developer Guide

4 Operating Systems Overview

The Zeebo wireless gaming platform runs Qualcomm BREW 4.0.2. This section describes
the basic services provided by the platform, including reference-counted objects, event
handling, timers, and multitasking.

4.1 Creating and releasing BREW object instances

Your application interacts with BREW through instances of BREW objects created using the
ISHELL_Createlnstance call. Creating an object instance is a time-consuming process, and
as such, should be done as few times as possible.

For example, if you are loading 10 files, every file can use the same instance of the [FileMgr
object to be opened. Instead of creating 10 instances of the IFileMgr, create one instance
and use it 10 times to open the 10 individual files with the IFILEMGR_OpenFile() function.

Generally, you should try to create all your object instances when your application is first
initialized. In some cases, you will need to create object instances in the middle of
execution, but keep in mind that doing so will have a performance hit on graphics
rendering, so try to minimize this.

After the object instances are no longer needed by your application, it is very important
that they be released with the corresponding Release function. Not freeing an object before
your application exits can cause unexpected behavior the next time your application is
entered. Remember that the Release method of an interface is not the same as FREE()
method, and calling FREE() on an object instance will crash the platform. The cleanup
function specified in the call to AEEApplet_New() is called right before your application
exits. It should free any remaining objects/memory that your application allocated during
its execution.

It is generally not necessary to increase the reference count of an object with the AddRef()
function every time you create an instance of an object. BREW will automatically increase
the count of the object when it is created, and it will decrement it when you release it.
Reference counting is used to keep track of the number of callers of an object.

4.2 Event Handling

There are some events that every application should handle. The EVT_APP_SUSPEND and
EVT_APP_RESUME events are pair of events that should be handled by every app. An app
receives the suspend event when it is about to be suspended. This could happen, for
example, if the system firmware needs to display a message. This would cause the BREW
application to suspend and the system firmware would take control of the interface. How

24 Zeebo Confidential and Proprietary

Zeebo Developer Guide

the suspend and resume events are handled is up to the application programmer. The
easiest way is to return TRUE when the suspend event is received, and also return TRUE
when the resume event is received. This will cause the app to start again from the
beginning when the resume event is received.

Another event is the EVT_APP_NO_SLEEP event. When this event is received, BREW wants
to make sure your application is still running. Returning TRUE means the application is still
running. Returning FALSE means that your application did not handle this event, and
BREW will permit the platform to go into low-power mode. At this point, you will see your
application start to run really slowly. It's likely that every application will want to return
TRUE to this event.

Returning the app to the state it was in before it was suspended requires more work. Every
state (including OpenGL ES states) would have to be saved on suspend and then restored
on resume. Also, when the suspend event is received, any pending actions should be
discarded before handling suspend. For example, if the suspend event is received and there
is an active timer event that is scheduled to expire, the timer should be cancelled before
returning TRUE for the suspend event.

There are three main events related to keys on the phone: EVT_KEY, EVT_KEY_PRESS, and
EVT_KEY_RELEASE. The EVT_KEY event is sent once anytime a key is pressed. This event
should be used for keys that get pressed once and perform an action, i.e., toggling a state.
The EVT_KEY_PRESS and EVT_KEY_RELEASE events are meant to work together for actions
that require repeated action, i.e., holding down a key to move a player. Receiving
EVT_KEY_PRESS indicates that a key is being held down, and the key is being pressed until
an EVT_KEY_RELEASE is received by the app.

Pressing CLR (sometimes displayed as <<) to exit your app does not handle the AVK_CLR
event, i.e., return FALSE. In this case, CLR will work just like END, and the app will be
exited. If you want to use CLR for some other purpose, handle the AVK_CLR event and
return TRUE in your event handler.

4.3 Cross Platform Programming

When developing your game, you will likely start by developing in the simulator (BREW
SDK Extension for OpenGL ES 1.0 Common profile), and once you have something working,
move to a Zeebo wireless gaming console. It is important to remember that because your
game works in the simulator, it does not necessarily mean it will work the first time on
target.

One of the most important things to remember when developing the game is that the
program stack on the Zeebo is much smaller than the program stack you will get in the
emulator. To avoid having stack overflows, do not place large amounts of data on the stack.
For example, in almost all cases, your geometry and model data should be stored on the
heap and never on the stack (even if this might work in the SDK). Stack overflows on the
Zeebo will cause strange behavior and are difficult to debug. You should plan from the
beginning to place large data on the heap.

25 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Another common mistake is forgetting about byte ordering. The ARM processor on the
Zeebo wireless gaming platform is big endian, as opposed to the little-endian processors on
which the emulator runs. Thus, code that might compile and work in SDK may not for the
Zeebo. For example, the code below initializes a buffer with the data “ABCD” and attempts
to read this data into an integer. Option (1) will have different results read into the “value”
variable if executed in the emulator and on the Zeebo, because the byte ordering is
different and “unsigned ints” are in different orders. See section 5.2 for more detailed
information about memory alignment issues on ARM processors.

However, by using MEMCPY as in option (2), the same data will be read into “value”
because MEMCPY is implemented correctly on the respective platform.

unsigned int value;

char buffer[4] = “ABCD”;

/*(1)*/ value = *((unsigned int*)&buffer[0]);//WRONG
/*(2)*/ MEMCPY(&value, &buffer[0], 4); //RIGHT

Along the same idea, keep in mind that you should be using MALLOC()/FREE(), which
BREW provides instead of the standard malloc() and free(). Also, you should use the BREW
standard library and string manipulation functions. When running on Zeebo, the C standard
library is not available to your application.

Because dynamic modules have no read-write segment, there can be no static or global
variables in a BREW application. While you can declare these when coding for the SDK; it
will not compile or run on the target. This also limits the use of the C++ static keyword; you
cannot declare class variables for the same reason.

The most common way to work with this is to place this kind of data in the heap and pass
references to the data; one common place for this data is the application context variable
BREW passes to your event handler.

While the most recent versions of both the GNU tool chain for Qualcomm BREW and
Qualcomm's packaging utility elf2mod support some use of static and global variables
through the introduction of fix-up code, it's strongly encouraged that you simply refrain
from using them in the first place and place this data in the heap.

4.4 Timers

BREW provides millisecond-resolution timers that notify your application through a
callback when a timer has expired. You can use this call your application's render loop after
a timeout, control the frame rate of your application, and so forth. Timer values as small as
0 or 1 millisecond may be specified.

If you need to schedule an application to occur at the next available pass through the event
handler and timing is not critical, use BREW's callback mechanism by specifying an
AEECallback. Callbacks consist of a function pointer and context data, and are scheduled
using ISHELL_Resume. Because ISHELL_Resume takes a reference to your AEECallback
structure, it must be on the heap and not the stack.

26 Zeebo Confidential and Proprietary

Zeebo Developer Guide

4.5 Multitasking

The platform consists of several threads of execution in parallel, of which your application
is but one thread. On BREW, multitasking is inherently cooperative: your application must
periodically yield the processor so that other things can run. As a result, it's imperative that
your event handler and other logic process events or perform actions quickly and then exit,
giving other parts of the system adequate opportunity to run.

If you need to perform a long computation or loop, you have two choices. You can structure
your code to operate asynchronously using callbacks, or you can implement the logic as the
main method of an IThread instance. Under no circumstances should you use long loops in
your code, because if you take too long to respond to an event or callback invocation, the
platform will assume that your application has crashed and will reset.

Using callbacks lets you structure your code as a state machine; you break your code in to
discrete states, and chain them using the callback mechanism described in Section 4.4. Each
function assigned to the callback performs the work of a single state in your state machine;
state transitions occur by scheduling the next state by initializing your callback and
scheduling the operation using ISHELL_Resume.

This asynchronous callback approach is used by all of the BREW APIs that would
traditionally block the processor on other platforms. For example, I/0 is performed using
the callback mechanism; you register a callback that BREW invokes when data is available
to read. Similarly, you schedule a callback that the system will invoke when you can write
data.

The IThread interface provides a software implementation of cooperatively scheduled
threads of execution that you can use instead of the callback approach. (In fact, under the
hood, IThread is implemented using BREW's callback mechanism.) Using IThread, you can
structure your code as if it were executed synchronously, including letting you execute long
loops such a a game's main thread. When using IThread, though, you must still yield the
processor periodically by obtaining a callback to the current execution point and invoking
ITHREAD_Suspend; you can see an illustration of this in the AEETU_Yield.c utility provided
with the BREW SDK. The IThread interface provides you with a good abstraction when
structuring control loops in your application.

4.6 Debugging

The BREW Simulator can be used for debugging games on the PC. Used in conjunction with
Visual Studio, it is possible to set break points and place watches for variables used within
your game. Qutput from your code can also be traced using the Output Window. Figure 4-1
illustrates the BREW Simulator configured to use the Zeebo device pack.

27 Zeebo Confidential and Proprietary

Zeebo Developer Guide

% GEC_Device - BREW(R) Simulator,

File View Tools Help

QRO Ted 8§ 0

Besco--Ee 50

v

< >

Ready Memory freefcommitted/max (in bytes): 6232/450524/16000000 QI.IAI-CDNW\

Figure 4-1 The BREW Simulator with Zeebo configuration

The BREW Debugger allows game developers to perform on-target debugging of Zeebo
games using the GDB (GNU Debugger) or the AXD (ARMs Extended Debugger) and a USB
cable connected to the device. The BREW Debugger supports standard debug operations
such as:

* Starting and stopping execution of the application;
* Stepping through the code line by line;

* Examining and modifying variables;

28 Zeebo Confidential and Proprietary

Zeebo Developer Guide

5 Basic Memory Management

This section is intended to provide information concerning memory management and how
to address issues related to address alignment on ARM processors. It also describes the
total amount of memory that can be used to develop games for the Zeebo wireless gaming
platform.

5.1 File System, Heap and Stack Sizes

The total file system size available on Zeebo is 1GB. This amount of memory is shared for
all games preloaded or installed over the air. Be sure to check the free memory available
before trying to save your game data files. Zeebo requires the usage of at most 64KB for
save game data.

Heap size is limited to 32MB. Remember that less than 32MB will be available for you
game. Some applications will be running at the same time when you start your game, and
also remind that your binary file will be fully loaded into the heap before it starts its
execution. So if your binary game takes up 2 MB, less than 30MB of heap will be available
for loading game resources into the heap.

The Zeebo system has a 32KB of stack memory. Make sure your code doesn't allocate large
array or structure variables locally; also try to avoid writing functions with a large scope.
You can also use the IThread interface to let you cooperatively execute your code on a
thread with a stack set in the heap. Using IThread you can set the total amount of stack you
wish to use. Note that IThread provides only cooperative multitasking.

5.2 Memory Alignment Issues on ARM Processors

Memory accesses can be either aligned or unaligned. Aligned memory accesses occur when
data is located on its natural size boundary. If the size of the data type is 4 bytes, for
example, then it falls on its natural size boundary if it is located at a memory address that is
evenly divisible by 4. Unaligned memory accesses occur in all other cases (in the example
above, whenever the memory address is not divisible by 4).

ARM processors are designed to efficiently access aligned data. Attempting to access
unaligned data on an ARM processor will result in either the incorrect data or significant
performance penalties (these different symptoms will be discussed shortly). This contrasts
with most CISC type processors (i.e., x86) in which access to 'unaligned data' is harmless.

29 Zeebo Confidential and Proprietary

Zeebo Developer Guide

5.2.1 Symptoms

The problem described above applies to all ARM architectures. However, depending on the
availability of an MMU and operating system support, applications may see different
behavior across different platforms. By default, unaligned memory accesses will not be
trapped, and will result in the incorrect data. On platforms with an enabled MMU, however,
the OS may trap the unaligned access and correct it at runtime. The result will be the
correct data, but at a cost of 10-20 CPU cycles.

5.2.2 Common Causes
5.2.2.1 Type Casting

The following code illustrates a type casting pitfall:

void my func(char *a)

{
int *b = (int *)a;
DBGPRINTF ("%d", *b);
}

This simple example may result in an unaligned memory access, since we cannot guarantee
the alignment of char *a is on a 4-byte boundary. This type of cast should be avoided
whenever possible.

5.2.2.2 Working with Data Buffers

The most frequent cause of unaligned memory access stems from incorrect handling of
data buffers. These data buffers might contain anything - data read from the USB port, over
the network, or from a file. It is common for this data to be packed, meaning there is no
padding inserted to ensure that data within the buffer lies on its natural size boundary. In
this example, we will consider the case of loading a Windows BMP from a file and parsing
the header.

A Windows BMP file consists of a header followed by the pixel data. The header is made up
of two structures:

typedef PACKED struct

{
unsigned short int type; /* Magic identifier */
unsigned int size; /* File size in bytes */
unsigned short int reservedl, reserved2;
unsigned int offset; /* Offset to image data, bytes */
} HEADER;

typedef PACKED struct
{

unsigned int size; /* Header size in bytes */

30 Zeebo Confidential and Proprietary

Zeebo Developer Guide

int width,height; /* Width and height of image */
unsigned short int planes; /* Number of colour planes */
unsigned short int bits; /* Bits per pixel */
unsigned int compression; /* Compression type */
unsigned int imagesize; /* Image size in bytes */
int xresolution,yresolution; /* Pixels per meter */
unsigned int ncolours; /* Number of colours */
unsigned int importantcolours; /* Important colours */

} INFOHEADER;

Note that the sizes of the HEADER and INFOHEADER structs are 14 and 40 bytes,
respectively.

Lets assume that we want to determine the width and height of the image at runtime. The
code to access this data might look like this:

#define INFOHEADER OFFSET (sizeof (HEADER))
#define WIDTH OFFSET (INFOHEADER OFFSET + offsetof (INFOHEADER, width))
#define HEIGHT OFFSET (INFOHEADER OFFSET + offsetof (INFOHEADER, height))

int imageWidth, imageHeight;
void * fileBuf;

pMe->mFile = IFILEMGR OpenFile(pMe->mFileMgr, "test.bmp", OFM READ);

if (pMe->mFile)

{
IFILE GetInfo(pMe->mFile, &fileInfo);
fileBuf = MALLOC(fileInfo.dwSize);
if (fileBuf)
{
result = IFILE Read(pMe->mFile, fileBuf, fileInfo.dwSize);
if (result == fileInfo.dwSize)
{
imageWidth = *((uint32*)(((byte*)fileBuf) + WIDTH OFFSET));
imageHeight = *((uint32*) (((byte*)fileBuf) + HEIGHT OFFSET));
}
}
}

Note the offsets of the width and height. Because they fall on a half-word boundary, access
to these values in the manner above will result in an unaligned memory access. Some of the
recommended ways to avoid this problem are outlined below.

5.2.3 Recommended Solutions
5.2.3.1 Using MEMCPY

Our first option is to simply perform a MEMCPY() of the data from the buffer to our local
variable:

31 Zeebo Confidential and Proprietary

Zeebo Developer Guide

if (result == fileInfo.dwSize) {
MEMCPY (&imageWidth,
(((byte*)fileBuf)+WIDTH OFFSET),
sizeof (uint32));

MEMCPY (&imageHeight,
(((byte*)fileBuf)+HEIGHT OFFSET),
sizeof (uint32));

}
The result is that the memory is copied byte-by-byte, avoiding any questions of alignment.

5.2.3.2 Using the PACKED compiler directive

Alternatively, we can use the PACKED compiler directive to allow use of pointers directly to
the data we want, while forcing the compiler to handle the alignment issues. In the BREW
environment, PACKED is defined as follows:

#ifdef _ ARMCC_VERSION
#define PACKED _ packed
#else
#define PACKED
#endif

By designating a pointer as PACKED, the ARM compiler will always generate the
appropriate instructions to access the memory correctly, regardless of alignment. A
modified version of the example above, using PACKED pointers, is given below:

#define INFOHEADER OFFSET (sizeof (HEADER))
#define WIDTH OFFSET (INFOHEADER OFFSET + offsetof (INFOHEADER, width))
#define HEIGHT OFFSET (INFOHEADER OFFSET + offsetof (INFOHEADER, height))

PACKED uint32 * pImageWidth;
PACKED uint32 * pImageHeight;
uint32 imageWidth, imageHeight;
void * fileBuf;

pMe->mFile = IFILEMGR OpenFile(pMe->mFileMgr, "test.bmp", OFM READ);

if (pMe->mFile)

{
IFILE GetInfo(pMe->mFile, &fileInfo);
fileBuf = MALLOC(fileInfo.dwSize);

if (fileBuf)
{

result = IFILE Read(pMe->mFile, fileBuf, fileInfo.dwSize);

if (result == fileInfo.dwSize)

{
pImageWidth = (uint32*)(((byte*)fileBuf) + WIDTH OFFSET);
pImageHeight = (uint32*) (((byte*)fileBuf) + HEIGHT OFFSET);
imageWidth = *pImageWidth;
imageHeight = *pImageHeight;

32 Zeebo Confidential and Proprietary

Zeebo Developer Guide

}

5.2.3.3 Defining well-aligned data structures

While programmers will typically have no control over standardized data formats, such as
the BMP header used in the example above, when defining your own data structures you
should be sure to lay out the data in a well-aligned way. The following basic example
demonstrates this principle:

#ifdef ARMCC_VERSION
typedef PACKED struct {

short aj; // offsetof(a) = 0
int b; // offsetof(b) = 2 — misalignment problem!
short c; // offsetof(c) = 6

} BAD_ STRUCT;

typedef struct {

int b; // offsetof(b) = 0 — no problem!
short aj; // offsetof(a) = 4
short c; // offsetof(c) = 6

} GOOD_STRUCT;

Simply by rearranging the order in which we declare the struct members, we can resolve
some of the alignment issues. Also note that if BAD_STRUCT is not declared as PACKED, the
compiler will typically insert padding such that each field is well aligned. This, however, is
usually undesirable as it wastes memory and can almost always be avoided simply by
declaring fields in order of decreasing size.

5.2.4 Testing With the BREW Simulator

BREW Simulator versions 3.1.2 and above provide the ability to turn on data-alignment
checking. When this feature is enabled, the BREW Simulator will display a dialog informing
you of each unaligned memory access and provide you with the option of ignoring the
problem or breaking into the code.

Refer to the BREW SDK User Docs section titled “Misaligned Data Exception Support” for
further information on this feature.

Note: Because the x86 architecture does not have any issues with accessing unaligned data,
you cannot compile the Simulator DLL using the __packed directive (which is why PACKED
is defined as whitespace in the WIN32 environment). This means that unaligned accesses
that are resolved by using PACKED pointers will still trigger the Simulator’s alignment
check.

33 Zeebo Confidential and Proprietary

Zeebo Developer Guide

6 Input/Output

6.1 Understanding the Zeebo Gamepads

Zeebo gamepads are designed for a high-quality gamming experience. Figure 2-1 illustrates
the gamepad.

* A:1 directional pad - used to navigate on the Ul and within the game menus.

* B: 2 analog controls - used during the game when necessary, providing more precise
movement.

* (: 4 game buttons in the top of the control - mainly used during games featuring
varied action and movement options such as shooting, jumping, accelerating,
breaking, etc.

e D: 2 trigger buttons (left and right) - special buttons used in some games for
accelerated weapon selection, car wheel control, etc. These buttons can also be used
while navigating the Ul to quickly cycle backwards or forwards to previously
navigated screens (similar to Internet Explorer’s browser buttons).

* E: 1 home button - when pressed for more than 3 seconds, will redirect the user to a
confirmation screen, asking if he wants to go back to the Stage and exit the game, or
return to the game he was playing. Just pressing and releasing it will act as a pause
button for the game.

Development can also be done with Logitech Dual Action gamepads. Please do not consider
the second layer of shoulder buttons while developing your game.

6.2 IHID Overview

The IHID and IHIDDevice interfaces provide access to USB Human Interface Device (HID)
keyboards, mice, and gamepads that are attached to the device. The IHID interface provides
information about which devices are attached as well as notification about device
insertion/removal. The IHIDDevice interface provides access to the state of a particular
device.

6.2.1 Using ISignal

The ISignal interface serves asynchronous notifications to the application. It works
similarly to an AEECallback, except that it is an actual object as opposed to just a structure.
You create ISignal objects using the ISignalCBFactory interface.

