
Programming Model for
Developers

QUALCOMM Incorporated
5775 Morehouse Drive

San Diego, CA. 92121-1714
U.S.A

.

This documentation was written for use with Brew Mobile Platform, software version 1.0.2. This document and the Brew Mobile
Platform software described in it are copyrighted, with all rights reserved. This document and the Brew Mobile Platform software
may not be copied, except as otherwise provided in your software license or as expressly permitted in writing by QUALCOMM
Incorporated.

Copyright© 2010 QUALCOMM Incorporated
All Rights Reserved

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written
permission of Qualcomm.

This technical data may be subject to U.S. and international export, re-export or transfer ("export") laws. Diversion contrary to U.S.
and international law is strictly prohibited.

The BREW MP logo, TrigML, and uiOne are trademarks of QUALCOMM Incorporated.Brew is a registered trademark of
QUALCOMM Incorporated.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries.
Other product and brand names may be trademarks or registered trademarks of their respective owners.

Sample Code Disclaimer:
This QUALCOMM Sample Code Disclaimer applies to the sample code of QUALCOMM Incorporated (“QUALCOMM”) to which it
is attached or in which it is integrated (“Sample Code”). Qualcomm is a trademark of, and may not be used without express written
permission of, QUALCOMM.

Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, QUALCOMM provides the Sample Code on an
"as is" basis, without warranties or conditions of any kind, either express or implied, including, without limitation, any warranties or
conditions of title, non-infringement, merchantability, or fitness for a particular purpose. You are solely responsible for determining
the appropriateness of using the Sample Code and assume any risks associated therewith. PLEASE BE ADVISED THAT
QUALCOMM WILL NOT SUPPORT THE SAMPLE CODE OR TROUBLESHOOT ANY ISSUES THAT MAY ARISE WITH IT.

Limitation of Liability. In no event shall QUALCOMM be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of the Sample Code even if advised of the possibility of such damage.

HT80-VT500-127 Rev C
August 25, 2010

Programming Model for Developers

i

Contents
Programming Model for Developers...3

How Brew MP relates to BREW... 3
Applications and extensions.. 3
Brew MP architecture.. 5
Qualcomm Component Model (QCM).. 6
Interfaces.. 6
Classes .. 7
Applet class..11
In-process class...11
Service class.. 12
Class resolution in Brew MP..15
Remote Invocations...16
Components and modules..17
Runtime environment.. 17
Environments... 18
System process model..18
Kernel process... 19
User process.. 19
Registry support.. 20
Inter-application communication..21
Security... 22
User mode and kernel applications...23
Privileges and ACLs.. 24
Application UI model... 24
UI Widgets.. 25
Windowed application model... 28
C/C++ application structure..28
Coding... 30
Data structures...30
Privileges.. 31
Event handling... 33
Event handling concepts.. 33
Event types...34
Critical events.. 35
Event delegation flexibility... 35
Publish and subscribe design pattern.. 37
Event registration...38
Event publish and dispatch..38
Key press events... 39
Suspend and resume.. 40
Signals, callbacks, timers and alarms...40
Notifications .. 44
Implementing classes..47

Implementing an applet class..47
Implementing an in-process class...47

Key APIs... 48
IModule and IMod.. 48
IShell and IEnv... 50

Programming Model for Developers

ii

Widgets and IDisplay...52
ISettings.. 52
IApplet... 58
Brew MP application files... 58
Unique IDs (BID).. 60
MOD, MOD1, DLL and DLL1... 61
MIF and CIF.. 64
BAR and CAR...65
Banned APIs...67
Families... 68
For more information.. 70
Frequently asked questions... 70

Programming Model for Developers How Brew MP relates to BREW

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 3

Programming Model for Developers

This document provides a discussion of the Brew® Mobile Platform (Brew MP) programming model.

For introductions to development environments and setup specific to languages, see the Brew MP
Primers on the Brew MP website. This document is meant to provide a more in-depth exploration of
programming for the Brew MP platform, to bridge the Brew MP Primers and Technology Guides.

Key aspects of the Brew MP programming model include:

• Brew MP architecture on page 5
• coding on page 30
• Brew MP APIs on page 48
• Brew MP application files on page 58

How Brew MP relates to BREW
BREW has traditionally been positioned as a bundled end-to-end offering combining an application
platform, SDK, and application distribution system. Operators deploying the BREW Distribution System
(BDS) leveraged applications targeted for distribution by the BDS. Along with BREW, Qualcomm has also
released a number of related products including uiOne™ SDK, uiOne HDK, and BREW UI Widgets.