34 Zeebo Confidential and Proprietary

Zeebo Developer Guide

The notifications in the IHID and IHIDDevice interfaces rely on ISignal objects. ISignal
provides similar functionality to AEECallbacks but is created and used slightly differently.
The first thing that is needed is to create the ISignalCBFactory.

ISignalCBFactory *piSignalFactory;
int nErr;

nErr = ISHELL CreateInstance(pIShell,
AEECLSID SignalCBFactory,
(void**)&piSignalFactory);

You can then use this object to create an [SignalCtl object:

nErr = ISignalCBFactory CreateSignal(piSignalFactory,
SignalCallbackFunction,
pUser,
(ISignal=**)o0,
&piSignalCtl);

The ISignalCtl can then be cast to an ISignal for functions that require it and
SignalCallbackFunction(pUser) will be invoked when the signal is set. When you are done
with the ISignal you should call ISignalCtl_Detach before releasing the object to prevent
your callback from being invoked.

6.2.2 Using IHID to determine which devices are attached

The IHID interface provides methods for determining which devices are attached at any
given moment and for receiving notifications when a device is inserted or removed.

In order to use this interface you must first create it:
IHID *piHID;
int nErr;

nErr = ISHELL CreatelInstance(pIShell, AEECLSID HID,
(void**)& pIHID);

This object can then be used to determine what devices are attached:

int nConnectedDevices;
int *pDevHandles;
int nErr;

nErr = IHID GetConnectedDevices(pIHID,
AEEUID HID Joystick Device,

NULL,
0,
&nConnectedDevices);
if ((SUCCESS == nErr) && (nConnectedDevices != 0))
{
pDevHandles = (int *)MALLOC (nConnectDevices * sizeof(int));

if (NULL != pDevHandles)

35 Zeebo Confidential and Proprietary

Zeebo Developer Guide

{
nErr = IHID GetConnectedDevices(pIHID,
AEEUID HID Joystick Device,
pDevHandled,
nConnectedDevices,
&nConnectedDevices);
if (SUCCESS == nErr)
{
int nIndex;
for(nIndex = 0; nIndex < nConnectedDevices; nIndex++)
{
//Device with handle of pDevHandles[nIndex] is present
}
}
}

}

This will give you the list of devices that are present when the code is executed. If you are
interested in detected when devices are inserted or removed you must register a signal
with the [HID interface.

IHID RegisterForConnectEvents(pIHID, (ISignal *)piDeviceSignal);

In the handler for this signal you will need to get all of the connected events

boolean bEventsDropped;
int nHandle, nStatus;

while (AEE_SUCCESS == IHID GetNextConnectEvent(pIHID, &nHandle,
&nStatus,
&bEventsDropped))
{

AEEHIDDevicelInfo di;

if (bEventsDropped)

{
break;
}
//Check to see if it a joystick
if (SUCCESS == IHID GetDeviceInfo(pMe->m pIHID, nHandle, &di))
{
if(di.nDeviceType == AEEUID HID Joystick_ Device)
{
if (AEE_SUCCESS == nStatus)
{
NewJoystick(nHandle);
}
else
{
DeleteJoystick(nHandle);
}

36 Zeebo Confidential and Proprietary

Zeebo Developer Guide

if (bEventsDropped)

{
//The system dropped a connect/disconnect event
//Flush the queue
while (AEE_SUCCESS == IHID GetNextConnectEvent (pIHID, NULL,
NULL,
NULL))
{
//Do Nothing
}
//The user should now reread the list of connected devices using
//IHID GetConnectedDevices and update its internal state.
}

6.3 Understanding System 1/O

The IHIDDevice provides information about a specific device connected to Zeebo. These
devices are presented as a set of axis and buttons. The API has no limitations concerning
the number of buttons that are supported. The axes are limited to X, Y, Z, rX, rY, rZ, vX, vY,
vZ, aX, aY, aZ, fX, fY, fZ.and they can be either absolute or relative.

Games running on Zeebo can either poll or register for notification for button or axes state
change information. The events generated by the buttons are captured in an event queue.
For each axes and button there is a minimum value, maximum value and a unique ID
associated.

The following sections describe how to use the IHIDDevice interface for handling gamepad
events and state change information.

6.3.1 Creating a IHIDDevice reference

Once the device handle of the required device has been identified through the IHID
interface, the IHIDDevice object for this device can be created with IHID_CreateDevice.

6.3.2 Button Events

After creating an IHIDDevice object using the handle for the required device, attach a signal
handler using IHIDDevice_RegisterForButtonEvent to be notified for button press/release
events.

Once this event is received button information can be retrieved using
[HIDDevice_GetNextButtonEvent. The AEEHIDButtonInfo struct retrieved by this call
would have the required information about the button. The nButtonUID member will be 0
if the UID is unknown.

6.3.3 Axis Events

After creating an IHIDDevice object using a handle for the required device type, you will
need to attach a signal handler using IHIDDevice_RegisterForPositionChange to be notified

37 Zeebo Confidential and Proprietary

Zeebo Developer Guide

for axis change events. Once the signal is received, axis information can be retrieved by
calling IHIDDevice_GetPositionState. The AEEHIDPositionInfo struct returned by this call
would have the axis information. If bRelativeAxes member is set to true the axis
information reported from the device is relative.

6.3.4 Device Events

All the device status query and event handling functions accessible through IHID API using
the device handle are accessible using the IHIDDevice API. This provides an optimal way
for filtering out the device status events once a corresponding IHIDDevice reference is
available.

6.3.5 Gamepad Rumble

If IHIDDevice_GetRumble() is successful the current rumble status will be retrieved. If the
device does not support rumble then this function will return AEE_EUNSUPPORTED.

[HIDDevice_Rumble() sets the rumble state as requested. The input values should be in the
range of 0 to 65,535. If the device does not support rumble then this function will return
AEE_EUNSUPPORTED.

IHIDDevice Rumble(*po, OXFFFF, 0);

The above snippet sets the left motor intensity to max and right motor intensity to 0.

Remember that current version of Zeebo gamepad does not support rumble.

6.3.6 Exclusive Access

The priority level for an application wusing this device can be set with
[HIDDevice_SetExclusiveLevel(). The default value for this level is 0, so all the applications
accessing a particular device will be notified of device changes. The default BREW events
that are sent for a given device will only be sent if no instances of IHIDDevice for that
device have a non-zero exclusive level.

If this level is updated to a positive integer value greater than 0, all the instances of this
device which have a level lower than this value will not receive any notifications.

Eg:

Consider 3 applications accessing a keyboard:
* App 1-Word Processing - 0
* App2 - Keyboard test application - 0
* App3 - Keyboard controlled game - 0

38 Zeebo Confidential and Proprietary

Zeebo Developer Guide

In the above case the Keyboard notifications are delivered to all the apps. Now, if the
priority of the device from App 3 is changed from 0 to 1, the notifications will only be
received by App3.

Setting this parameter from one application to create parity in exclusivity would result in
reduction of BREW events generated.

6.3.7 Default Event Handling

Regular BREW events will also be sent to the attached HID devices. When a keyboard is
present, it will send EVT_KEY events or EVT_CHAR events depending on which key is
pressed. Mouse events will use similar events as touch screen.

Gamepads events are based on the UID of the key. Bellow is the default event mapping for
the gamepad:

* AEEUID_HID]Joystick_DPad_Up - AVK_UP

e AEEUID_HIDJoystick_DPad_Left - AVK_LEFT

* AEEUID_HID]Joystick_ DPad_Down - AVK_DOWN

* AEEUID_HIDJoystick_DPad_Right - AVK_RIGHT

* AEEUID_HID]Joystick_Start - AVK_SELECT

e AEEUID_HIDJoystick_Back - AVK_CLR

e AEEUID_HIDJoystick_Left Thumbstick - AVK_SOFT1

e AEEUID_HIDJoystick_Right_Thumbstick - AVK_SOFT2

e AEEUID_HIDJoystick_Button_1 - AVK_GP_1

* AEEUID_HIDJoystick_Button_2 - AVK_GP_2

* AEEUID_HID]Joystick_Button_3 - AVK_GP_3

* AEEUID_HIDJoystick_Button_4 - AVK_GP_4

* AEEUID_HID]oystick_Left_Shoulder_Upper - AVK_GP_5

e AEEUID_HIDJoystick_Right_Shoulder_Upper - AVK_GP_6
* AEEUID_HID]Joystick_Left Shoulder_Lower - AVK_GP_SL
* AEEUID_HID]Joystick_Right_Shoulder_Lower - AVK_GP_SR

6.4 Zeebo Gamepad Remapping

In order to have the correct mapping of joystick buttons and analog sticks from Zeebo
gamepad, a set of helper functions are provided along with the SDK. Refer to
AEEHIDThumbsticks.c and AEEHIDButtons.c located inside your BREW SDK src folder for
further details on each helper function provided.

39 Zeebo Confidential and Proprietary

Zeebo Developer Guide

The button remapping is done replacing the IHIDDevice_GetNextButtonEvent() function
call with AEEHIDButton_GetNextButtonEvent() provided in AEEHIDButtons.c file.

Analog stick remapping is achieved replacing IHIDDevice_GetPositionState() function call
with AEEHIDThumbstick_GetPositionState() call, declared in AEEHIDThumbsticks.c file.
Note that developers must initialize the analog stick remapping every time a new joystick is
connected with AEEHIDThumbstick_InitializeMapping() before calling
AEEHIDThumbstick_GetPositionState(). Also you must call
AEEHIDThumbstick_DestroyMapping() every time a joystick is removed in order to destroy
the mapping.

The Home button event generated while pressing/releasing it is AVK_CLR, and
pressing/releasing the right thumbstick will generate an AVK_SELECT. The AVK_SELECT
key event is used for launching games while in the Qualcomm UI (application list).

40 Zeebo Confidential and Proprietary

Zeebo Developer Guide

7 3D Graphics

Zeebo supports the OpenGL ES 1.0+ Common and Common-Lite profiles. The major
features provided by OpenGL ES 1.1 standard are provided in the GL and EGL extensions
present in the hardware.

This chapter highlights the key features supported by the Zeebo 3D rendering system.
7.1 OpenGL ES Overview

7.1.1 Frame Buffer (Color)

The frame buffer uses a 16-bit 565 RGB format, as this most closely represents the native
format of the video output. A 16-bit depth buffer and 4-bit stencil buffers are optional.

7.1.2 Color Buffer Extension

This Color Buffer extension is deprecated. Limited support is still available however we
strongly suggest using regular OpenGL functions since there is no native 2D/3D
synchronization support on the MSM7201A. Blitting textures to the screen for overlay
effects can be accomplished using the glDrawTex__ extension.

For further portability, applications should take into account the fact that this extension
may not be available on future releases of the platform.

7.1.3 Textures

Zeebo supports texture sizes of up to 1024 x 1024. Texture dimensions must be a power of
2. At the API level, Zeebo handles all texture formats defined by the OpenGL ES
specification.

Zeebo includes an 8KB texture cache. Optimal performance can be attained when an entire
texture can fit in the cache, e.g., 64 x 64 x 16bpp, 32 x 128. In general, texture images
should be as small as possible without sacrificing quality. Texture compression is
performed after the texture cache so a significant gain can be expected both in performance
as well as in texture cache use. See the next section on texture compression for details.

Mipmapping is supported in hardware for Zeebo. The ideal filter settings for best quality
and performance are GL_LINEAR_MIPMAP_NEAREST for minification and GL_LINEAR for
magnification. Trilinear filtering is not supported in hardware. Setting the filter settings to
GL_LINEAR_MIPMAP_LINEAR will result in a significant performance reduction. For

41 Zeebo Confidential and Proprietary

Zeebo Developer Guide

glCopyTexImage2D() and glCopyTexSublmage2D(), keeping the frame buffer and texture
formats to 16-bit RGB 565 is desirable for performance.

There is no difference in performance between filtering environment modes (GL_REPLACE,
GL_DECAL, GL_MODULATE, GL_BLEND). Also, there is no performance degradation with
respect to smooth and flat shaded triangles.

Zeebo supports two texture units as well as the texture crossbar extension allowing each
texture combiner unit to accept input from both textures. Multitexturing effects in a single
pass can significantly enhance the visuals of a game without incurring much of a
performance penalty

When creating a texture (using glTexImage2D(), glCopyTexIlmage2D() or
glCompressedTexImage2D()), OpenGL ES creates a copy of the texture data, as required by
the OpenGL specification. Therefore, the application can free its copy of the texture data.
The texture data is not needed during the lifetime of this OpenGL context.

7.1.4 Back-face Culling

Back-face culling is the process by which polygons that are not facing the camera are
removed from the rendering pipeline. This is done by comparing the polygon’s surface
normal with the position of the camera. Back-face culling can be considered part of the
hidden surface removal process of a rendering pipeline. The usage of back-face culling is
recommended to improve the performance on the rendering pipeline.

7.1.5 Fog

Fog coefficients are calculated at each vertex then interpolated during rasterization (per-
vertex fog). Artifacts common to vertex-fog processing will appear such as vertices outside,
i.e., in front of the fog layer being “covered” by fog.

7.1.6 Clearing the Color Buffer

If the game draws to the whole screen for each frame a little bit of time can be saved by not
clearing the color buffer.

7.1.7 Batching

As with most graphics hardware, Zeebo performs best when working with large batches of
data. There is some setup involved every time you call glDrawElements() or
glDrawArrays(). When rendering only a few triangles at a time, the cost of the setup
becomes the bottleneck. The ratio of the setup cost to the rendering cost is significantly
reduced when drawing dozens of triangles at once, and optimal with hundreds of triangles.

Multiple groups of strips and fans should be concatenated into a single group using
degenerate triangles. Individual triangles as well as really small strips and fans (typically
consisting of less then 3 triangles) can be grouped together into a single triangle list.

42 Zeebo Confidential and Proprietary

Zeebo Developer Guide

7.1.8 Stencil

Zeebo supports a 4-bit stencil buffer.

7.1.9 Blending

Blending can be enabled without any significant performance degradation.

7.1.10 Lightning

There is no hardware support for OpenGL ES lighting. Try to use multitexture lightmapping
to light static geometry. Minimize dynamic lighting to only the moving objects in the game
and try to balance triangle count of these objects between quality and performance. When
using lighting try to use a single directional diffuse light for best performance.

7.1.11 Data Types and Precision

The OpenGL ES implementation on Zeebo comes in two profiles. OpenGL ES Common
profile allows the use of floating point data types while OpenGL ES Common-Lite only use
byte, short and fixed data types. It is important to remember that most embedded
platforms (especially the ARM based platforms) do not have native floating-point support
available. In some cases floating point is emulated in software which can cause severe
performance issues for intense floating point calculations.

The OpenGL ES Common-Lite Profile for Zeebo allows you to specify geometry data as byte,
short, or fixed-point data (GL_BYTE, GL_SHORT, GL_FIXED). The range of values each
accepts respectively are:

* GL_BYTE - [-128,127]
* GL_SHORT - [-32768,32767]
* GL_FIXED - [-32768, 32767], with 16 bits of fractional precision

As opposed to floating-point systems where precision is not a major issue, with a fixed-
point system, it is quite easy to exceed the acceptable threshold on the data if one is not
careful. It is up to the application programmer to keep in mind the precision of the
geometry data. For example, as indicated above, the range for GL_FIXED is -32768 to
32767, along with 16 bits of fractional precision. The programmer must ensure that matrix
operations applied to the data will never cause an overflow. Suppose the current
MODELVIEW matrix has a scaling factor of (128, 128, 128) and this is being applied to the
point (2000, 2000, 2000). The result is (128 * 2000, 128 * 2000, 128 * 2000) = (256000,
256000, 256000), which is outside the range of values that can be handled by GL_FIXED.
This will cause undesired rendering behavior. Again, keeping in mind that Zeebo is a fixed-
point system is very important.

43 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Also, try to preprocess your data as much as possible so that it does not have to be done at
runtime. Just for reference, the instructions for doing fixed-point multiplication and
division are shown here:

//multiplication

__int64 c=(__int64)a*b;

c = (__int64)c>>16;
//division

int64 ¢ = (__int64)a<<1é6;
= (__int64) c/b;

7.1.12 Extended Data Types

°

To gain a memory usage savings it is possible to use GL_SHORT for texture coordinates.
However this has the disadvantage that the texture view matrix needs to apply a scaling
factor to the shorts. There is a small performance penalty for using this. Instead the
application should check to see if the ATI_extended_texture_coordinate_data_formats
extension is available and use one of the following formats which is supported by Zeebo
hardware and don’t need any scaling: GL_BYTE_4_4_ATI GL_SHORT_4_12_ATI
GL_SHORT_8_8_ATI.

7.2 Supported OpenGL ES extensions

Table 7-1 summarizes the supported OpenGL ES 1.1 features that are hardware accelerated
and are exposed using the EGL and GL extensions mechanism.

Table 7-1 OpenGL ES extensions support

Features Extensions Zeebo
Automatic Mipmap Generation SGIS_generate_mipmap No
Buffer Objects ARB_vertex_buffer_object Yes
Draw Texture OES_draw_texture Yes
Matrix Get OES_matrix_get No
Matrix Palette OES_matrix_palette Yes
Multitexture - Yes
Point Parameters ARB_point_parameters No
Point Size Array OES_point_size_array Yes
Point Sprites OES_point_sprite Yes
Rendering to Textures - No
State Queries - Some
Texture Combine ARB_texture_env_combine Yes
Texture Dot3 ARB_texture_env_dot3 Yes
User Clip Planes - No

44

Zeebo Confidential and Proprietary

Zeebo Developer Guide

7.3 Using OpenGL ES and EGL APIs in BREW

Since every BREW application is built as a dynamic downloadable application, each
requires a set of interfaces to be created that provide dynamic binding at runtime. With
that said, a set of BREW interfaces has been created that provide wrappers so the standard
OpenGL ES and EGL APIs can be called.

Because there are multiple GL and EGL interfaces available we strongly recommend using
the wrapper functions and call the standard OpenGL ES APIs directly. The wrapper
functions will take care of querying and initializing the highest available GL and EGL
interfaces.

Note: Using ISHELL_Createlnstance with parameters AEECLSID_GL or AEECLSID_EGL has
been deprecated. If a user insists on using the BREW interfaces they should look at
EGL_1x.c and GLES_1x.c.

7.3.1 Steps for using standard OpenGL ES API

* Include the IEGL and IGL BREW interface wrapper headers

#include <EGL_1x.h>
#include <GLES_1x.h>

¢ Include the standard EGL and GL include files

#include <gles/egl.h>
#include <gles/gl.h>

* Initialize the IEGL and IGL interfaces (in that order)

if (EGL_Init(pMe->a.m pIShell) != SUCCESS) { return FALSE; }
if (GLES_Init(pMe->a.m pIShell) != SUCCESS) { return FALSE; }

* Useregular EGL and GL functions like eglGetDisplay() and glClear()...
* Before exiting the application release the IGL and IEGL interfaces (in that order)

GLES_Release();
EGL_Release();

* Include the IEGL and IGL BREW interface implementation files EGL_1x.c, GLES_1x.c
into your project.

* When using OpenGL ES Extensions also include <gles/glESext.h> and build your
project with GLES_ext.c.

45 Zeebo Confidential and Proprietary

Zeebo Developer Guide

7.4 Supported 3D Graphics API

OpenGL ES 1.0 and most of OpenGL ES 1.1 API support both Common and Common Lite
profiles. The Common profile is enabled by default; this includes OpenGL ES 1.0 plus most
of the OpenGL ES 1.1 features with the exception of state queries. OpenGL ES 1.1 features
are implemented as standard OpenGL ES Extensions, so it can be queried using the
standard OpenGL ES and EGL query mechanism which functions are supported and which
are not. A complete list of OpenGL ES functions supported are listed in Appendix B.

7.4.1 Summary of 3D Accelerated Rendering Support

* Color depth format 565 - Color Buffer at 16 bpp

* Double buffered Color Buffer

* Full resolution 16-bit Z-buffer

* Stencil Buffer at 4 bpp

* Programmable input vertex formats

* Indexed and embedded vertex lists

* Primitives - single triangle, strip, fan, point sprite

* Vertex transformation engine

* Trivial rejection capability

* Vertex clip check against frustum and user-defined clip planes (software performs
clipping)

* View-port transform

* Back-face culling

* Polygon offset capability

¢ Vertex skinning support (with up to two matrices)

* Multi-texturing - dual texture filtering units at maximum 1024x1024 resolution

* Texture filtering for dual textures — nearest and bi-linear

* Texture filtering for single textures — nearest, bi-linear and tri-linear

* Texture formats - all OpenGL 1.0 formats

* Texture Compression

* Perspective correct texturing

* 32-bit precision in pixel-pipe

* Mip-mapping - 10 maps per texture with per-pixel level of detail (LOD)

* Scissoring

* Alpha test

* Dithering

* Logic operations

* Alpha blending with destination pixels

* Specular color blending

* Zand color buffer masking

* Zbuffer depth testing with 16-bit Z

* Vertex fog interpolation

* Lighting supported in SW

* Per fragment Fog

46 Zeebo Confidential and Proprietary

Zeebo Developer Guide

* Point Sprites
* Dot 3 lighting

7.4.2 3D Graphics Limitations
Multiple EGL contexts are not supported by the graphics driver at this time. Therefore, only

one 3D graphics application may run at a time; moreover, your application must share its
EGL context throughout, and not create separate contexts.

47 Zeebo Confidential and Proprietary

Zeebo Developer Guide

8 3D Graphics Optimization and Tuning

This section describes the performance and other characteristics of the OpenGL ES
implementation and provides recommendations for attaining optimal performance and
results.

8.1 Working with Vertex Buffer Objects (VBO’s)

Vertex Buffer Objects allow static vertex data to reside in graphics memory and
significantly reduce the bus bandwidth usage. This optimization is a must have for every
OpenGL game running on the MSM7201A chipset.

Vertex Data needs to be transferred over the bus to graphics memory each time it is used.
When dealing with large data sets it is possible that the bus bandwidth limitation becomes
the bottleneck for the application. VBO’s allow the application to upload static data into
graphics memory (similarly to textures) and leave it there for as long as it is needed.

For applications to get real acceleration, there are some restrictions:

* [tis not accelerated for GL_LINE_LOOP: these fall back to traditional vertex packing
routines.

* [tis notaccelerated when GL_LIGHTING is enabled or for matrix-palette skinning

8.1.1 Preparing the VBO function extensions

Sample Code:

char* pszExtensions = (char*)glGetString(GL_EXTENSIONS);

/*
* check to see if the vertex buffer extensions are available
*/

if (STRSTR(pszExtensions, "ARB vertex buffer object") == NULL)
{
return FALSE;
}
/*
* setup the function pointers
*/

pMe->glGenBuffers =

(PFNGLGENBUFFERSARBPROC)eglGetProcAddress ("glGenBuffersARB");
pMe->glDeleteBuffers =
(PFNGLDELETEBUFFERSARBPROC)eglGetProcAddress ("glDeleteBuffersARB")
pMe->glBindBuffer =
(PFNGLBINDBUFFERARBPROC)eglGetProcAddress("glBindBufferARB");

48 Zeebo Confidential and Proprietary

Zeebo Developer Guide

pMe->glBufferData =

(PFNGLBUFFERDATAARBPROC)eglGetProcAddress ("glBufferDataARB");
pMe->glBufferSubData =
(PFNGLBUFFERSUBDATAARBPROC)eglGetProcAddress ("glBufferSubDataARB")

if (pMe->glGenBuffersARB == NULL | |
pMe->glDeleteBuffersARB == NULL ||
pMe->glBindBufferARB == NULL | |
pMe->glBufferDataARB == NULL | |
pMe->glBufferSubDataARB == NULL)

{

return FALSE;

}
8.1.2 Initializing a VBO

Sample Code:

GLuint nVBOBufSize = nVertSize + nNormSize;

/ *

* calculate VBO offsets. These are needed when setting up the data pointers
*/

pMe->nVertexOffset 0;

pMe->nNormalOffset = pMe->nVertexOffset + nVertexSize;

/ *

* generate a single VBO buffer

*/

pMe->pVBOArrayId = (GLuint*)MALLOC(sizeof(GLuint) * 1);
pMe->glGenBuffersARB(1, pMe->pVBOArrayId);
pMe->glBindBufferARB(GL ARRAY BUFFER ARB, pMe->pVBOArrayId[0]);

/ *

* create the empty VBO buffer

*/

pMe->glBufferDataARB(GL_ARRAY BUFFER ARB, nVBOBufSize, NULL,
GL_STATIC DRAW ARB);

/ *

* add the data to the VBO buffer

*/

pMe->glBufferSubDataARB(GL_ARRAY BUFFER ARB, pMe->nVertOffset, nVertSize, pMe-
>pVerts);

pMe->glBufferSubDataARB(GL_ARRAY BUFFER ARB, pMe->nNormOffset, nNormSize, pMe-
>pNorms) ;

/ *

* unbind VBO buffer untill we are ready to use it

*/

pMe->glBindBufferARB(GL_ ARRAY BUFFER ARB, 0);

8.1.3 Drawing with a VBO

Sample Code:

/ *

* bind the right VBO buffer

*/

pMe->glBindBufferARB(GL ARRAY BUFFER ARB, pMe->pVBOArrayId[0]);

49 Zeebo Confidential and Proprietary

Zeebo Developer Guide

/ *

* setup the vertex data pointers. Instead of using vertex data pointers we
* use offsets into the vertex data buffer.

*/

glVertexPointer (3, GL_FIXED, 0, (void*)pMe->nVertexOffset);
glNormalPointer (GL_FIXED, 0, (void*)pMe->nNormalOffset);

/ *

* unbind the VBO buffer (VBO use is enabled untill bindbuffers is called with
Id=0)

*/

pMe->glBindBufferARB(GL ARRAY BUFFER ARB, 0);

/ *

* Make the drawcall as your would using regular vertex data

*/

glDrawElements (GL_TRIANGLE STRIP, nNumIndices, GL_UNSIGNED SHORT, pMe-
>pIndices);

8.2 Texture Compression

The Zeebo supports ATITC texture compression format. The ATITC texture compression
provides huge benefits by allowing more textures to fit in the allotted texture memory,
reducing bandwidth usage and providing better texture cache behavior.

Compression ratios:
* 6:1 for GL_RGB to GL_COMPRESSED_RGB_ATI_TC (24 bit -> 4 bit/pixel);
* 4:1 for GL_RGBA to GL_COMPRESSED_RGBA_ATI_TC (32 bit -> 8 bit/pixel);

To use a compressed image in OpenGL ES, simply replace your glTexImage2D call with the
following:

glCompressedTexImage2D (
GL_TEXTURE_2D,
<miplevel>,
<GL_COMPRESSED RGB ATI TC | GL_COMPRESSED RGBA ATI TC>,
<uncompressed image width>,
<uncompressed image height>,
0,
<compressed image size>,
<compressed image pixels>);

To create an ATITC compressed texture you can use one of the following tools.

8.2.1 QXTextureConverter

The QXTextureConverter Library provides a variety of image conversion procedures that
allows easy conversion between standard image file formats like Windows Bitmaps (BMP)
and Targa (TGA) files into optimized OpenGL ES or D3D Mobile texture formats. The library
handles the conversion of the data layout of the input images, whether swizzled or
inverted, as well as outputting these images into many texture file formats including ATITC

50 Zeebo Confidential and Proprietary

Zeebo Developer Guide

compressed textures and palettized textures. The library also contains some specialized
texture conversion routines like mipmap scaling and normal map generation.

QXTextureConverter is part of QXEngine. See section 2.4.1 for more information about
QXEngine.

8.2.2 The Compressonator

The Compressonator (http://www.ati.com/developer/compressonator.html) is a stand
alone application that can load textures, compress them to ATI_TC and save them to file
with the extension “.atitc”. These files start with the following 20 bytes header:

typedef struct _ATITC_HEADER
{

unsigned int signature;

unsigned int width;

unsigned int height;

unsigned int flags;

unsigned int dataOffset;
} ATITC_HEADER;

This header is not part of the ATITC texture and should be stripped before using the texture
in OpenGL ES.

The Compressonator can also be used from the command line. For more information type
“TheCompressonator -help” on the command line.

8.2.3 ATI Compress

ATI_Compress (http://www.ati.com/developer/compress.html) is ATI's library for texture
compression. It is used by The Compressonator. It is also available to third party
developers who wish to incorporate it within their own content creation pipeline.

8.3 Rescaling OpenGL ES Rendering Surfaces

OpenGL ES rendering surfaces can be rescaled, allowing significant gains in performance
and making easier the porting from existing games written in BREW to Zeebo. The
rescaling is done using QUALCOMM_surface_scale.

This OpenGL ES extension enables rescaling an EGL window surface as the surface contents
are copied to the target display device while posting the buffer. Both upscaling and
downscaling are supported. This extension can only be applied to non-current surfaces.

The initial dimensions of the EGL surface will match the target display, which is VGA
(640x480) for Zeebo. The user specifies one or two rectangular regions known as the
source and destination rects. The source rect is scaled as required to the size specified in

51 Zeebo Confidential and Proprietary

Zeebo Developer Guide

the destination rect. Usually, the source rect will be less than or equal to the size of the EGL
surface.

A larger source rect, up to the implementation limit, may be specified when downscaling is
desired. Downscaling can be used to achieve a “fake” anti-aliasing for rendering engines
which have no internal anti-aliasing capability. For reasonable results, this will require the
rendering engine to render an image which is at least twice the desired size in both
dimensions.

The source rect specifies the rectangular area of an EGL window surface that will be
rescaled to the destination rect. The source rect may be passed as NULL if the full surface is
to be used as the input. If the source rect is larger than the original EGL surface dimensions,
the surface is resized which results in a larger rasterization load on the 3D pipeline. To
resize the surface, the associated buffers must be deleted and reallocated to accommodate
the larger dimensions; this operation may fail if there is insufficient memory or the
specified source rect exceeds the implementation limits. If the source rect is smaller than
the original surface dimensions, the surface buffers may be deleted and reallocated by the
driver to save memory and reduce binning penalties. To determine the (possibly) new
dimensions of the EGL surface use eglQuerySurface.

Using smaller window surface dimensions can save render time or, equivalently, increase
sustainable frame rate. On games where a memory constrained rendering engine cannot
operate on surfaces of the desired dimension, upscaling smaller window surfaces can
produce VGA images on the display output.

The destination rect specifies the dimensions to which the entire (possibly resized) EGL
window surface will be scaled as a post processing operation. The destination rect may be
passed as NULL if the original full surface size is the desired output. The destination rect
must be less than or equal to the size of the Zeebo display output, which is VGA.

Find bellow a sample code for upscaling a QVGA (320x240) surface to the full native VGA
window surface.

// The objective of this sample is to reduce the rasterization
// load on the 3D pipeline by decreasing the surface area it
// renders. The smaller surface is upscaled to the full

// VGA display size during the buffer swap.

// The initial window surface is VGA size to match the display

// Do required EGL initialization here

// Create the VGA size window surface
window = eglCreateWindowSurface(dpy, config, VGA window, NULL);

// Any additional EGL setup

// Set the window surface to upscale from a QVGA sized region
// to the full VGA display

EGLSurfaceScaleRect src_rect = {0, 0, 320, 240};
eglSetSurfaceScaleQUALCOMM(dpy, window, &src_rect, NULL);
eglSurfaceScaleEnableQUALCOMM(dpy, window, EGL_TRUE);

52 Zeebo Confidential and Proprietary

Zeebo Developer Guide

// Setup OpenGL ES rendering to only the VGA region used
glviewport(0, 0, 320, 240);

glScissor(0, 0, 320, 240);

// Setup other clients to restrict rendering as necessary...

// Draw calls here

// Swap to the display, the content will be upscaled to VGA
eglsSwapBuffers(dpy, window, window, ctx);

53 Zeebo Confidential and Proprietary

Zeebo Developer Guide

9 Zeebo Audio

This chapter describes specific audio capabilities that are available on the Qualcomm
MSM7201A chipset. Notes on the architecture, supported audio formats and tradeoffs
when using audio are also provided.

The MSM7201A chipset offers a wide range of audio features and more robust performance
of 3D graphics with audio. All graphics processing are offloaded to the external Adreno 130
graphics core. This leaves the DSP completely free for audio processing. This design is
geared for gaming and advanced audio applications.

Qualcomm CMX provides game and application developers with a wide array of high-
quality audio options to greatly enhance the game player experience and add significant
value to their games. The supported audio features for use with games or applications are:

* Direct playback and control of audio objects - MIDI-based audio objects (MIDI, XMF,
and PMD) and encoded audio objects (PCM, ADPCM, QCP, and MP3);

* Simultaneous playback of multiple MIDI objects and multiple encoded audio objects
(including PCM, ADPCM, and QCP);

* Global loading and unloading of DLS;
* QAudioFX, the 3D audio solution, including features such as positional sound, rolloff,

reverberation, and Doppler effects;

9.1 Playback of MIDI and encoded audio objects

Qualcomm’s CMX solution includes the ability to play back and control an audio object. The
file formats that are currently supported include MIDI, PMD, XMF, QCP, ADPCM, PCM, and
MP3.

The supported encoded audio and MIDI file formats for single playback are presented in
the following subsections.

9.1.1 Supported encoded audio formats

The supported encoded audio file formats are described in this section. Choosing a file
format for a particular use is entirely up to the developer; however, it should be noted that
there are preferred file formats for certain uses. This information is also included in the
following subsections.

54 Zeebo Confidential and Proprietary

Zeebo Developer Guide

9.1.1.1 QCELP (.qcp)

CMX supports 13 kbps fixed full rate QCELP files at 8 kHz. The format, a codec originally
intended for voice, is ideally suited for voice audio recordings and sound effects (sounds
that do not have high-frequency content). This audio format may not be well suited for
melodic music.

Each QCP object consumes approximately 2% of the total DSP load utilization. QCP objects
must be encoded as fixed full rate. QCP objects encoded at other rates will not play back
correctly.

The CMX Studio authoring tool is capable of exporting compatible QCP files as long as the
sampling rate of the original imported audio is 8 kHz.

9.1.1.2 ADPCM (.wav)

Adaptive Differential Pulse Code Modulation (ADPCM) uses a compression technique that
records the differences between samples and adjusts the coding scale to accommodate for
large and small differences. ADPCM files with 4-bit samples are one-quarter the size of
linear PCM files that has 16-bit samples. ADPCM is a recommended compression format for
music; it has a larger file size than QCP, but is higher quality sound.

Each ADPCM object consumes approximately 2% of the total DSP load utilization. The
MSM7201A supports IMA ADPCM, 4 bits per sample, 4, 8, 12, 16, 20, 24, 28, 32, 36, 44.1, 48
kHz. IMA ADPCM is a common ADPCM encoding format. When playing back multiple
ADPCM objects simultaneously, each object can have a different sampling rate.

The CMX Studio authoring tool is capable of exporting compatible IMA ADPCM files as long
as the sampling rate of the imported audio file is not changed.

9.1.1.3 PCM (.wav)

Pulse Code Modulation (PCM) files are raw, uncompressed waveform samples. Linear PCM
is also more ideally suited to musical audio than is the QCP format. These files can be very
large.

Each PCM object consumes approximately 2% of the total DSP load utilization. The
MSM7201A and chipset supports linear PCM, mono or stereo, 8 or 16 bits per sample, at 4,
8,11.025,12, 16, 22.05, 24, 32, or 44.1 kHz.

9.1.1.4 MP3 (.mp3)

MPEG-1, Audio Layer 3, more commonly known as MP3, is a popular digital audio format
that represents PCM-encoded audio utilizing a lossy compression technique. The
compression method is based on psychoacoustic models that eliminate components of
audio that are not audible to the human ear, thereby reducing memory requirements.

55 Zeebo Confidential and Proprietary

Zeebo Developer Guide

The MSM7201A chipset supports all bitrates and sampling rates. It also has the ability to
play MP3 in conjunction with 3D graphics.

9.1.2 Supported MIDI file formats

MIDI playback occur through Qualcomm’s CMX synthesizer and wavetable. Playback of a
single MIDI object (not simultaneous with other MIDI objects) is through the HQ
synthesizer. For PMD files, the selection of the HP or HQ synthesizer, or a combination of
the two, is based on the polyphony mode setting within the file. If playback is simultaneous
with other MIDI objects, then all files play back through the HP synthesizer. In this case, the
polyphony mode setting of PMD files is ignored.

9.1.2.1 MIDI (.mid)

CMX supports SP-MIDI and General MIDI level 1 and 2 Standard MIDI Format (SMF). The
SMF file format stores MIDI data and other data typically needed by a sequencer. At a
minimum, a MIDI representation of a sound includes values for the note’s pitch, length, and
volume and may also include additional characteristics, such as attack and delay time. One
SMF file can store information for numerous patterns and tracks and was designed to be
generic so that the information can be used by any sequencer.

MIDI playback is through Qualcomm’s CMX synthesizer and wavetable. This product
actually contains two synthesizers. The High Quality (HQ) synthesizer is used for better
sounding output but requires more DSP utilization per voice. The High Polyphony (HP)
synthesizer is less complex and better suited for playing back multiple MIDI files
simultaneously.

MIDI files play back through the HQ synthesizer and wavetable by default when played
individually. When played simultaneously with other MIDI objects, they are played through
the HP synthesizer.

MIDI can also be played using MIDI messages which are sent directly to the core
synthesizer using BREW API calls. These can also be used simultaneously with MIDI files
and/or encoded audio objects. The behavior and usage of the BREW APIs for MIDI
messages is discussed in greater detail in section 9.1.2.4.

9.1.2.2 XMF (.xmf and .mxmf)

The eXtensible Music Format (XMF) and its mobile version (mXMF) serve as wrappers for
MIDI and DLS files. All features and restrictions related to MIDI files also apply to XMF and
mXMF files.

XMF and mXMF files, which may contain DLS, play back through the HQ synthesizer and
wavetable when played individually.

When playing XMF and mXMF files simultaneously with other MIDI objects, all instruments
play back through the HP synthesizer. Also, DLS instruments within an XMF file, if any, play

56 Zeebo Confidential and Proprietary

Zeebo Developer Guide

back as General MIDI instruments. See section 9.1.2.4 for more details on using DLS with
XMF files.

9.1.2.3 CMX (.pmd)

The CMX file format is a wrapper format that can contain a MIDI file, an encoded audio file,
LED control, vibration, images, animation, text, text wipe, or any combination of these
features. One of the most significant advantages of the CMX file format is its time-
synchronization capability. This capability provides developers with the ability to
synchronize the included contents together. This can also be used to synchronize vibration
and LED control with audio playback. Another application of this feature is for time-
synchronized cut scenes that include synchronized text, still images (JPEG or PNG), and
animation.

CMX files, hereafter referred to by their extension PMD, can be created using Qualcomm’s
CMX Studio authoring tool or the CMX Batch Converter Tool.

During the creation of a PMD file, imported MIDI objects have all instruments set to the HQ
bank by default. The CMX Studio authoring tool enables switching particular instruments to
the HP bank to play back through the HP synthesizer.

DLS instruments also play back through the HQ synthesizer. Using HQ and DLS reduces the
total number of voices available because the synthesizer is more complex.

When playing PMD files simultaneously with other MIDI objects, all instruments play back
through the HP synthesizer, regardless of the instruments’ bank setting. In this case, DLS
instruments within a PMD file play back as General MIDI instruments. See section 9.1.2.4
for more details on using DLS with PMD files.

The MSM7201A chipset supports the following objects within a PMD file:
One MIDI object (with DLS) + one ADPCM or QCP object + LED + vibrator

NOTE: If two or more PMD files with LED/vibration are played at the same time, the
LED/vibration command call in the second file will be ignored. The Zeebo wireless gaming
platform does not support LED control and vibration.

9.1.2.4 DLS (.dls)

The MSM7201A chipset support Downloadable Sounds (DLS) as part of PMD and XMF files.
The embedded DLS will play back through the HQ synthesizer when the PMD or XMF is
played back individually. However, when the PMD or XMF file is played simultaneously
with other MIDI objects, DLS instruments will play back as General MIDI instruments.

The MSM7201A chipset also support standalone DLS files when used in conjunction with
MIDI file playback. The global DLS load/unload BREW API can be used to load a DLS. Any
MIDI object can play the DLS instrument by making the proper bank MSB, LSB, and
program changes as specified by the DLS file.

57 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Because the same DLS can be made available to multiple MIDI objects, using DLS reduces
the memory requirements of an application. Very short and simple sound effects can be
achieved using DLS.