In contrast, Brew MP is focused on expanding the capabilities of the device as an open application and
service platform. Brew MP provides a broader and deeper set of APIs spanning all layers of the device.
While combining elements of the traditional BREW, uiOne and Widgets offerings, Brew MP provides
substantial additional functionality including support for OS functionality, Flash, and window management.

Please note that the user mode support mentioned throughout this document will not be fully supported
until Brew MP 1.1+.

For information on how the Brew MP SDK Tools relate to the BREW Tools, see Tools for Veteran
Developers, Tools for Newbies on the Brew MP Developer Network (Brew MP Dev Net).

Applications and extensions

A Brew MP application is a self-contained software package that exposes at least one applet class
(implements IApplet interface) that can be loaded and executed in the BREW Shell (or thread).

A Brew MP extension is a self-contained software package that exposes one or more non-applet classes
with interfaces that can be accessed by any number of Brew MP applications for extended functionality.
Extensions are similar in concept to a software plugin for a PC application. See in-process classses on
page 7 for more information.

Relationship between an application and extension

Programming Model for Developers Applications and extensions

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 4

The main difference between Brew MP extensions and applications is that classes in an extension must
expose their virtual function tables to the other external classes. Classes in extensions can be written
without a UI, since the UI of the calling application can be used.

An application can create an instance of a class in the extension by calling IShell_CreateInstance() or
IEnv_CreateInstance(). Then, each function of the class is accessible though the macros defined in the
header file.

Applications are hosted inside specialized application processes and are controlled by an application
dispatcher mechanism that governs the application life cycle, which includes the following:

• Startup
• Event & notification processing
• Suspend/resume
• Shutdown

Extensions are defined as software packages or modules that contain non-applet classes, which means
that those classes can be in-process classes or service classes. Both in-process and service classes
expose public APIs (interfaces). An in-process class can be thought of as code extension of the caller; a
service class can be thought of as a background system process providing access to unique functionality.

Brew MP exposes most of its own functionality by way of system services. Leveraging the stubs and
skeletons transport model, service classes can either run in the kernel process or as isolated user mode
processes, as shown in the following diagram. See User mode on page for more information.

Programming Model for Developers Brew MP architecture

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 5

For more information on services, in-process classes, and service classes, see Classes on page 7.

Brew MP architecture

Brew MP has four core layers:

• OS Services - abstracts kernel and memory management, provides component management,
process, and security across the platform. The OS Services layer provides portability to both
Qualcomm and non-Qualcomm chipsets.

• Platform Services - includes modem, multimedia, and general service features, and is also the layer
where Brew MP application APIs reside.

• Application Environment - provides the foundation for applications running on Brew MP. Supports
application services such as Flash, Lua, TrigML™ , Widgets (BUIW), and window manager.

• Applications - can be developed in C/C++, Flash, TrigML , and Java.

The Brew MP application model is event-driven

Brew MP applications respond to events sent from the operating system. Brew MP applications do not
contain a main program loop; all input is received through events. This model provides for clean, efficient
execution with minimum demand on system resources and simple, task-based development.

Brew MP leverages an object-oriented modular design that governs system architecture, security, and
access to all APIs and services. This design provides dynamic platform extensibility across language
environments (C/C++, Flash, etc.). The key components of Brew MP application architecture are the
following:

• Interfaces on page 6

Programming Model for Developers Qualcomm Component Model (QCM)

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 6

• classes on page 7
• modules on page 17

Qualcomm Component Model (QCM)
The Qualcomm Component Model (QCM) is a programming model in which software is built as
components.

QCM provides the infrastructure for Brew MP to extend the capabilities of the platform by adding new
services and allow those services to be dynamically discovered and used. BREW, Brew MP, and OS
services are all QCM compliant.

The QCM:

• Establishes a contract and specification between providers of services and their users.
• Separates the specification and implementation of the services. The specification describes the

functionality the software service, or implementation, provides.
• Enables the users and the providers of the services to undergo changes without breaking each

other.
• Enables services to be dynamically discovered and created.

Users of the service must conform to this specification to access the functionality, and only need to know
about the specifications of the services rather than how the services are actually implemented.

QCM is not a platform. BREW and Brew MP are the platforms that leverage this programming model to
have their APIs built as components. This programming model consists of the following:

• interfaces on page 6
• classes on page 7
• components on page 17
• modules on page 17

Interfaces
An interface is a software contract and specification between an implementing class and its using client.
Interfaces provide the definition of a particular grouping of APIs in a functional object.