9.2 Multisequencing — Simultaneous playback of audio
objects

Qualcomm’s CMX technology supports the playback of multiple, simultaneous MIDI and
certain encoded audio objects. The term multisequencer is used throughout this document
to refer to the simultaneous playback of multiple audio objects. It can be used to combine
the playback of specific audio objects based on game events and user input.

This section delineates the details of the multisequencer and the limitations on this feature.
The limitations on the number and audio format of the objects depend on the chipset being
used within the target device. Multisequencing is achieved using BREW APIs, which are
described in section 9.5.

The MSM7201A chipset is capable of simultaneous playback of the following:
* Four MIDI objects + four encoded audio objects;
* The encoded audio objects can be QCP, ADPCM, or PCM with QAudioFX 1.1;
* The encoded audio objects can be QCP, ADPCM, PCM, or MP3 with QAudioFX 1.1c;
* The four encoded object formats can be mixed and matched;

A maximum of four MIDI objects can be played simultaneously independent of the number
of encoded audio objects. Likewise, up to four encoded audio objects can be played
simultaneously regardless of the number of MIDI objects playing.

The sections below details the limitations and restrictions when using simultaneous audio
on the MSM7201A chipset.

9.2.1 Restrictions with MP3 and simultaneous audio

The MSM7201A contains four audio decoders that are allocated in order to play encoded
audio objects as illustrated in the figure below.

58 Zeebo Confidential and Proprietary

Zeebo Developer Guide

.| Audio decoder #1

QCP /PCM/ADPCM /MP 3

.| Audio decoder #2
QCP QCP/PCM/ADPCM
PCM
ADPCM .| Audio decoder #3
MP3 QCP/PCM/ADPCM

.| Audio decoder #4

QCP/PCM/ADPCM

il

Figure 9-1 Audio decoders on MSM7201A

MP3 decoding is supported only with audio decoder #1. Depending on the sequence of
events in an application, audio decoder #1 could be assigned to decode QCP, PCM, or
ADPCM instead. If this happens and playback of MP3 is attempted, an error is returned and
the results may be unpredictable. Similarly, attempting playback of a second MP3 when an
MP3 is already playing will result in an error and the results may be unpredictable.

An audio resource manager must be implemented in applications that mix MP3 with QCP,
PCM, or ADPCM. Refer to Section 9.2.3 for details on the MSM7201A’s audio decoder
allocation algorithm.

9.2.2 Exceeding number of resources with simultaneous audio

Developers should ensure that their applications do not attempt to play a fifth MIDI file
when four MIDI files are already playing. Similarly, playing a fifth QCP, ADPCM, or PCM file
when four of them are already playing should not be attempted. The results may be
unpredictable.

If there is a possibility that the application could play more than four simultaneous files,
implementation of an audio resource manager is required. This allows the application to
ensure that the resources within the driver are not exceeded. The resource manager can
keep track of the number of files which are currently playing at halt one to accomodate a
new playback when necessary.

9.2.3 Decoder allocation algorithm with simultaneous audio

An audio resource manager must be implemented in applications that mix MP3 with QCP,
PCM, or ADPCM. It should also be implemented if there is a possibility that the application
could play more than four MIDI files or four QCP, PCM, or ADPCM files, even without MP3.
The resource manager must abide by the limitations and restrictions of the MSM7201A
audio driver so that each new playback attempt is guaranteed to succeed.

[¢)]

9 Zeebo Confidential and Proprietary

Zeebo Developer Guide

When playback is initiated, the MSM7201A driver will always use the lowest-numbered
unassigned decoder. When playback ends, the decoder is freed and made available for a
new playback. As mentioned in Section 5.1.4.1, MP3 can only play on audio decoder #1.

The following figures illustrate the MSM7201A audio driver’s decoder allocation algorithm.
M1 and M2 are MP3 files. A1 through A8 are ADPCM .wav files. In all of these cases, QCP
and PCM files can be substituted for ADPCM files. The allocation of the MIDI synthesizers is
identical to that of the audio decoders and is therefore not illustrated here.

In all cases below, each file is either stopped or allowed to play to completion. The result is
the same regardless of the end-of-playback condition.

Figure 9-2 illustrates the audio decoder allocation when starting ADPCM files at various
points in time in response to real-time game events. The application does not attempt to
play more than four ADPCM files simultaneously.

- (32} < 9] © N~ [s°]

<< < < < < <

Tt t = T T h= h = h =

£ 3T 2 O P P P P

v 0 o 2] (2] (2] (4]

* * * * * * * * Time
Audio decoder #1 | A1 | | A4 I A7 |
Audio decoder #2 | A2 | | A6 |
Audio decoder #3 | A3 |
Audio decoder #4 | A5 |

Figure 9-2 Decoder allocation with multiple ADPCM

Figure 9-3 illustrates the audio decoder allocation that results when an application
attempts to keep audio decoder #1 always allocated to an MP3 background track. Sound
effects are played on audio decoders #2, #3, and #4. When the MP3 file ends, the
application always prioritizes the start of another MP3 file before the next ADPCM play.

=T o M < STy © N~

S < <« < < > < < <

Tt T tT T T c tT T

LT @ T B L) Ly

nuun u (92 2] 0 0 0 0

Yv oy YY Vv VY rime
Audio decoder #1 | M1 R M2 |
Audio decoder #2 | A1 |
Audio decoder #3 oA | A3 |
Audio decoder #4 | A4 |

Figure 9-3 Background MP3 music with foreground ADPCM sound effects

60 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Figure 9-4 illustrates the audio decoder allocation that results when an application plays a
combination of MP3 and ADPCM files. The application is careful to ensure that audio
decoder #1 is always free before attempting any MP3 playback.

< s 2 x 2 S

T © t Tt = t =

S 8 S 8 S S !

0 0 0 0 n n n

A A v Vo time
Audio decoder #1 | a1 | | M1 o s] m
Audio decoder #2 | A2 | A4 |
Audio decoder #3 | A3 |
Audio decoder #4

Figure 9-4 Decoder allocation when mixing MP3 and ADPCM

The following cases illustrate playback attempts which violate the limitations and
restrictions of the MSM7201A audio driver.

In Figure 9-5, the application attempts to play a fifth ADPCM file when four are already
playing. No free decoder is available of the fifth ADPCM file. This is prohibited. The
application should wait until one of the ADPCM files has completed before starting the fifth.
Alternatively, the application can choose to stop one of the existing ADPCM file in favor of
starting the fifth.

— N ™ <t 0 O
< < X <<
()N)] wn wn w0
YY VY VY Time
Audio decoder #1 | a1 | | A4 |
Audio decoder #2 | A2 |
Audio decoder #3 | A3 |
Audio decoder #4 | A5 |

| E |

Figure 9-5 Playing too many ADPCM simultaneously (prohibited)

In Figure 9-6, the application attempts to play a fourth ADPCM file when one MP3 file and
three ADPCM files are already playing. No free decoder is available for the fourth ADPCM
file. This is prohibited. Similar to the previous scenario, the application should wait until
one of the audio files has completed or stop one of them to start the fourth ADPCM file.

61 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Sz ¥ 5 23
(V)N)p] n n 0w 0N
YY VY VY Time
Audio decoder#1 | w1 | | M2 |
Audio decoder #2 | A1 |
Audio decoder #3 | A2 |
Audio decoder #4 | A3 |

| A |

Figure 9-6 Playing too many ADPCM with MP3 simultaneously (prohibited)

In Figure 9-7, the application attempts to play an MP3 file when audio decoder #1 is not
available. This is prohibited. The application should wait until audio decoder #1 is available
or stop the ADPCM which is playing on it before starting the MP3 file.

< 23 s
" 0 " 0 n
* * * * * Time
Audio decoder #1 | a1 | | A3 |
Audio decoder #2 | A2 | M1 |
Audio decoder #3 | A4 |
Audio decoder #4

Figure 9-7 Playing MP3 when audio decoder #1 is not available (prohibited)

In Figure 9-8, the application attempts to play a second MP3 file when one is already
playing. In this case, audio decoder #1 is also not available. This is prohibited. Similar to the
previous scenario, the application should wait until audio decoder #1 is available or stop
the MP3 which is playing on it before starting the second MP3 file.

62 Zeebo Confidential and Proprietary

Zeebo Developer Guide

S & S
T Tt = p .3
g s ®)
n» v o (7p]
* * * * Time
Audio decoder #1 | M1 |
Audio decoder #2 | M2
Audio decoder #3 | A2 |
Audio decoder #4

Figure 9-8 Playing two MP3 files simultaneously (prohibited)

9.3 QAudioFX - 3D audio

QAudioFX is Qualcomm’s positional audio solution and is available on MSM7201A chipset.
This option enables developers to position and move sounds within a 3D environment.
Movements and sound point origination can be determined by dynamic game events,
including game character movements, as well as by game player input.

QAudioFX is not available for this first release of Zeebo wireless gaming platform but it is in
the roadmap for 2009.

In the current implementation, up to four ADPCM, PCM, or QCP media objects can be
positioned in a 3D environment. The playback of these four media objects can also be used
in conjunction with the multisequencer capability to play up to four MIDI objects.
Positioning MIDI is not currently supported. In addition, roll off can be used to create
realistic effects as objects are repositioned closer or father away from the listener.

Additional effects that are included in QAudioFX 1.1, such as Doppler and Reverb, can also
be achieved by using the listener, environment, and sound source settings. QAudioFX on
MSM7201A and equivalent chipsets use version 1.1c to indicate the capability of including
MP3 file in multisequencing (section 9.2). Details about the BREW API call sequence and
usage for QAudioFX are included in section 9.5.

There are specific requirements that must be met by an implementation in order to achieve
the desired 3D audio effects which are described in the following sub sections.

9.3.1 Audio objects and environments

Audio objects and an environment comprise the 3D world that must be created in order to
achieve 3D audio. Audio objects are single entities that have an associated media format
and source. Multiple audio objects can then be created and attached to an environment that
is the 3D world around the listener. Objects that are added to the environment are affected
by the 3D settings of the environment. Objects that remain detached from the environment
should play back without any 3D audio effects.

63 Zeebo Confidential and Proprietary

Zeebo Developer Guide

In addition, there are enable/disable flags for the audio objects and the environment. The
availability of these flags varies on a feature-by-feature basis. By enabling features and
setting parameters for the objects and the environment, the application can efficiently
apply several 3D characteristics to all audio objects that are attached to the environment.

NOTE: Currently, only one environment can be created at a time.

The required state of the object and environment for all available QAudioFX features is
described in the following section.

9.3.2 Positional audio and rolloff effects

Positional audio and rolloff effects are used when it is desired to give audio playback
direction. Sounds that are positioned are perceived as though they were originating from a
particular location. Rolloff is used to attenuate a sound source according to its distance
from the listener.

To get positional audio and rolloff effects, the application must add all objects for which
this feature is desired to the environment. Furthermore, the 3D flag (the enable flag for
positional, rolloff and Doppler) must be enabled explicitly for the audio objects and for the
environment.

NOTE: There is a different enable flag for reverb effects.

The application can set the listener and object positions. Both default to the origin upon
initialization. Default values are used for rolloff settings. The specific default values will be
described in section 9.5. Positional and rolloff settings can be updated at any time,
regardless of whether 3D is enabled, whether the audio object has been added to the
environment, or the state of playback. However, the effects during playback would only be
realized if all necessary requirements are met.

9.3.3 Reverberation effects

Reverberation effects are used when it is desired for the audio playback to sound as though
it was occurring in a particular environment. To achieve this effect, the audio objects for
which reverb effects are desired must be attached to the audio environment. Furthermore,
the reverb level for each of these objects must be explicitly set to a nonminimal value, and
reverb for the environment must be enabled. There is no flag to enable/disable reverb on a
per object basis. Instead, the reverb gain is configured to achieve the same result.

There are several presets that can be used in creating reverberation effects. The reverb
gains, decay times, and damping factors can then be further altered by the application. The
reverb presets that are currently available include the following: Auditorium; Room;
Bathroom; Concert hall; Cave; Arena; Forest; City; Mountains; Underwater; Alley; Hallway;
Hangar; Living room; Small room; Medium room; Large room; Medium hall; Large hall;
Plate

64 Zeebo Confidential and Proprietary

Zeebo Developer Guide

9.3.4 Doppler effects

Doppler effects can be used when you want to shift the frequency of audio playback for
moving objects. This is done by creating a relative velocity between a sound object and the
listener. In order to enable this effect, the same rules as those for achieving positional audio
apply. In fact, enabling 3D on the environment and the attached objects that have a relative
velocity with respect to the listener will exhibit Doppler shifts during playback.

9.4 Summary of audio support on Zeebo

The audio capabilities are not limited by concurrency with 3D graphics and include:

* Simultaneous playback of four MIDI or PMD objects (totaling up to 72 polyphony
voices) + four ADPCM, QCP or PCM objects;

* PMD (each PMD can include one MIDI object with DLS + one ADPCM or QCP object +
LED + vibrator):

(@)

(@)

(@)

Individual components within the PMD file are counted in the total number
of encoded audio objects that can be played back simultaneously.

One PMD file uses one MIDI object resource, regardless of whether MIDI is
embedded in the PMD or not. For example, it is not possible to play back four
PMD with four additional MIDI, even if the PMD objects do not contain MIDI.

PMD with DLS cannot be used if other MIDI objects are to be played back
simultaneously. If attempted, General MIDI instruments will play back
instead of DLS instruments.

* Single-file audio formats:

(@)

(@)

(@)

(@)

(@)

72-polyphony MIDI (total);

ADPCM - IMA ADPCM,; 8, 16, or 32 kHz; 4 bits per sample
QCP - Fixed full rate only;

Linear PCM - Mono or stereo;

MP3;

* Global DLS loading for use with MIDI-based playback;

* MIDI messaging for direct access to the MIDI synthesizer within CMX;
* QAudioFX can be used for achieving 3D audio effects on ADPCM, PCM, QCP, or MP3

files that include:
o Positional audio;
o Rolloff;
o Reverberation effects;
o Doppler effects;

65 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Picture summarizes the audio support on Zeebo.

Single Multiple

Format ncodin Sampling rate Positional Reverb Doppler
orma Encoding piing playback playbacks ' PP
PCM a-bit 4.000t0 Yes Yes Yes Yes Yes
44.100 k=z (maono or (mono or (mono only) (maono or {mono only)
(in single Hz stereo) stereo) stereo)
increments)
and 48 kHz
16-bit 4.000t0 Yes Yes Yes Yes Yes
44.100 xHz, (mono or (mono or (mono only) (mono or {mono only)
and 48 k-z stereo) stereo) stereo} |
ADPCM 4-bit 4.000%0 Yes Yes Yes Yes Yes
44.100 xHz, (mono or (mone or (mono anly) (mono or {mono anly)
and 48 k-z stereo) stereo) stereo) |
Qcr Any 8 kHz Yes Yes Yes Yes Yes
(mono only) | (mono only) - (mono only) | (mono only) | {mono anly)
MP3 Any Any Yes Yes Yes Yes Yes
(QAucoFX (QAudioFX (QAudFX | (QAudioFX
1.1cand 1.1c and 1.1c and 1.1cand
ater) later) later) later)
MIDI Yes . Yes No No No
PMD Yes Yes No No No
(MIDI +
QCP/
ADPCM)
XMF Yes Yes No No No
(MIDI +
| DLS)

Figure 9-9 Audio support on Zeebo

9.5 BREW APIs for Audio

All available BREW IMedia and IDLS APIs are defined in the BREW_API_REFERENCE
document that is included in the installation of the BREW SDK. This section highlights the
BREW APIs that are required to perform simultaneous playback of multiple media objects,
implement DLS loading and unloading, send MIDI messages, and achieve 3D audio using
QAudioFX BREW APIs.

9.5.1 Playing multiple audio objects simultaneously

The MSM7201A chipset supports up to four MIDI + 4 QCP/ADPCM/PCM/MP3. The BREW
Simulator supports up to one MIDI + 4 QCP/ADPCM/PCM.

9.5.1.1 BREW API call sequence for simultaneous playback

Sample code is included at the end of this section to elucidate the sequence of events for
using Qualcomm’s channel share (multisequencer) API. The following series of API calls can

66 Zeebo Confidential and Proprietary

Zeebo Developer Guide

be used to simultaneously play back multiple MIDI and ADPCM files. Other encoded audio
file types are supported by simply changing the class ID in the sequence below.

1. Create each MIDI media object using one of the following two API call sequences:

a. Call ISHELL_Createlnstance(AEECLSID_MEDIAMIDI). Load each MIDI file
using IMEDIA_SetMediaData().

b. Call IMEDIAUTIL_CreateMedia().

2. Share each MIDI media object via IMEDIA_EnableChannelShare() if there are
multiple MIDI objects. This API call is extremely important and must be called on all
ADPCM objects if concurrent playback of MIDI or other ADPCM objects is
desired.IMEDIA_EnableChannelShare() calls separately for each object and is
optional if the object called is not going to be played back concurrently with other
MIDI objects. In other words, if there are multiple MIDI objects,
IMEDIA_EnableChannelShare() must be called for each object with the following
exception: if there 1is one MIDI object plus four ADPCM objects,
IMEDIA_EnableChannelShare() must be called on the ADPCM objects, but not on the
MIDI objects.

3. Create audio objects for each ADPCM segment using one of the following two
methods:

a. Call ISHELL_Createlnstance() with class ID AEECLSID_MEDIAADPCM as
appropriate. Load each encoded media file via IMEDIA_SetMediaData().

b. Call IMEDIAUTIL_CreateMedia().

4. Share each encoded audio object via IMEDIA_EnableChannelShare().
IMEDIA_EnableChannelShare() should be called immediately after the objects are
created.

5. Play each object via IMEDIA_Play(). In a new session, on the first call to
IMEDIA_Play(), the application must wait for MM_STATUS_START to be returned
before calling IMEDIA_Play() on another object. A new session starts whenever no
media objects have been created or whenever all media objects have been freed via
IMEDIA_Release(). If concurrent playback of QCP with MIDI is desired, the first call
of a new session to IMEDIA_Play() must be a QCP object. In other words, call
IMEDIA_Play() on QCP, then IMEDIA_Play() on MIDI. This restriction does not exist
for ADPCM, PCM or MP3. To switch between playbacks of multiple QCP to multiple
ADPCM or vice versa, a new session must be started. All media objects must be freed
via IMEDIA_Release() before creating the new media objects.

The following code snippet contains two functions: LoadOneMedia() and MediaNotify().
The first function is used to load and play a media file, while the second calls the first to
load and play multiple media files.

Example:

// kkhkhkkkhkhkhkhhhhkhhhhkhhhkhhhkhhhkhhhkhhhhhkhhhkhhdhkhkdkrd%x*x
// kkhkhkkhkhkhkhhhkhkhhhhkhhkhkhhkhkhhhkhhhkhhhhhkhhhkhkdhkhkdkhd*x*x

67 Zeebo Confidential and Proprietary

Zeebo Developer Guide

// Multi-Sequencing Snippet

// kkhkhkkkhkhkhkhhhkhhhhhkhhhkhhhkhhhkhhhkhhhhhkhhhkhkdhkhkdkhd%x*x
// khkhkkhkhkhkhhhkhhhhhkhkhkhhhkhhhkhhhkhhhhhkhhkhkhhdhkhkdkhx%x*%x

// Note: Error handling removed for brevity

// Routine to load and play a media file

boolean LoadOneMedia(char *pFileName, IMedia **ppIMedia,
boolean fChannelShare)

{

int iReturn;

if (pFileName == NULL || ppIMedia == NULL)
return false;

// First figure out what type of media to create
// (This is an internal routine and source code is
// not part of this example.)

AEECLSID WhichCLSID = AEECLSID MEDIAMIDI;
WhichMediaType (pFileName, WhichCLSID);

iReturn = ISHELL CreateInstance(m pIShell, WhichCLSID,
(void **)ppIMedia);

AEEMediaData MediaData;
MediaData.clsData = MMD_FILE NAME;
MediaData.pData = pFileName;
MediaData.dwSize = 0;

iReturn = IMEDIA SetMediaData(*ppIMedia, &MediaData);

if (fChannelShare)
{
iReturn = IMEDIA EnableChannelShare(*ppIMedia, true);
}
// Need a pointer to IMedia object for the RegisterNotify parameter so
// media can be stopped and restarted.
iReturn = IMEDIA RegisterNotify(*ppIMedia, MediaNotify, *ppIMedia);

// Make sure the file is playing
int iMediaState;
boolean fIsChanging;
iMediaState = IMEDIA GetState(*ppIMedia, &fIsChanging);
if(iMediaState != MM STATE PLAY)
{
iReturn = IMEDIA Play(*ppIMedia);

}

return true;

// For example, start with 4 QCP files.

// Start the first one playing.

m_fFirstStatusStart = false;

fReturn = LoadOneMedia(QCP_FILE 1, &m pIMediaSounds[0]);

// Must now wait until receiving MM _STATUS START on
// the first object before starting other objects.

68 Zeebo Confidential and Proprietary

Zeebo Developer Guide

void MediaNotify(void *pUser, AEEMediaCmdNotify *pCmdNotify)
{
int iReturn;
IMedia *pIMedia = (IMedia *)pUser;
// Only care about the play commands
if (pCmdNotify->nCmd == MM CMD_PLAY)
{
switch(pCmdNotify->nStatus)
{
case MM _STATUS START:
if(!m fFirstStatusStart && pIMedia == m pIMediaSounds[0])
{
m_fFirstStatusStart = true;
if (fReturn)
fReturn = LoadOneMedia(QCP_FILE 2, &m pIMediaSounds[l]);
if (fReturn)
fReturn = LoadOneMedia(QCP_FILE 3, &m pIMediaSounds[2]);
if (fReturn)
fReturn = LoadOneMedia(QCP_FILE 4, &m pIMediaSounds[3]);
}
break;
case MM _STATUS DONE:
// Start the media back up because we want it going in an
// infinite loop

if(pIMedia != NULL)
{
iReturn = IMEDIA Play(pIMedia);
}

break;

}

The multisequencer operations begin and the playback of these four files starts
simultaneously.

9.5.1.2 Playback Control

In order to control the playback (pausing, resuming, seeking, stopping, etc.) for a specific
media, invoke the corresponding IMedia API on that IMedia object. To perform the
operation on all the media files at once, call the corresponding IMedia API for all the
objects.

NOTE: Stopping a media object will stop just that media object playback; other media
objects continue to play as part of the multiple sequences.

Stop objects
To stop the multisequence completely, call stop on each object individually:
IMEDIA Stop(pIMediaFool);

IMEDIA Stop(pIMediaFoo2);
IMEDIA Stop(pIMediaFoo3);

Release objects

69 Zeebo Confidential and Proprietary

Zeebo Developer Guide

When the multisequence has completed, release each IMedia object individually:

IMEDIA Release(pIMediaFool);
IMEDIA Release(pIMediaFoo02);
IMEDIA Release(pIMediaFoo3);

9.5.2 Global Loading and Unloading of DLS

Downloadable sounds are custom wavetable instruments for a MIDI synthesizer.
Implementing sound effects as a DLS instead of an encoded QCP/ADPCM segment allows
for:

* Sounding on and off via MIDI commands;

* Adjustable playback pitch and volume depending on the note on number and
velocity;

* Ability to operate on the sound using any supported MIDI command such as the
pitch wheel;

Play commands use the globally-loaded DLS if the content performs the proper bank and
program changes. For example, if the DLS instrument is located at MSB 20, LSB 0, and
Program 13, the MIDI must also perform these bank and program changes in order to play
the DLS instrument. This reduces the application size by avoiding having to duplicate the
same DLS across multiple PMD or XMF files.

The BREW IDLS APIs allow for global loading and unloading of DLS. This feature is
available on the MSM7201A chipset. Currently, DLS cannot be used in conjunction with the
multisequencing. Also, note that the DLS feature is not supported in the BREW emulator.

The following two sections discuss the usage of the BREW APIs to perform global loading
and unloading of DLS.

9.5.2.1 Global Loading of DLS

In order to globally load and play a DLS media object, the following sequence of APIs must
be used:

1. Load the DLS using IDLS_Load();
2. Create the MIDI media object using one of the following two API call sequences:

a. Call ISHELL_Createlnstance(AEECLSID_MEDIAMIDI). Load each MIDI file
using IMEDIA_SetMediaData();

b. Call IMEDIAUTIL_CreateMedia().;
3. Play the MIDI object via IMEDIA_Play();

Example:

// kkhkhkkhkhkhkhhhkhhhhhkhhkhkhhhkhhhkhhhkhhhhhkhhhkhkdhkhkd krd%x*x

70 Zeebo Confidential and Proprietary

Zeebo Developer Guide

// khkhkkhkhhhkhhhkhhhhhkhhhkhhhkhhhkhhhkhhhhhkhhhkhkdhkhkdkrd%x*x

// Global Loading DLS Snippet

// kkhkhkkhkhkhkhhhkhhhhhkhkhkhhhkhhhkhhhkhhhhhkhhhkhddhkhkdkhd*x*x
// kkhkhkkhkhkhkhhhkhkhhhhkhhhkhhhkhhhkhhhkhhhkhhhkhkhkkkhkkkhx*x*x

// Note: Error handling removed for brevity

// Do nothing callback routine
static void LoadDLSCB(void *pUsr)

{
CMyApp *pMe = (CMyApp *)pUsr;
CALLBACK_Cancel (&pMe->m_cbDLSLoad) ;
}

// Create the DLS object
int iReturn = ISHELL CreateInstance(m_pIShell, AEECLSID MEDIADLS,
(void **)&m pIDLS);

AEEMediaData MediaData;
MediaData.clsData = MMD_FILE NAME;
MediaData.pData = DLS_FILE;
MediaData.dwSize = 0;

CALLBACK_ Init(&m_ cbDLSLoad, LoadDLSCB, (void#*)this);
iReturn = IDLS Load(m pIDLS, &MediaData, &m cbDLSLoad, &m LoadDLSRet);

// Check if the DLS is globally loaded.
boolean fIsGlobal = false;
iReturn = IDLS_ IsGlobal(m pIDLS, &fIsGlobal);

if (fIsGlobal)

{
// Globally loaded. Play a MIDI file that used the DLS

LoadOneMedia (MIDI DLS FILE, &m pIMediaMIDIWithDLS, false);
return;

}

9.5.2.2 Global Unloading of DLS

In order to globally unload and play an existing MIDI media object, the following sequence
of APIs must be used:

1. Unload the DLS using IDLS_Unload(). It is important to set the callback function
pointer parameter to the function. Not setting this parameter could result in
improper DLS unloading.

2. Play the MIDI object via IMEDIA_Play().

Example:

// kkhkkhkkhkhkkhkkkhkhkhkhkhkhkhhhhhkhkhkhkhkkhhhkhkhkhkhkkhhkhk,krkikk***%%
// kkhkkhkkhkhkkhkkhhhkhkhkhkhkhhhhhkhkhkhkhkkhhhkhkhkikkkhhkhk krkikkk**%%
// Global Unloading DLS Snippet

// kkhkhkkhkhkkhkkkhhhkhkhkhkhkhkhhhkhkhkhkhkkhhhkhkhkhkkkkhhkhkikrkikkk**%%
// kkhkkhkkhkhkkhkhkhkhhkhkhkhkhkhkhhhhkhkhkhkhkkhhhkhkhkikkkhhkhkikrkikkk**%%

71 Zeebo Confidential and Proprietary

Zeebo Developer Guide

// Note: Error handling removed for brevity

// Do nothing callback routine
static void UnLoadDLSCB(void *pUsr)

{
CMyApp *pMe = (CMyApp *)pUsr;
CALLBACK_Cancel (&pMe->m_cbDLSUnLoad) ;
if (pMe->m_UnLoadDLSRet == SUCCESS)
{
}
}

// Make sure the MIDI is stopped before unloading DLS
IMEDIA Stop(m_pIMediaMIDIWithDLS);

// Check if the DLS is globally loaded.

boolean fIsGlobal = false;

int iReturn = IDLS IsGlobal(m pIDLS, &fIsGlobal);
if (fIsGlobal)

{
CALLBACK Init(&m_cbDLSUnLoad, UnLoadDLSCB, (void*)this);

IDLS Unload(m_pIDLS, &m cbDLSUnLoad, &m_UnLoadDLSRet);
IDLS _Release(m pIDLS);

m_pIDLS = NULL;

}

// Start the play back up with the DLS unloaded
iReturn = IMEDIA Play(m pIMediaMIDIWithDLS);

9.5.3 Sending MIDI Messages

In addition to playing back MIDI files, the CMX audio engine can handle MIDI messages sent
via BREW API calls to dynamically create and change MIDI output sound.

9.5.3.1 Using MIDI Messages Buffers

A maximum of 32 MIDI commands may be issued in one MIDI message buffer. The
supported MIDI commands include, but are not limited to, the following:

* Note on (0x90);

* Note off (0x80);

* Control change (0xB0);

* Program change (0xCO0);

* Channel after touch (0xD0);
* Pitch wheel (0xEO0);

Construct the MIDI command as it would appear in a MIDI file. For a “note on” command
for note 0x45 on channel 5 with velocity 0x7£, the command would be:

72 Zeebo Confidential and Proprietary

Zeebo Developer Guide

0x95 0x45 0x7f

For more than one command, string them together:

0x95 0x45 0x7f 0x95 0x35 0x7f

This example issues two notes on commands on channel 5. Note that there is no timing
information in the string of commands because all commands are understood to be issued
immediately. To send a few note on and off messages streamed in real time, use
IMEDIAMIDIOUTMSG_SetMIDIMsg() to set the buffer containing the MIDI command. Also, if
an unsupported MIDI command is encountered, the command will fail and no MIDI
commands will be issued.

Example:

The following illustrates the use of MIDI commands to create MIDI output sound:

// First the MIDI out message must be created using

// AEECLSID MEDIAMIDIOUTMSG. If AEECLSID MEDIAMIDI is

// used, the call to IMEDIAMIDIOUTMSG_ SetMIDIMsg will return

// EUNSUPPORTED.

iReturn = ISHELL CreatelInstance(m_pIShell, AEECLSID MEDIAMIDIOUTMSG,
(void **)ppIMedia);

// You MUST call IMEDIA SetMediaData or you cannot send
// MIDI messages

AEEMediaData MediaData;

m MIDIMsgBuf[0] = 0xBO;

m_ MIDIMsgBuf[1l] 0x07;

m MIDIMsgBuf[2] = 0x7F;

MediaData.clsData = MMD_BUFFER;

MediaData.pData = m MIDIMsgBuf;

MediaData.dwSize = 3;

iReturn = IMEDIA SetMediaData(*ppIMedia, &MediaData);

iReturn IMEDIA RegisterNotify(*ppIMedia, CMIDIMsg::MediaNotify, this);
// The first MIDI message is ignored in the current

// implementation. To get around this,

// call play immediately after calling SetMediaData

iReturn = IMEDIA Play(*ppIMedia);

// Now, when sending a MIDI command (like turning on

// a note) Do the following.

m_ MIDINoteOnMsgBuf[0] = 0x90;

m_ MIDINoteOnMsgBuf[l] = 0x3C;

m_MIDINoteOnMsgBuf[2] = 0x7F;

iReturn = IMEDIAMIDIOUTMSG SetMIDIMsg(m pIMediaMIDT,

m_MIDINoteOnMsgBuf, 3);

iReturn = IMEDIA Play(m pIMediaMIDI);

73 Zeebo Confidential and Proprietary

Zeebo Developer Guide

9.5.3.2 Using MIDI Messaging in combination with MIDI files

MIDI messages can be used concurrently with the playback of MIDI files. If there are
multiple MIDI files, only the playback of the first MIDI file will be affected by the MIDI
commands as illustrated in Figure 9-10. In this case, the MIDI command will be sent
asynchronously to the MIDI synthesizer for the first MIDI file.

MIDI

messages | & MIDI synth #1
Playback messaging

» MIDI synth #2
Flayback only
MIDI
XMF
. MIDI synth #3
PMD Raybgc-c only

» MIDI synth #4 I
Playback only

Figure 9-10 MIDI synthetizers within CMX

Example:

The following code illustrates the usage of MIDI commands concurrently with playback of a
MIDI file:

// If MIDI out messages are going to affect an existing

// MIDI file, the file object must be created.

iReturn = ISHELL CreatelInstance(m pIShell, AEECLSID_ MEDIAMIDI,
(void **)&m pIMediaMIDIFile);

// Set the MIDI file as data to the IMedia object
AEEMediaData MediaData;

MediaData.clsData = MMD_FILE NAME;

MediaData.pData = pFileName;

MediaData.dwSize = 0;

iReturn = IMEDIA SetMediaData(m_ pIMediaMIDIFile, &MediaData);

// Must start the file playing in order to modify it with
// the MIDI out messages.
iReturn = IMEDIA Play(m pIMediaMIDIFile);

// The MIDI out message must be created using

// AEECLSID MEDIAMIDIOUTMSG. If AEECLSID MEDIAMIDI is

// used the call to IMEDIAMIDIOUTMSG SetMIDIMsg will return

// EUNSUPPORTED.

iReturn = ISHELL CreatelInstance(m_pIShell, AEECLSID MEDIAMIDIOUTMSG,
(void **)&m pIMediaMIDIOut);

// You MUST call IMEDIA SetMediaData or you cannot send

74 Zeebo Confidential and Proprietary

Zeebo Developer Guide

// MIDI messages

AEEMediaData MediaData;

m_ MIDIMsgBuf[0] 0xBO;

m MIDIMsgBuf[l] = 0x07;

m MIDIMsgBuf[2] = 0x7F;
MediaData.clsData = MMD_BUFFER;
MediaData.pData = m MIDIMsgBuf;
MediaData.dwSize = 3;

iReturn = IMEDIA SetMediaData(m_ pIMediaMIDIOut, &MediaData);

// Can only have one outstanding MIDI out message. If another
// is sent before the first is finished EBADSTATE is returned.
// Need to RegisterNotify in order to get status messages
// and make sure this doesn't happen.
iReturn = IMEDIA RegisterNotify(m pIMediaMIDIOut,

CMIDIMsg: :MediaNotify, this);

// The first time MIDI message is being ignored

// To get around this, call play immediately after calling SetMediaData
// on dummy data

iReturn = IMEDIA Play(m_ pIMediaMIDIOut);

// Now, to send a MIDI command (like turning on

// a note) do the following. This note will be on top

// of any playing MIDI file.

m_ MIDINoteOnMsgBuf[0] 0x90;

m_ MIDINoteOnMsgBuf[l] = 0x3C;

m_MIDINoteOnMsgBuf[2] = 0x7F;

iReturn = IMEDIAMIDIOUTMSG SetMIDIMsg(m pIMediaMIDIOut,
m_MIDINoteOnMsgBuf,3);

iReturn = IMEDIA Play(m_ pIMediaMIDIOut);

// Can mute channel 0 in the playing MIDI file

// by doing the following

m_ MIDINoteOnMsgBuf[0] 0xBO;

m_ MIDINoteOnMsgBuf([1l] 0x07;

m_ MIDINoteOnMsgBuf[2] = 0x00;

iReturn = IMEDIAMIDIOUTMSG SetMIDIMsg(m pIMediaMIDIOut,
m_MIDINoteOnMsgBuf, 3);

iReturn = IMEDIA Play(m_ pIMediaMIDIOut);

9.5.4 QAudioFX - 3D Audio

The QAudioFX feature includes the capability to control listener and sound source settings.
These include accessing the listener position and orientation, and the sound source
position, volume, and rolloff. In the next two sections, the listener and sound source
settings are described in detail.

QAudioFX is not available for this first release of Zeebo wireless gaming platform but it is in
the roadmap for 2009.

All of the BREW APIs for listener and sound source settings includes a dwDuration
parameter. This parameter represents the time, in milliseconds, over which the change in

75 Zeebo Confidential and Proprietary

Zeebo Developer Guide

playback occurs. This parameter is not currently supported and defaults to 0. Do not
confuse the 3D flag with the feature 3D. Positions are all set using Cartesian coordinates.

9.5.4.1 Enabling positional audio and rolloff effects

To hear any positional audio or rolloff effects, the application must explicitly enable 3D on
all objects for which the effects are desired, create an audio environment for which 3D is
enabled, and attach all of the audio objects to the environment. The settings for the listener,
the environment, or the sound source may be updated at any time; however, the effect of
the updates will only be apparent when the requirements for positional audio are met.

To enable positional audio effects and rolloff, the application must set the mode for each
audio object. The BREW API used for this is:

IMEDIAAUDIO3D_ SetMode(IMediaAudio3D *me,
int nMode)

The value of nMode is summarized in Table 9-1.
Table 9-1 Value of nMode

Value of nMode Description
0 Positional effects off
1 Absolute positional effects on

All positional audio effects are relative to the origin and not the listener. It should be noted
here that the flag to enable positional effects is the same flag that is set for Doppler effects.
There is no flag for explicitly enabling reverb. This will be covered in a subsequent section.

Next, the application must enable positional effects on the environment using the BREW
API:

IMEDIAAUDIOENV_ Enable(IMediaAudioEnv *me,
uint32 *pdwNew,
uint32 *pdw0Old)
The value of the pdwNew parameter settings is summarized in .

Table 9-2 Value of pdwNew

Value of pdwNew Description
0 No effects enabled in the environment
1 Positional effects enabled including Doppler
2 Reverb effects enabled
-1 All effects enabled

It is important to note that for enabling environment effects, the pdwOld parameter must
be set according to all desired effects. For example, by first calling this API with only

76 Zeebo Confidential and Proprietary

Zeebo Developer Guide

positional enabled and then again with reverb enabled, this does not equate to calling the
API with all effects enabled. Only the last call to this API determines what is enabled or not.

Lastly, the audio object must be attached to this environment. Only one environment may
be created and used at a time. The BREW API for this is as follows:

int IMEDIAAUDIOENV_AddMedia (
IMediaAudioEnv *pIMediaAudioEnv,
IMedia *pIMedia)

9.5.4.2 Listener and environment settings

The listener is an inherent part of the audio environment. Current implementation
supports the following listener and environment BREW APIs for positional audio:

¢® IMEDIAAUDIOENV_ SetListenerPosition();
¢® IMEDIAAUDIOENV_ GetListenerPosition();
¢ IMEDIAAUDIOENV_ SetListenerOrientation();

¢ IMEDIAAUDIOENV_ GetListenerOrientation();
9.5.4.2.1 Listener Position

The listener position can be retrieved and set by the application. Currently, Cartesian
coordinates for the listener position are supported. To set the listener position, the
application may issue a call to:

IMEDIAAUDIOENV_ SetListenerPosition

(
IMediaAudioEnv *pIMediaAudioEnv,

AEEVector *pPos,
uint32 dwDuration

)

9.5.4.2.2 Listener Orientation

The listener orientation can also be controlled by the application. The listener orientation
is used to set the direction that the listener is facing. The BREW APIs used to set the
listener orientation is as follows:

IMEDIAAUDIOENV_ SetListenerOrientation
(
IMediaAudioEnv *pIMediaAudioEnv,
AEEMediaOrientation *pmo,
uint32 dwDuration

)

7 Zeebo Confidential and Proprietary

Zeebo Developer Guide

9.5.4.3 Sound Source Settings

The sound source settings affect the position, volume, and rolloff of a media object.
¢ IMEDIAAUDIO3D SetPosition();
¢ IMEDIAAUDIO3D GetPosition();
* IMEDIAAUDIO3D SetRollOff();
* IMEDIAAUDIO3D GetRollOff();
¢ TIMEDIAAUDIO3D_ SetVolume();
¢ TIMEDIAAUDIO3D GetVolume();

With QAudioFX 1.0, all API calls for sound source settings must occur after object playback
has started. The application must first play the object, wait for the MM_STATUS_START, and
then set the position/rolloff/volume of the object. Trying to set these parameters prior to
starting playback will result in error. This restriction does not apply with QAudioFX 1.1 and
later.

9.5.4.3.1 Sound Source Position

The sound source position can be set using the BREW API:

IMEDIAAUDIO3D_ SetPosition

(
IMediaAudio3D *pIMediaAudio3D,

AEEVector *pPos,
uint32 dwDuration

)

There may be a slight delay after setting the position before the new value can be read back
via IMEDIAAUDIO3D_GetPosition.

9.5.4.3.2 Sound Source Rolloff

The sound source rolloff specifies how the volume will change with distance. Sound
sources that are closer than the minimum distance are played at maximum volume; sounds
further than the maximum distance remain at constant volume or are muted, and sounds in
between are attenuated exponentially with the rolloff factor as distance increases. All
distances are measured in millimeters. The mute-after-max flag is set if it is desired that
sound objects positioned farther than the maximum distance be muted. The rate of
attenuation with distance can be modified with AEEMediaRollOff.

The BREW API for setting the source rolloff parameters is:

IMEDIAAUDIO3D SetRollOff
(
IMediaAudio3D *pIMediaAudio3D,
AEEMediaRoll0ff *prf,
uint32 dwDuration

)

78 Zeebo Confidential and Proprietary

Zeebo Developer Guide

The structure for AEEMediaRollOff is:

typedef struct AEEMediaRollOff {

int32 nMinDistance; //[Mandatory] Millimeters.
int32 nMaxDistance; //[Mandatory] Millimeters.
int32 nRollOffactor; //[Mandatory] In thousandths.
boolean bMuteAfterMax; //[Mandatory]

}
A rolloff factor of 1000 (1.0) is normal rolloff and 0 is no rolloff.

9.5.4.3.3 Sound Source Volume

The application may also control the volume of each audio object using the following BREW
API:

IMEDIAAUDIO3D_ SetVolume

(
IMediaAudio3D *pIMediaAudio3D,

int32 *pnVolume,
uint32 dwDuration

)

9.5.4.4 Reverberation Effects

Reverberation effects can be used in conjunction with the playback of an audio object.
Reverberation is defined as the effect when multiple reflections of sound source off of a
surface are summed together. The reverberation is controlled by the physical surroundings
that the audio object is in.

9.5.4.4.1 Enabling and disabling reverberation effects

The current implementation supports the enabling and disabling of reverb effects on an
environment. Since there are no explicit BREW APIs to enable or disable reverberation
effects, the application will have to manipulate the reverb levels for each object for which
reverb effects are desired.

To enable reverb effects for the audio environment, use the following BREW API:

int IMEDIAAUDIOENV_Enable(
IMediaAudioEnv *pIMediaAudioEnv,
uint32 *pdwNew,
uint32 *pdw0Old)

With pdwNew set to 2 (enable reverb) or -1 (enable all QAudioFX).

Since all newly created objects have a reverb level set to -9600, which is the minimum
reverb volume, it will be necessary to update the reverb level of the audio object using the
following BREW API:

79 Zeebo Confidential and Proprietary

Zeebo Developer Guide

int IMEDIAAUDIOFX_ SetReverbGain(
IMediaAudioFX *me,
int32 nGain)

As with positional audio, the object must be attached to the environment. See section
9.5.4.1 for details about the BREW API for adding objects to the environment.

9.5.4.4.2 Setting Reverb parameters for the environment

There are several parameters that can be used to change the reverb effects. These include
reverb preset, reverb gain, decay time, and damping factor. Setting the room size is not
currently supported. To start, a reverb preset as described in section 9.3.3 must be selected
using the BREW API:

int IMEDIAAUDIOFX SetReverbPreset(
IMediaAudioFX *pIMediaAudioFX,
int32 nPreset)

The reverb gain, damping factor, and decay time for the environment can be updated using
the following BREW APIs:

int IMEDIAAUDIOFX SetReverbGain

(
IMediaAudioFX *pIMediaAudioFX,
int32 nGain

)

The reverb gain, nGain, is specified within a range from -9600 to 0 millibels. Since by
default the reverb gain for the environment, as well as the audio objects, is -9600, it will be
necessary to call the above API to hear any reverb if a preset is not selected. If a preset is
selected, then the associated reverb gain for that particular preset will be used for the
environment reverb gain.

int IMEDIAAUDIOFX_ SetReverbDampingFactor

(
IMediaAudioFX *pIMediaAudioFX,
uint32 dwDamping

)

As with reverb gain, setting the reverb damping factor, dwDamping, will update the current
value of the damping factor. Using a reverb preset will automatically initialize this value.
This parameter ranges from 0 to 2000, where 1000 applies equal weighting to both low
and high frequencies. A low damping factor means that high frequencies decay very
quickly, whereas a high damping factor implies the reverse.

int IMEDIAAUDIOFX SetReverbDecayTime
(
IMediaAudioFX *pIMediaAudioFX,
uint32 dwTimeMS

)

80 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Again, this parameter is initialized automatically by choosing a reverb preset. The decay
time is measured in milliseconds. Decay time is a measure of how “live” the room is. The
larger the decay time, the longer the echoes will sound. Recall that any updates to these
parameters will only affect those objects that are currently attached to the environment.

9.5.4.4.3 Setting Reverb parameters for audio objects

Currently, it is only possible to update the reverb gain and decay time on a per-object basis.
The BREW APIs for this are the same as those for the environment.

9.5.4.5 Doppler Effects

9.5.4.5.1 Enabling Doppler Effects

The same procedures and flag that are used for enabling positional audio are also used to
enable Doppler effects. To hear noticeable Doppler effects, the listener and the sound
source must have a relative velocity. A noticeable frequency shift should occur when the
relative velocity is large. The parameters that are involved in calculating this shift are the
object and listener positions and velocities. So to hear a changing pitch, the application
must also move the object and/or listener positions. Setting the velocity does not
automatically update the position of either the object or the listener.

The current implementation supports Doppler rates in the range 0.25 to 4.0. Doppler rate
is defined in the following equation (= speed of sound, = listener velocity, and

_— object velocity):

V.
DopplerRate = €+ Viistener

A~ X7

9.5.4.5.2 Setting Doppler parameters for the listener and environment

Setting and getting the velocity of the listener is supported in current implementation of
QAudioFX. To set the velocity of the listener, use the following BREW API:

int IMEDIAAUDIOENV_SetListenerVelocity

(
IMediaAudioEnv *pIMediaAudioEnv,
AEEVector *pVelocity

)

Where pVelocity is a vector describing listener velocity including the x, y, and z fields and is
measured in millimeters/second.

9.5.4.5.3 Setting Doppler parameters for audio objects

Next, the application can set a velocity for the audio object. A similar API as that used for
the listener is used to set velocity:

81 Zeebo Confidential and Proprietary

Zeebo Developer Guide

int IMEDIAAUDIO3D SetVelocity

(

IMediaAudio3D *pIMediaAudio3D,
AEEVector *pVelocity,

uint32 dwDuration

)
9.5.4.6 QAudioFX — Putting it all together

9.5.4.6.1 Disabling specific features

To selectively disable certain effects and keep others, the application can disable the per-
object flag for that particular effect if a flag is available, i.e., positional audio, or it can simply
zero-out a setting for that effect, i.e., reverb effects. If it desired that the audio object play
back as background music without any QAudioFX effects at all, the object can simply be
removed from the environment. Section 9.5.4.6.2 explores particular use case scenarios to
illustrate the behavior of positional audio, rolloff, reverb, and Doppler effects.

9.5.4.6.2 QAudioFX parameters and recommendations

This section presents a summary of QAudioFX parameters ranges and recommendations. It
is recommended to use ADPCM or PCM input audio that is sampled at 11.025 kHz or higher
for good audio fidelity when using QAudioFX.

Table 6-4 delineates QAudioFX parameters, ranges, and special notes. As is evident in the
table, at times the engine clips the specified parameter because of internal limitations or
interparameter dependencies.

Table 9-3 QAudioFX parameters and ranges

Parameter Default parameter value Parameter range Special notes
List i X 0 mm Signed 32-bit integer
istener position ; —
Cartesiar? Y 0 mm Signed 32-bit integer
Z 0 mm Signed 32-bit integer
) X 0 mm Signed 32-bit integer
Listener Y 1 mm Signed 32-bit integer
orientation up
= Z 0 mm Signed 32-bit integer
_5 Listener X 0 mm Signed 32-bit integer
'g orientation Y 0 mm Signed 32-bit integer
o | forward Z -1 mm Signed 32-bit integer
) N X 0 mm Signed 32-bit integer
Object_Posmon Y 0 mm Signed 32-bit integer
Cartesian
Z 0 mm Signed 32-bit integer
Volume is
Volume 0 mm -9600~0 clamped to
range
Min Distance 1000 mm Signed 32-bit integer

82 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Parameter

Default parameter value

Parameter range

Special notes

Max Distance

2147483647 mm

Signed 32-bit integer

Rollof factor

1000 (1.0) thousandths

Signed 32-bit integer

Mute-after-max

0 (hold after max)

Oor1

None, room, bathroom,
concert hall, cave, arena,
forest, city, mountains,
underwater, auditorium,

Preset None L
alley, hallway, hangar, living
room, small room, medium
room, large room, medium
L hall, large hall, plate
4 Range will be
§ Decay time 0x000F(15) Unsigned 31 bit integer clipped to [15,
32767]
g:if"t reverb -9600 mB (silence) -9600~0 R?(;‘?gggbpfgd
Internal value is
Damping Factor 0x10000(Q16 one) Unsigned 31-bit integer | dePendenton
specified reverb
decay time
)] X 0 mm/sec Signed 32-bit integer Doppler rate
Linear velocity Y 0 mm/sec Signed 32-bit integer must be [0.25,
5 | Cartesian - — 4.0]
-1 Z 0 mm/sec Signed 32-bit integer :

Q - — See Doppler
8)) X 0 mm/sec Signed 32-bit integer rate equation in
8bJeCt.Ve|OC'ty Y 0 mm/sec Signed 32-bit integer section

artesian
Z 0 mm/sec Signed 32-bit integer 9.5.4.5.1

9.5.4.6.3 Use case scenario

This section contains code samples that illustrate how to achieve positional audio, reverb,
and Doppler effects.

Example:

The following code plays an audio object at position (0, 1000, 0) with rolloff, reverberation
effects with the CAVE preset, and Doppler effects with object velocity set to 0.5 m/s in the x

direction.

{
int
char
AEECLSID
AEEMediaData
uint32
uint32
IMediaAudio3D

iReturn =
*pFileName
WhichCLSID
MediaData;
dwNewValue
dwOldValue;

*pAudio3D = NULL;

SUCCESS;

= "testingl23.wav";
AEECLSID MEDIAPCM;

MM _AENV_ENABLE 3D | MM AENV_ENABLE REVERB;

83

Zeebo Confidential and Proprietary

Zeebo Developer Guide

AEEVector PositionVector;
AEEVector VelocityVector;
AEEMediaRollOff RollOff;

int iMediaState;
boolean fIsChanging;

if (pMe == NULL)

return FALSE;

// First create the IMedia object
iReturn = ISHELL CreateInstance(pMe->a.m pIShell, WhichCLSID,
(void **)&pMe->pIMediaObject);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error creating media: 0x%X", iReturn);
pMe->pIMediaObject = NULL;
return FALSE;

}

// Then set media data
MediaData.clsData = MMD_FILE NAME;
MediaData.pData = pFileName;
MediaData.dwSize = 0;

iReturn = IMEDIA SetMediaData(pMe->pIMediaObject, &MediaData);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error setting media data: 0x%X", iReturn);
return FALSE;

}

// Set the Media notification routine
iReturn = IMEDIA RegisterNotify(pMe->pIMediaObject, MediaNotify, pMe);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error setting media notify callback function: 0x%X",
iReturn);
return FALSE;

}

// Now create the environment
iReturn = ISHELL CreateInstance(pMe->a.m pIShell,
AEECLSID MEDIAAUDIOENV, (void **)&pMe->pIMediaEnv);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error creating media environment: 0x%X", iReturn);
pMe->pIMediaEnv = NULL;
return FALSE;

}

// Enable 3D and reverb on the environment
iReturn = IMEDIAAUDIOENV_ Enable(pMe->pIMediaEnv, &dwNewValue,
&dwOldvValue);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error enabling 3D audio in environment: 0x%X", iReturn);
return FALSE;

84 Zeebo Confidential and Proprietary

Zeebo Developer Guide

// Get the FX interface to the environment and set reverb preset
iReturn = IMEDIAAUDIOENV_ QueryInterface(pMe->m pIMediaEnv,
AEEIID MEDIAAUDIOFX, (void **)&pAudioFX);

if (iReturn != SUCCESS)
{
pMe->DisplayError (IDS_ERR GET_ ENV_AUDIOFX, iReturn);
break;
}
iReturn = IMEDIAAUDIOFX SetReverbPreset(pAudioFX, CAVE);
if (iReturn != SUCCESS)
{

IMEDIAAUDIOFX Release(pAudioFX);
pMe->DisplayError (IDS_ERR SET ENV_PRESET, iReturn);
break;

}

// Add media object to environment
iReturn = IMEDIAAUDIOENV_ AddMedia(pMe->pIMediaEnv, pMe->pIMediaObject);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error adding media to audio environment: 0x%X",
iReturn);
return FALSE;

}

// Must enable 3D on the object also. In order to do this, we need
// the 3D interface.
iReturn = IMEDIA QueryInterface(pMe->pIMediaObject,
AEECLSID MEDIAAUDIO3D,
(void **)&pAudio3D);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error getting 3D interface to media: 0x%X", iReturn);
return FALSE;

}

// Got the 3D interface, enable 3D on the object
iReturn = IMEDIAAUDIO3D SetMode(pAudio3D, MM A3D MODE NORMAL) ;
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error setting 3D mode for media: 0x%X", iReturn);
IMEDIAAUDIO3D Release(pAudio3D);
return FALSE;

}

// Set the position, velocity, and rolloff values before starting play
PositionVector.x = 0;
PositionVector.y = 1000;
PositionVector.z = 0;
iReturn = IMEDIAAUDIO3D SetPosition(pAudio3D, &PositionVector, 0);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error setting 3D position for media: 0x%X", iReturn);
IMEDIAAUDIO3D Release(pAudio3D);
return FALSE;

85 Zeebo Confidential and Proprietary

Zeebo Developer Guide

VelocityVector.x 500;
VelocityVector.y = 0;
VelocityVector.z = 0;
iReturn = IMEDIAAUDIO3D SetVelocity(pAudio3D, &VelocityVector, 0);
if (iReturn != SUCCESS)
{
DBGPRINTF ("Error setting 3D velocity for media: 0x%X", iReturn);
IMEDIAAUDIO3D Release(pAudio3D);
return FALSE;

Rolloff.nMinDistance ROLLOFF_MIN_ DIST;
Rolloff.nMaxDistance = ROLLOFF_MAX DIST;
RollOoff.nRollOffactor ROLLOFF_FACTOR;
RollOff.bMuteAfterMax = FALSE;

iReturn = IMEDIAAUDIO3D SetRollOff (pAudio3D, &RollOff, 0);
if (iReturn != SUCCESS)

{

DBGPRINTF ("Error setting 3D rolloff for media: 0x%X", iReturn);
IMEDIAAUDIO3D Release(pAudio3D);
return FALSE;

}

// No longer need the 3D interface to the media
IMEDIAAUDIO3D Release(pAudio3D);
pAudio3D = NULL;

// Set the repeat flag to 0, for infinite looping
iReturn = IMEDIA_SetMediaParm(pMe—>pIMediaObject, MM PARM PLAY REPEAT,
0, 0);
if (iReturn != SUCCESS)
{
// This is not a fatal error since we will just restart it when
// we get MM STATUS DONE.
DBGPRINTF ("Error setting repeat count for media: 0x%X", iReturn);
}
// Finally, start the play
iMediaState = IMEDIA GetState(pMe->pIMediaObject, &fIsChanging);

if(iMediaState != MM STATE PLAY && !fIsChanging)
{
iReturn = IMEDIA Play(pMe->pIMediaObject);
if (iReturn != SUCCESS)
{

DBGPRINTF ("Error starting play: 0x%X", iReturn);
return FALSE;

}

}

else

{
DBGPRINTF ("Error starting play: Media in unknown state");
return FALSE;

}

return TRUE;

86 Zeebo Confidential and Proprietary

Zeebo Developer Guide

}

To disable any of the effects above, the application can simply disable per-object flags, set
parameters such as reverb level to 0, and/or remove the object from the environment if
needed.

87 Zeebo Confidential and Proprietary

Zeebo Developer Guide

10 Zeebo.lib System Library

The Zeebo system library provides a high-level API for dealing with basic functionalities
present in the console. The API is built on top of the standard BREW API and is distributed
to standardize and make the game development easier for the platform. A header file with
all the function prototypes and a compiled version of the library to be linked against your
game are provided in the SDK.

Zeebo library is represented as an interface, named IZeebo that uses similar BREW
initialization and releasing methods. Developers must call Zeebo_Initialize(pShell) prior to
use any functionality present on the library and a Zeebo_Free(pZeebo) must be called while
exiting the game, releasing all resources related to Zeebo.lib. A Zeebo event handler
method, named Zeebo_HandleEvent(pZeebo, evt, wp, dwp) must be called inside the game’s
event loop to handle Zeebo’s virtual keyboard specific events. A detailed documentation of
each function call and parameters is available in the header file ZeeboLib.h provided with
the SDK.

A set of features such as suspending and resuming the game, functions for handling the
virtual keyboard and gamepad detection are described in the next sections. The suspend
and resume events and the gamepad detection features are mandatory for all Zeebo games.

10.1 Suspend and Resume

The suspend and resume events generated while pressing the Home button on Zeebo
gamepad will be handled by a background application running at the same time the games
are played.

The default behavior is, if the Home button has been pressed for a period longer than 3
seconds, a popup screen asks whether the user wants to return to the Stage or continue to
play the game. A suspend event is then sent to the game. Returning to the Stage will
generate a close game event (IShellCloseApplet()) while returning to game will generate a
resume event.

However, if the Home button is pressed for a period shorter than 3 seconds, a standard
keypress event - AVK_CLR - is directed to the game and interpreted as an in-game pause.

10.2 Virtual Keyboard

A virtual keyboard is available for input text based information into the game. A virtual
keyboard appears over the game screen. Use Zeebo_CreateKeyboard() to invoke and show
the virtual keyboard on the lower half of the display. The virtual keyboard translates the
user selections on the screen to EVT_CHAR events which can be passed to a text control or

88 Zeebo Confidential and Proprietary

Zeebo Developer Guide

to the main game event handler. Calling Zeebo_CloseKeyboard() will close the virtual
keyboard and a EVT_DIALOG_END event will be sent to the game.

10.3 Controller Discovery and Removal

Developers are able to determine how many controllers are plugged and indentify which
one is “the Player 1” and “the Player 2”. Calling Zeebo_DeviceDetectAndSelect() delivers to
the game the proper object handler for the connected IHID device, listening to a button
press and sending an EVT_ZEEBO_DEVICESELECT event to the game.

The method Zeebo_GetDetectedDevice() returns a IHIDevice handle received from the
EVT_ZEEBO_DEVICESELECT event. The caller should be responsible for releasing the
returned IHIDDevice. Developers also should be able to cancel the device detection process
by calling Zeebo_DeviceDetectCancel().

Games are notified on the main event loop with the EVT_ZEEBO_DEVICEREMOVE event
when a gamepad is removed from the USB port. Plugging a new gamepad,
EVT_ZEEBO_DEVICEADD event is sent to the game event loop.

The controller discovery and removal can also be determined by using the BREW IHID
extensions function calls directly. For more details on how to use the IHID extension
directly and how to handle events and notifications from connected gamepads, See section
6.

89 Zeebo Confidential and Proprietary

Zeebo Developer Guide

11 Additional Information and
Requirements

11.1 Compiling Zeebo Games

Zeebo will provide a sample application exploiting the key features present in the SDK to
illustrate the usage of the high level API of the Zeebo.lib.

Developers should use ARM Real View Developer Suite 2.2 (RVDS 2.2) or higher to achieve
the best performance on ARM code generated for the processors present in the console. A
standard makefile with the key optimizations options is also included in the SDK.

11.2 Tuning for TV-Out

Remember that the Zeebo is targeted for developing countries which currently have an
estimated installed base of more than 90% older color CRT TVs. We recommend buying a
CRT TV for testing; they can still be found at retailers such as Best Buy, Fnac, Sanborns or
Ebay.

Games for the Zeebo console must be developed targeting a VGA (640x480) screen size,
regardless the TV resolution. Developers should keep in mind that older TVs based on
cathode ray tubes are rounded and this could distort or cut some pieces of the final image
shown on it. Applications should reserve a "safe area" of four to eight pixels and display no
content in that area on the top, bottom, left, and right borders of all application screens.

The MDP processor will take care of different TV resolutions, resampling the final image on
the TV screen. Please refer to section 8.3 for more details on how you can optimize
performance on Zeebo rescaling the video output.

11.3 Saving data to console

All data generated by games and is supposed to reside or be saved inside (e.g. user
configuration, save game, etc...) the console for further uses must be saved in a separate
folder, named udata, located inside the main game folder.

File system configuration must follow the next pattern:
/mod/yourgamefolder/ < main game folder

/mod/yourgamefolder/udata/ < game generated data must be stored here.

90 Zeebo Confidential and Proprietary

Zeebo Developer Guide

11.4 Using BREW AppLoader

Steps for using BREW AppLoader with Zeebo:
1. Check Zeebo console’s IMEI number

* In the Main Menu screen (item list), start EMAPPLET application.

; 0 . » - 0 » ol
w L L K v D KB 2 E I K

FUAPPIFT
* Select IMEI Display and you will be able to see console’s IMEI number.

91 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Automatic Test

Version information

IMEI Display

I yit Salact

2. Generate the proper test signature file (.sig) for the console. Test signature files can
be generated in Qualcomm’s BREW developers extranet.

3. Make sure you have a SIM card installed in your console.

4. Copy the test signature file to BTIL Development Kit folder (usually C:\Program
Files\Common Files\Qualcomm\BTIL Development Kit\Host\sig).

5. Connect Zeebo to PC and check Qualcomm Modem COM port number. Ensure the
console is in USB Download mode - see 11.6 for more details.

92 Zeebo Confidential and Proprietary

Zeebo Developer Guide

g File Action View Window Help |_]
0 W FE @ E =®a

g Computer Management (Local) - % RMANYA

= ﬁ System Tools 8 Batteries
Bluetooth Radios

+

[+ {ﬁ] Event Viewer +
g Shared Folders + § Computer
= 5 Local Users and Groups +| 2 Disk drives
[+ Performance Logs and Alert: + § Display adapters
g Device Manager +-_.,, DVD/CD-ROM drives
=] @ Storage + (&5 Human Interface Devices
@ Removable Storage + (= IDE ATA/ATAPI controllers
S Disk Defragmenter +- =4 Imaging devices
Disk Management + - Keyboards
+

+ @ Services and Applications ") Mice and other pointing devices

=% Mod

+ § Monitors

+-E8 Network adapters

+ \> NYIDIA Metwork Bus Enumerator

= Ports (COM & LPT)
'y Qualcomm HS-USB Diagnostics 9002 (COM3)
‘_\y‘ Qualcomm HS-USE NMEA 9002 (COM4)

+ %% Processors

+-@, sound, video and game controllers

+ ¢ System devices
+ Universal Serial Bus controllers

93 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Qualcomm HS-USB Modem 9002 Properties

Driver Details Power Management
General ‘ Modem ’ Diagnostics Advanced

ort: COM5

Speaker volume

Maximum Port Speed

115200 v

Dial Control

oK [Cancel

6. Start BREW AppLoader, selecting the correct COM port (see item 4) and
BTILOEM.AIL

94 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Connection Manager

Connection Manager
Locating Your BREW® Device

Connect to my device on the following port:

My device has the following BREW version:

Connect using the following EFS version:

Connect to my device using the following interface:

oK

BTILOEM.dI

COMS

11.5 Using BREW Logger

Steps for using BREW Logger with Zeebo:

1. Connect Zeebo to PC and check Qualcomm HS-USB Diganostics 9009 COM port
number. Ensure the console is in USB Trace mode - see 11.6 for more details.

95

Zeebo Confidential and Proprietary

Zeebo Developer Guide

=) File
€« OE & 2E

Q Computer Management (Local)
= @ System Tools
@ {ﬁl Event Viewer
g Shared Folders
g Local Users and Groups
@ g Performance Logs and Alert:
-

Action View Window Help

Device Manager
= @ Storage

[= R

=&l

L’: Batteries

Bluetooth Radios

'y Computer

< Disk drives

"§ Display adapters
.., D¥D{CD-ROM drives

] Removable Storage
S Disk Defragmenter
Disk Management
& & Services and Applications

=) IDE ATAJATAPI controllers

=4 Imaging devices

“» Keyboards

") Mice and other pointing devices
Monitors

H8 Network adapters

+ \> NVIDIA Network Bus Enumerator
¢ Qualcomm HS-USE Diagnostics 9009 (COME)

+ #¥% Proc

+-@. Sound, video and game controllers

+ System devices
+ Universal Serial Bus controllers

+
+
+
+
ol
+
+-(J9 Human Interface Devices
¥
¥
+
+
+
+

r

2. Start BREW Logger, setting the correct COM port and selecting QCOMOEM.dIl as the
connection interface.

Connection Manager

Connection Manager
Locating Your BREW® Device

Connect to my device using the following interface: |QCUMDEM.dII

Connect to my device on the following port: |CDMB

My device has the following BREW version:

|3.x and later Ll
=~

Connect using the following EFS version: |Aut0detect

Cancel |

96 Zeebo Confidential and Proprietary

Zeebo Developer Guide

11.6 Understanding USB Download and Trace mode

USB Download mode is used for uploading and downloading files/contents between Zeebo
and PC (while using BREW AppLoader). On the other hand, USB trace mode is mainly used
for logging and debugging applications running on Zeebo (while using BREW Logger or
Adreno Profiler).

The main differences between USB Download and Trace is that in the latter case, you can
use the joystick USB ports while connected in the PC. This is extremely useful while
debugging or profiling games for Zeebo.

The next steps explain how to change between USB Download and Trace modes:
1. Inthe Main Menu, start EMAPPLET.
2. Select Field Test.

Automatic Test

Version information
Test report

Field Test
Hardware test

Hardware information

it Calact
3. Select USB Download.

97 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Access setting
Network Mode
USB Download
Cell info
Search NetWork
TVOUT Test
Memory Cof
Format Enand

Rack Salact
4. Select Download or Trace mode for the mini USB port.

98 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Download
* Trace

Rark Qave

Make sure to restart/reboot the console in order to get new USB port mode settings
working.

11.7 Uploading games using SD card

The next steps explain how to upload games using the SD memory card:

1. Create the following folder structure in your SD memory card:

/mif < copy .mif files here
/mod < root folder for games
/mod/yourgamename < copy your game to this folder

Insert the SD memory card into Zeebo.
In the Main Menu, start EMAPPLET.
Select Field Test.

SR N

Select Memory Copy.

9 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Access setting
Network Mode
USB Download
Cell info
Search NetWork
TVOUT Test
Memory Cop
Format Enand

Rark Salact

The Format Enand option can be used to reset or delete all the contents previously stored
in Zeebo.

11.8 Power Button Behavior

Pressing Zeebo’s power button will put the device in stand by mode, rather than turning off
the console. This behavior is due to scheduled updates that should occur while the console
is in stand by mode. Scheduled updates include all the contents showed in Shop screen and
also Zeebo User Interface.

In the games side, pressing the power button while playing a game will send a key release
event AVK_END, notifying the game. Zeebo recommends that games must quit after
receiving this event.

11.9 Known Issues

- Avoid using BREW function call GETTIMEMS() to retrieve or compute elapsed time for
frame rate control. GETTIMEMS() takes a few more milliseconds to return the result.
Instead, developers must use GETUPTIMEMS(), which is faster.

100 Zeebo Confidential and Proprietary

Zeebo Developer Guide

- Game’s frame rate must be held down to 35 frames per second, in order to avoid flickering
on the video output.

- Upon receiving EVT_APP_SUSPEND, games must release all instances associated to [HID
devices (including all ISignals and ISiganlCBFactory and callbacks associated) to prevent
any blocking issues. After receiving an EVT_APP_RESUME, games must create all instances
associated to IHID again. These two events are received after pressing HOME button for
more than 3 seconds. See section 10.1 for further details.

101 Zeebo Confidential and Proprietary

Zeebo Developer Guide

12 Submission process

All Zeebo games must be submitted to NSTL for TBT certification and to Zeebo Inc. for
quality assurance. Please refer to Zeebo TBT NSTL test plan for more details on BREW
certification for Zeebo.

102 Zeebo Confidential and Proprietary

Zeebo Developer Guide

Appendix A- Supported BREW API List

Category BREW API Zeebo Inc Requirement
Abstract Base Classes [Applet Yes
IAPPLETCTL Yes
[AStream Yes
[Base Yes
IControl Yes
IModel Yes
IModule Yes
INotifier Yes
[Parameters Yes
1QI Yes
Address Book and Call [AddrBook No
History
[IAddrRec No
ICallHistory No
Application Services [AlarmMgr Yes
[IAppHistory Yes
IClipboard Yes
ICoreNotifier Yes
IDeviceNotifier Yes
IFIFO Yes
ILicense Yes
IMemAStream Yes
IRscPool Yes
ISignal Yes
IShell Yes
IThread Yes
[UnzipAStream Yes
[LocalStorage Yes
IRegistry Yes
Backlight IBacklight No
Battery IBattery Yes
[BatteryNotifier Yes
Controls IAClockCtl Yes
[DateCtl Yes
IDialog Yes
IImageCtl Yes
IMenucCtl Yes
IResourceCtl Yes
IStatic Yes

103

Zeebo Confidential and Proprietary

Zeebo Developer Guide

ITextCtl Yes
ITimeCtl Yes
Database [Database Yes
IDBMgr Yes
IDBRecord Yes
Diagnostics and SIO [Logger Yes
[Port Yes
Display IBitmap Yes
IBitmapDev Yes
IDIB Yes
IDisplay Yes
[Font Yes
ISprite Yes
IMDP Yes
ITransform Yes
Download IADSQuery Yes
[Download Yes
IFOTA No
File [File Yes
[FileMgr Yes
Flip [Flip Yes
Image Viewers and Decoders | IForceFeed Yes
IImage Yes
IImageDecoder Yes
IViewer Yes
Location-based Services [Posdet No
Memory Management [Heap Yes
IRamCache Yes
IRecordStore Yes
Multimedia ICamera No
IDLS No
IDLSLinker No
IGraphics Yes
[HID Yes
IUSBHID No
[Joystick No
IMedia Yes
IMediaSVG Yes
IMediaUtil Yes
Multimedia_Content_File Yes
IRingerMgr Yes
ISound Yes
ISoundPlayer Yes
IEGL Yes
IGL Yes
IRender2D Yes
IVocoder Optional
Network [AddrInfo Yes

104

Zeebo Confidential and Proprietary

Zeebo Developer Guide

[IAddrInfoCache Yes
IBCMCSDB No
IDNS Yes
IDNSConfig Yes
IDNSConfig2 Yes
INetMgr Yes
INetwork Yes
INetUtils Yes
INetMTPDNotifier Yes
IMcastSession No
IQoSBundle No
IQoSFilter No
IQoSFlow No
IQoSList No
I1QoSSession No
I1QoSSpec No
ISocket Yes
ISockPort Yes
IWIFI No
IWIFIOpts No
Resource Management ITopVisibleCtl Yes
Security ICipher No
ICipher1 Yes
ICipherFactory Yes
ICipherWrapper Yes
[Hash Yes
[HashCTX Yes
IRawBlockCipher Yes
IRSA Yes
ISSL Yes
IX509Chain Yes
Telephony and SMS ICall No
ICallMgr No
ICallOrigOpts No
[MultipartyCall No
[PhoneCtl No
[PhoneNotifier No
ISMS Yes
ISMSBCConfig Yes
ISMSBCSrvOpts Yes
ISMSMsg Yes
ISMSNotifier Yes
ISMSStorage Yes
ISMSStorage2 Yes
ISuppsTrans Optional
ITAPI Yes/TBD
ITelephone No
Web IGetLine Yes

105

Zeebo Confidential and Proprietary

Zeebo Developer Guide

I[HtmlViewer Yes
[Peek Yes
ISource Yes
ISourceUtil Yes
IWeb Yes
IWebEng Yes
IWebOpts Yes
IWebResp Yes
IWebUtil Yes

106

Zeebo Confidential and Proprietary

Zeebo Developer Guide

Appendix B — Supported OpenGL ES API

List

OpenGL ES Function

Parameter(s)

Version

Version

1.0

1.1

Supported

F = float | fixed, T = int | float | fixed
| ubyte | uint,
clampF = clampf | clampx

Common

2.5 GetError (void)

x

X

NO_ERROR

x

INVALID_ENUM

x

INVALID_VALUE

INVALID_OPERATION

STACK_OVERFLOW

STACK_UNDERFLOW

OUT OF MEMORY

2.7 Normal3{fx}

T coords)

MultiTexCoord4{fx}

enum texture, T coords)

Color4{fx}

T components)

XX X [x [x |x [x [x |x |x [X

XX X % [x [x |x |x [x |x

Color4ub|v]

(
(
(
(

T components)

XX X [X [x [x [x [x |x

2.8 VertexPointer

(int size, enum type, sizei stride,
const void *ptr)

x

size = 2,3,4 type = BYTE

size = 2,3,4 type = SHORT

size = 2,3,4 type = FLOAT, FIXED

X [x [x [X

X [x [x [X

NormalPointer

(enum type, sizei stride, const void
*ptr)

x

x

type = SHORT, BYTE

type = FLOAT, FIXED

ColorPointer

(int size, enum type, sizei stride,
const void *ptr)

size = 4 type = UNSIGNED BYTE

x

size = 4 type = FLOAT, FIXED

x

TexCoordPointer

(int size, enum type, sizei stride,
const void *ptr)

x

size = 2,3,4 type = BYTE

size = 2,3,4 type = SHORT

size = 2,3,4 type = FLOAT, FIXED

DrawArrays

(enum mode, int first, sizei count)

X [x [x [x |X

X X [x [x

X [x [x [x |X

mode = POINTS, LINES,
LINE_STRIP, LINE_LOOP

mode = TRIANGLES,
TRIANGLE_STRIP,
TRIANGLE_FAN

DrawElements

(enum mode, sizei count, enum
type, const void *indices)

107

Zeebo Confidential and Proprietary

Zeebo Developer Guide

mode = POINTS, LINES,
LINE _STRIP, LINE_LOOP X X X
mode = TRIANGLES,
TRIANGLE_STRIP,
TRIANGLE FAN X X X
type = UNSIGNED_BYTE,
UNSIGNED_SHORT X X X
ClientActiveTexture (enum texture) X X X
EnableClientState (enum cap) X X X
cap =
TEXTURE_COORD_ARRAY,
COLOR_ARRAY X X X
cap = NORMAL_ARRAY,
VERTEX ARRAY X X X
DisableClientState (enum cap) X X X
cap =
TEXTURE_COORD_ARRAY,
COLOR_ARRAY X X X
cap = NORMAL_ARRAY,
VERTEX ARRAY X X X
(int size, enum type, sizei stride,
WeightPointerOES void *pointer) X
(int size, enum type, sizei stride,
MatrixIndexPointerOES void *pointer) X
CurrentPaletteMatrixOES | (uint index) X
LoadPaletteFromModelVi
ewMatrixOES X
multitexture is minimum of 2
texture units X X
2.9 BindBuffer (enum target, uint buffer) X X
DeleteBuffers (sizei n, uint *buffers) X X
GenBuffers (sizei n, uint *buffers) X X
(enum target, sizeiptr size, const
BufferData void *data, enum usage) X X
(enum target, intptr offset, sizeiptr
BufferSubData size, const void *data) X X
2.11 | DepthRange{fx} (clampF n, clampF f) X X X
Viewport (int x, int y, sizei w, sizei h) X X X
MatrixMode (enum mode) X X X
mode = MODELVIEW,
PROJECTION, TEXTURE X X X
LoadMatrix{fx} (F m[16]) X X X
MultMatrix{fx} (F m[16]) X X X
Loadldentity (void) X X X
Rotate{fx} (Fangle, Fx,Fy, F2z) X X X
Scale{fx} (Fx,Fy,F2z) X X X
Translate{fx} (Fx,Fy,F2z) X X X
Frustum{fx} (FLFEr,Fb,Ft,Fn Ff) X X X
Ortho{fx} (FI,Fr,Fb,Ft,Fn,Ff) X X X
ActiveTexture (enum texture) X X X
PushMatrix (void) X X X
TEXTURE and PROJECTION (2
deep) X X X
MODELVIEW (16 deep) X X X
PopMatrix (void) X X X
Enable/Disable (RESCALE_NORMAL) X X X
Enable/Disable (NORMALIZE) X X X
2.12 | ClipPlane{fx} (enum plane, F *equation[4]) X

108

Zeebo Confidential and Proprietary

Zeebo Developer Guide

Enable/Disable (CLIP_PLANE{0...n-1}) X
2.1.4 | FrontFace (enum mode) X X X
Enable/Disable (LIGHTING) X X X
Enable/Disable (LIGHT{0-7}) X X X
(enum face, enum pname, T
Material{fx}[v] param) X X X
face = FRONT_AND_BACK X X
pname = AMBIENT, DIFFUSE,
SPECULAR, EMISSION,
SHININESS X X X
pname =
AMBIENT _AND DIFFUSE X X X
(enum light, enum pname, T
Light{fx}[v] param) X X X
LightModel{fx}[v] (enum pname, T param) X X X
pname =
LIGHT_MODEL_TWO_SIDE X X X
pname =
LIGHT _MODEL_AMBIENT X X X
Enable/Disable (COLOR_MATERIAL) X X X
ShadeModel (enum mode) X X X
3.2 Enable/Disable (MULTISAMPLE) X X
3.3 PointSize[x] (F size) X X X
PointParameter{fx}[v] (enum pname, T param) X
Enable/Disable (POINT_SMOOTH) X X X
(enum type, sizei stride, const void
PointSizePointerOES *ptr) X X
type = FLOAT, FIXED X X
34 LineWidth[x] (F width) X X X
Enable/Disable (LINE_SMOOQOTH) X X X
3.5 CullFace (enum mode) X X X
Enable/Disable (CULL_FACE) X X X
PolygonOffset[x] (F factor, F units) X X X
Enable/Diable (POLYFON_OFFSET _FILL) X X X
3.6 PixelStorei (enum pname, T param) X X X
pname = PACK_ALIGNMENT,
UNPACK _ALIGNMENT X X
DrawTex{sifx}OES (TXs, TYs, TZs, TWs, T Hs)
DrawTex{sifx}OESv (T *coords) X
Minimum of 2 texture
3.8 units supported X X
Image Types UNSIGNED BYTE X X X
UNSIGNED _SHORT 5 6 5 X X X
UNSIGND _SHORT 4 4 4 4 X X X
UNSIGNED _SHORT 5 5 5 1 X X X
Texture ImageFormats
and Types RGBA, UNSIGNED _BYTE, 4 X X X
Internal/External
Foramet, Type,
Bytes/Pixel RGB, UNSIGNED BYTE, 3 X X X
RGBA,
UNSIGNED _SHORT 4 4 4 4,2 X X X
RGBA,
UNSIGNED_SHORT 5 56 5 1,2 X X X
RGB,
UNSIGNED_SHORT 5 6 5, 2 X X X
LUMINANCE_ALPHA,
UNSIGNED BYTE, 2 X X X

109

Zeebo Confidential and Proprietary

Zeebo Developer Guide

LUMINANCE UNSIGNED_BYTE,
1

ALPHA, UNSIGNED BYTE, 1

Image Copy Conversions

ALPHA -> APLHA

Color Buffer -> Texture
linternalFormat

LUMINANCE -> LUMINANCE

LUMINANCE_ALPHA -> ALPHA,
LUMINANCE,
LUMINANCE_ALPHA

RGB -> LUMINANCE, RGB

RGBA -> ALPHA, LUMINANCE,
LUMINANCE_ALPHA, RGB,
RGBA

TEXTURE_WRAP_S,
3.8.3 | TEXTURE WRAP T

REPEAT

CLAMP_TO_EDGE

TEXTURE_MIN_FILTER

NEAREST

LINEAR

x

NEAREST_MIPMAP_NEAREST

NEAREST_MIPMAP_LINEAR

LINEAR_MIPMAP_NEAREST

LINEAR_MIPMAP_LINEAR

X X X [X X [X |X |X

X X X |X

X X X [X X [X |X |X

TEXTURE_MAG_FILTE
R

NEAREST

LINEAR

3.8.5 | Texlmage2D

(enum target, int level, int
internalFormant, sizei width, sizei
height, int border, enum format,
enum type, const void *pixels)

target = TEXTURE 2D, border = 0

TexSublmage2D

(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height,
enum format, enum type, const
void *pixels)

CopyTexlmage2D

(enum target, int level, enum
internalformat, int x, int 'y, sizei
width, sizei height, int border)

border =0

CopyTexSublmage2D

(enum target, int level, int xoffset,
int x, int y, sizei width, sizei height)

CompressedTexImage2
D

(enum target, int level, enum
internalFormat, sizei width, sizei
height, int border, sizei imageSize,
const void *data)

Paletted Compressed
Texture formats

target = TEXTUREZ2D, border = 0

internalFormat =
PALETTE4 RGB8 OES

internalFormat =
PALETTE4 RGBA8 OES

internalFormat =
PALETTE4 R5 G6 B5 OES

internalFormat =
PALETTE4 RGBA4 OES

internalFormat =
PALETTE4 RGB5 A1 OES

internalFormat =
PALETTE8 RGB8 OES

internalFormat =
PALETTE8 RGBA8 OES

internalFormat =
PALETTE8 R5 G6 B5 OES

110

Zeebo Confidential and Proprietary

Zeebo Developer Guide

internalFormat =
PALETTE8 RGBA4 OES

internalFormat =
PALETTE8 RGB5 A1 OES

CompressedTexSublmag
e2D

(enum target, int level, int xoffset,
sizei width, enum format, sizei
imageSize, const void *data)

TexParameter{fx}[v]

(enum target, enum pname, T
param)

internalFormat =
GL_COMPRESSED_RGB_ATI_ T
C

internalFormat =
GL_COMPRESSED _RGBA_ATI_
TC

target = TEXTURE_2D

target = TEXTURE_MIN_FILTER,
TEXTURE_MAG _FILTER

target = TEXTURE_WRAP_S,
TEXTURE_WRAP_T

TexParameter{ifx}[v]

(enum target, enum pname, T
params)

pname =
TEXTURE CROP_RECT OES

target = TEXTURE2D

pname = TEXTURE_MIN_FILTER,
TEXTURE_MAG_FILTER

pname = TEXTURE_WRAP_S,
TEXTURE_WRAP_T

pname = GENERATE_MIPMAP

param = MIRRORED_REPEAT

BindTexture

(enum target, uint texture)

target = TEXTURE_2D

DeleteTextures

(sizei n, uint *textures)

GenTextures

(sizei n, uint *textures)

Enable/Disable

(TEXTURE_2D)

XX X |x X

XX X [x X

XO[X O [X [x [X [x

TexEnv{ifx}[v]

(enum target, enum pname, T
param)

x

pname = TEXTURE_ENV_COLOR

x

pname = TEXTURE_ENV_MODE

param = MODULATE,
REPLACE, DECAL

param = BLEND, ADD

param = COMBINE

pname = COMBINE_RGB,
COMBINE_ALPHA

pname = SRC{012}_RGB,
SRC{012} ALPHA

param = DOT3_RGB,
DOT3 RGBA

pname = OPERAND{012}_RGB,
OPERAND{012} ALPHA

param = TEXTURE

pname = RGB_SCALE,
ALPHA SCALE

target = POINT_SPRITE_OES

pname =
COORD _REPLACE _OES

param = {TRUE | FALSE }

3.9 Fog{fx}[v]

(enum pname, T param)

111

Zeebo Confidential and Proprietary

Zeebo Developer Guide

pname = FOG_MODE,
FOG_DENSITY, FOG_START,
FOG_END, FOG_COLOR X X X
Enable/Disable (FOG) X X
4.1 Enable/Disable (SCISSOR_TEST) X X X
(int x, int y, sizei width, sizei
Scissor height) X X X
Enable/Disable (SAMPLE_COVERAGE) X
(SAMPLE_ALPHA_TO_COVERA
Enable/Disable GE) X X
Enable/Disable (SAMPLE_ALPHA TO_ONE) X X
SampleCoverage[x] (clampF value, boolean invert) X X
Enable/Disable (ALPHA _TEST) X X X
AlphaFunclx] (enum func, clampF ref) X X X
Enable/Disable (STENCIL_TEST) X X X
StencilFunc (enum func, int ref, uint mask) X X X
StencilMask (unint mask) X X X
(enum fail, enum zfail, enum
StencilOp zpass) X X X
fail, zfail, zpass = KEEP X X X
fail, zfail, zpass = ZERO X X X
fail, zfail, zpass = REPLACE X X X
fail, zfail, zpass = INCR X X X
fail, zfail, zpass = DECR X X X
fail, zfail, zpass = INVERT X X X
Enable/Disable (DEPTH_TEST) X X X
DepthFunc (enum func) X X X
DepthMask (boolean flag) X X X
Enable/Disable (BLEND) X X X
BlendFunc (enum sfactor, enum dfactor) X X X
Enable/Disable (DITHER) X X X
Enable/Disable (COLOR_LOGIC_OP) X X X
LogicOp (enum opcode) X X X
(boolean red, boolean green,
4.2 ColorMask boolean blue, boolean alpha) X
Clear S(bitfield mask) X X X
(clampF red, clampF green,
ClearColor{x] clampF blue, clampF alpha) X X X
ColorDepth{fx} (clampF depth) X X X
ClearStencil (int s) X X X
(intx, int y, sizei width, sizei height,
enum format, enum type, void
4.3 ReadPixels *pixels) X X X
5.5 Flush (void) X X X
Finish (void) X X X
5.6 Hint (enum target, enum mode) X X X
target =
PERSPECTIVE_CORRECTION_H
INT X X X
target = POINT_SMOOTH_HINT X X X
target = LINE_SMOOTH_HINT X X X
target = FOG_HINT X X X
target =
GENERATE_MIPMAP_HINT X

112

Zeebo Confidential and Proprietary

Zeebo Developer Guide

6.1 GetBooleanv (enum pname, boolean *params) X
GetIntegerv (enum pname, int *params) X X
Get{Float|Fixed}v (enum pname, T *params) X
IsEnabled (enum cap) X
GetClipPlane{fx} (enum plane, T equation[4]) X
(enum light, enum pname, T
GetLight{fx}v *params) X
(enum face, enume pname, T
GetMaterial{fx}v *params) X X
(enum target, enum pname, T
GetTexEnv{ifx}v *params) X
(enum target, enum pname, T
GetTexParameter{ifx}v *params) X X
(enum target, enum pname,
GetBufferParameteriv boolean, *params) X X
IsTexture (unit texture) X
GetPointerv (enum pname, void **params) X X
GetString (enume name) X X
IsBuffer (uint buffer) X X
6.2 Queryable State
Getintegerv
Get{Float|Fixed}v CURRENT_COLOR X
Get{Float|Fixed}v CURRENT _TEXTURE_COORDS X
Get{Float|Fixed}v CURRENT_NORMAL X
6.6 GetlIntegerv CLIENT _ACTIVE_TEXTURE X
IsEnabled VERTEX ARRAY X
GetlIntegerv VERTEX ARRAY SIZE X
GetIntegerv VERTEX ARRAY STRIDE X
Getlintegerv VERTEX ARRAY TYPE X
GetPointerv VERTEX ARRAY POINTER X X
IsEnabled NORMAL ARRAY X
GetlIntegerv NORMAL ARRAY STRIDE X
Getlntegerv NORMAL ARRAY TYPE X
GetPointerv NORMAL ARRAY POINTER X X
IsEnabled COLOR_ARRAY X
GetlIntegerv COLOR_ARRAY _SIZE X
Getlntegerv COLOR_ARRAY_STRIDE X
GetlIntegerv COLOR_ARRAY TYPE X
GetPointerv COLOR_ARRAY POINTER X X
IsEnabled TEXTURE _COORD_ARRAY X
TEXTURE_COORD_ARRAY SIZ
GetIntegerv E X
TEXTURE_COORD_ARRAY STR
GetIntegerv IDE X
TEXTURE_COORD_ARRAY TYP
GetlIntegerv E X
TEXTURE_COORD_ARRAY POl
GetPointerv NTER X X
Getlntegerv ARRAY BUFFER BINDING X
VERTEX_ARRAY_BUFFER_BIND
GetIntegerv ING X
NORMAL_ARRAY_BUFFER_BIN
GetIntegerv DING X
COLOR _ARRAY BUFFER_BINDI
GetIntegerv NG X
GetlIntegerv TEXTURE _COORD_ARRAY BUF X

113

Zeebo Confidential and Proprietary

Zeebo Developer Guide

FER_BINDING
ELEMENT_ARRAY_BUFFER_BIN
GetIntegerv DING X
6.7 GetBufferParameteriv BUFFER_SIZE X X
GetBufferParameteriv BUFFER_USAGE X X
GetBufferParameteriv BUFFER_ACCESS X X
6.8 | Get{Float|Fixed}v MODELVIEW MATRIx X X
Get{Float|Fixed}v PROJECTION_MATRIX X X
Get{Float|Fixed}v TEXTURE_MATRIX X X
MODELVIEW_MATRIX_FLOAT_A
GetIntegerv S INT_BITS OES X
PROJECTION_MATRIX_FLOAT _
GetIntegerv AS_INT _BITS OES X
TEXTURE_MATRIX_FLOAT AS_|
GetlIntegerv NT BITS OES X
Getlntegerv VIEWPORT X
Get{Float|Fixed}v DEPTH _RANGE X
GetlIntegerv MODELVIEW _STACK _DEPTH X X
GetlIntegerv PROJECTION_STACK _DEPTH X X
GetlIntegerv TEXTURE_STACK _DEPTH X X
Getlntegerv MATRIX_MODE X
IsEnabled NORMALIZE X
IsEnabled RESCALE_NORMAL X
GetClipPlane{fx} CLIP_PLANE{0-5} X
IsEnabled CLIP_PLANE{0-5} X
6.9 Get{Float|Fixed}v FOG_COLOR X
Get{Float|Fixed}v FOG_DENSITY X
Get{Float|Fixed}v FOG_START X
Get{Float|Fixed}v FOG_END X
Getlntegerv FOG_MODE X
IsEnabled FOG X
Getlntegerv SHADE_MODEL X
6.10 | IsEnabled LIGHTING X
IsEnabled COLOR_MATERIAL X
GetMaterial{fx}v AMBIENT (material) X X
GetMaterial{fx}v DIFFUSE (material) X X
GetMaterial{fx}v SPECULAR (material) X X
GetMaterial{fx}v EMISSION (material) X X
GetMaterial{fx}v SHININESS (material) X X
Get{Float|Fixed}v LIGHT _MODEL_AMBIENT X
GetBooleanv LIGHT _MODEL_TWO_SIDE X
GetLight{fx}v AMBIENT (light) X
GetLight{fx}v DIFFUSE (light) X
GetLight{fx}v SPECULAR (light) X
GetLight{fx}v POSITION (light;) X
GetLight{fx}v CONSTANT_ATTENUATION X
GetLight{fx}v LINEAR_ATTENUATION X
GetLight{fx}v QUADRATIC_ATTENUATION X
GetLight{fx}v SPOT DIRECTION X
GetLight{fx}v SPOT_EXPONENT X

114

Zeebo Confidential and Proprietary

Zeebo Developer Guide

GetLight{fx}v SPOT_CUTOFF X
IsEnabled LIGHT{0-7} X
6.11 | Get{Float|Fixed}v POINT _SIZE X
IsEnabled MOINT_SMOOTH X
Get{Float|Fixed}v POINT _SIZE MIN X
Get{Float|Fixed}v POINT _SIZE MAX X
POINT_FADE _THRESHOLD_SIZ
Get{Float|Fixed}v E X
POINT_DISTANCE_ATTENUATIO
Get{Float|Fixed}v N X
Get{Float|Fixed}v LINE WIDTH X
IsEnabled LINE_SMOOTH X
IsEnabled CULL_FACE X
GetlIntegerv CULL_FACE _MODE X
GetlIntegerv FRONT_FACE X
Get{Float|Fixed}v POLYGON_OFFSET _FACTOR X
Get{Float|Fixed}v POLYGON_OFFSET_UNITS X
IsEnabled POLYGON _OFFSET FILL X
6.12 | IsEnabled MULTISAMPLE X
SAMPLE _ALPHA_TO _COVERAG
IsEnabled E X
IsEnabled SAMPLE ALPHA TO ONE X
IsEnabled SAMPLE_COVERAGE X
Get{Float|Fixed}v SAMPLE COVERAGE VALUE X
GetBooleanv SAMPLE COVERAGE INVERT X
6.13 | IsEnabled TEXTURE 2D X
Getlntegerv TEXTURE _BINGDING 2D X
GetTexParameteriv TEXTURE MIN_FILTER X X
GetTexParameteriv TEXTURE_MAG _FILTER X X
GetTexParameteriv TEXTURE _WRAP_S X X
GetTexParameteriv TEXTURE _WRAP_T X X
GetTexParameteriv GENERATE _MIPMAP X
6.14 | Getlntegerv ACTIVE TEXTURE X
GetTexEnviv TEXTURE _ENV_MODE X
GetTexEnv{fx}v TEXTURE_ENV_COLOR X
GetTexEnviv COMBINE_RGB X
GetTexEnviv COMBINE_ALPHA X
GetTexEnviv SRC{012} RGB X
GetTexEnviv SRC{012} ALPHA X
GetTexEnviv OPERAND{012} RGB X
GetTexEnviv OPERAND{012} ALPHA X
GetTexEnviv RGB_SCALE X
GetTexEnviv ALPHA SCALE X
6.15 | GetBooleanv COLOR_WRITEMASK X
GetBooleanv DEPTH_WRITEMASK X
Getlntegerv STENCIL_WRITEMASK X
Get{Float|Fixed}v COLOR _CLEAR _VALUE X
Getlntegerv DEPTH_CLEAR VALUE X
Getlntegerv STENCIL CLEAR VALUE X

115

Zeebo Confidential and Proprietary

Zeebo Developer Guide

6.16 | IsEnabled SCISSOR_TEST X
GetIntegerv SCISSOR_BOX X
IsEnabled ALPHA TEST X
Getlntegerv ALPHA TEST _FUNC X
Getlntegerv ALPHA_TEST _REF X
IsEnabled STENCIL _TEST X
GetlIntegerv STENCIL_FUNC X
GetlIntegerv STENCIL_VALUE MASK X
Getlntegerv STENCIL_REF X
Getlntegerv STENCIL_FAIL X
GetlIntegerv STENCIL PASS DEPTH_FAIL X
GetlIntegerv STENCIL_PASS DEPTH_PASS X
IsEnabled DEPTH_TEST X
GetlIntegerv DEPTH_FUNC X
IsEnabled BLEND X
Getlntegerv BLEND_SRC X
Getlntegerv BLEND _DST X
IsEnabled DITHER X
IsEnabled COLOR_LOGIC_OP X
Getlntegerv LOGIC_OP_MODE X
6.17 | Getlntegerv UNPACK_ALIGNMENT X
Getlntegerv PACK_ALIGNMENT X
PERSPECTIVE_CORRECTION_H
GetlIntegerv INT X X
Getlntegerv POINT_SMOOTH_HINT X X
Getlntegerv LINE_SMOOTH_HINT X
TEXTURE_COMPRESSION_HIN
T X
GetIntegerv FOG_HINT X X
GetlIntegerv GENERATE _MIPMAP_HINT X
6.24 | Getlntegerv MAX _CLIP_PLANES X
MAX_MODELVIEW STACK_DEP
GetIntegerv TH X X X
MAX_PROJECTION_STACK_DE
GetIntegerv PTH X X X
GetIntegerv MAX _TEXTURE_STACK DEPTH X X X
Getlntegerv SUPIXEL BLITS X X X
Getlntegerv MAX_TEXTURE_SIZE X X X
Getlntegerv MAX_VIEWPORT _DIMS X X X
6.25 | Get{Float|Fixed}v ALIASED POINT SIZE RANGE X X
Get{Float|Fixed}v SMOOTH_POINT SIZE RANGE X X
Get{Float|Fixed}v ALIASED LINE WIDTH_RANGE X X
Get{Float|Fixed}v SMOOTH_LINE WIDTH_RANGE X X
6.26 | Getlntegerv MAX_ELEMENTS INDICES X X
GetIntegerv MAX_ELEMENTS VERTICES X X
Getlntegerv MAX_TEXTURE_UNITS X X X
GetlIntegerv SAMPLE _BUFFERS X X
Getlntegerv SAMPLES X X
COMPRESSED _TEXTURE_FOR
GetIntegerv MATS X X X
NUM_COMPRESSED_TEXTURE
GetIntegerv _FORMATS X X X

116

Zeebo Confidential and Proprietary

Zeebo Developer Guide

6.27 | Getlntegerv RED BITS X X X
GetIntegerv GREEN_BITS X X X
GetIntegerv BLUE BITS X X X
Getlntegerv ALPHA BITS X X X
GetlIntegerv DEPTH _BITS X X X
GetlIntegerv STENCIL BITS X X X

6.28 | GetError Current Error Code(s) X X X

IMPLEMENTATION_COLOR_RE
6.29 | Getlntegerv AD TYPE OES X X X

IMPLEMENTATION_COLOR_RE

GetIntegerv AD _FORMAT _OES X X X

IsEnabled MATRIX PALETTE _OES

GetlIntegerv MAX _PALETTE MATRICES OES X

GetIntegerv MAX _VERTEX _UNITS _OES X

IsEnabled MATRIX_INDEX ARRAY OES
MATRIX_INDEX_ARRAY SIZE O

GetlIntegerv ES X
MATRIX_INDEX_ARRAY_TYPE_

GetIntegerv OES X
MATRIX_INDEX_ARRAY_STRID

GetIntegerv E OES X
MATRIX_INDEX_ARRAY_POINT

GetPointerv ER OES X
MATRIX_INDEX_ARRAY_BUFFE

Getlntegerv R_BINDING_OES X

IsEnabled WEIGHT_ARRAY OES

GetlIntegerv WEIGHT_ARRAY SIZE OES X

GetlIntegerv WEIGHT _ARRAY TYPE OES X

Getlntegerv WEIGHT _ARRAY _STRIDE _OES X
WEIGHT _ARRAY POINTER_OE

GetIntegerv S X
WEIGHT_ARRAY_BUFFER_BIND

GetIntegerv ING_OES X
CURRENT_PALETTE_MATRIX_O

GetlIntegerv ES

IsEnabled POINT_SPRITE_OES X

GetTexEnviv COORD_REPLACE _OES X

IsEnabled POINT_SIZE ARRAY OES X
POINT SIZE_ARRAY TYPE OE

GetIntegerv S X
POINT_SIZE_ARRAY _STRIDE O

GetIntegerv ES X
POINT_SIZE_ARRAY POINTER_

GetPointerv OES X
POINT SIZE_ARRAY BUFFER_

GetIntegerv BINDING_OES X

GetTexParameteriv TEXTURE_CROP_RECT _OES X
(GLfixed mantissa[16], GLint

0.0 QueryMatrixxOES exponent[16]) X

BlendEquationEXT,

BlendEquationSeparateE

XT (enum, enum) X
GL _FUNC_ADD EXT X
GL_FUNC _SUBTRACT EXT X
GL_FUNC_REVERSE_SUBTRAC
T EXT X
GL _MIN EXT X

117

Zeebo Confidential and Proprietary

Zeebo Developer Guide

GL_MAX_EXT

BlendFuncSeparateEXT

GL ZERO

GL_ONE

GL_SRC_COLOR

GL_ONE_MINUS_SRC_COLOR

GL_DST_COLOR

GL_ONE_MINUS_DST _COLOR

GL_SRC_ALPHA

GL_ONE_MINUS_SRC_ALPHA

GL_DST_ALPHA

GL_ONE_MINUS_DST_ALPHA

GL_SRC_ALPHA_SATURATE

X [X X X [} X [} X |Xx [X [x [X [x

DrawVertexBufferObject
ATI

x

MeshListATI

int numlists, enum model[],
Tcount[], enum type[], const
GLvoid *indices[]

118

Zeebo Confidential and Proprietary

Zeebo Developer Guide

Appendix C — List of Acronyms

BLT - Bit Lookup Table

CMX - Compact Media Extensions
ZEEBO HDK - Form Factor Accurate
GPU - Graphics Processing Unit

HID - Human Interface Device

MSM - Mobile Station Modem

119

Zeebo Confidential and Proprietary