Interfaces are identified by unique 32-bit AEEIIDs, included in the interface definition. For public
interfaces, the interface ID should be obtained using the Brew ClassID Generator. The following is an
example of the interface ID definition.

const AEEIID AEEIID_IFoo = 0x00000000; /* not a real IID */
interface IFoo : IQI
{
 /* interface body */
};

Brew MP enforces strict rules for interface construction, naming, and life cycle, which ensure platform
compatibility and security. APIs are exposed by modules as objects associated with interfaces and
classes. See classes on page 7 for more information.

There are two kinds of interfaces:

• Interfaces that use dynamic binding: true run-time interfaces that conform to QCM. These interfaces
are commonly referred to as QCM interfaces.

• Static APIs: conventional C APIs resolved during the link step of the build.

https://brewx.qualcomm.com/classid/

Programming Model for Developers Classes

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 7

An interface describes how to interact with the instances of the class. The following diagram illustrates
the relationship between interfaces and classes, and how objects manifest in memory. The classes and
interfaces on the left are defined in the code for the applet; the objects in memory shown on the right are
the instantiations of classes that are stored in memory when the applet is executing.

Defining interfaces in IDL

A key feature of Brew MP is support for interfaces across languages and environments. For example, a
developer can access many of the same APIs in C/C++ and Lua. This abstraction is independent of the
language used to implement the underlying component. A component may be implemented in Lua and
accessed from C/C++, or vice versa.

Brew MP provides an Interface Definition Language (IDL) capability to allow developers to create high-
level specifications for interfaces that can then be mapped to many other languages.

The IDL mechanism does the following:

• Describes interfaces in a clean and concise manner.
• Automates correct header-file generation across languages.
• Enforces rules to simplify development of inter-process code. Brew MP also provides a compiler to

auto-generate proxies.
• Enables interpreted environments by way of auto-generated language-specific proxies, avoiding the

need to define and implement protocols for each area of functionality.

Brew MP's IDL support is based on OMG (CORBA) IDL with some specific omissions and additions to
support Brew MP. The IDL mechanism currently supports C/C++ and Lua, with support for ActionScript
under development. For more information on IDL, see the QIDL Reference, and the QIDL Compiler
section of the Brew MP Tools Reference.

Classes
In Brew MP, software programs are written as classes. A class is a user-defined type that encapsulates
data and behavior (i.e. functions) to provide implementation of one or more interfaces it exposes.

Classes are identified by unique 32-bit AEECLSIDs. The AEECLSIDs supported for a module are
specified in the module's Module Information File (MIF). When a class is instantiated, it becomes an

Programming Model for Developers Classes

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 8

object, which is an instance of the class in memory that maintains the data members of the class and the
VTable to the code of all its supported methods.

C/C++ programs in Brew MP implement three types of Brew MP classes:

• applet classes
• in-process classes
• service classes

The table below describes the module formats and types, and wizards for these classes.

Brew MP class types Supporting
module formats

Applicable Brew
MP module types

Supporting
IDE Wizards

Applet class MOD or MOD1 Application Application (applet
class)

In-Process class MOD or MOD1 Application or extension Extension (in-process
class)

Service Class MOD1 Application or extension n/a

In the example below, the interface is called example_IFoo, and the instantiated class (object) is called
CExample. As shown below, there can be multiple instances of the same class. Every CExample object
has a pointer to the vtable and a reference count that keeps track of the number of references to the
interface.

Programming Model for Developers Classes

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 9

A component can have multiple interfaces, each of which provides a different functionality set for clients
with different roles. Multiple interfaces allow multiple references to multiple vtables, each of which
provides different functionality. All references to the same interface point to the same vtable, which is in
the same area of memory, and is therefore the same code.

Since clients receive and operate on a reference (the address of a pointer to the interface), developers
can dynamically cast that pointer type. It is common practice to have a "smart" pointer to the actual
instance. In the picture below, example_IFoo creates an instance of CExample and locally stores pvt (the
pointer to the Vtable). The second field stores me, which points to the actual instance of CExample.

Programming Model for Developers Classes

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 10

Typically, a class can contain one or more interfaces. See interfaces on page 6 for more information.

There are two commonly used mechanisms for creating instances of a class with QCM interfaces.

1. Using the component infrastructure. Classes with QCM interfaces may register (or advertise) with
the component infrastructure. These classes are typically identified by 32 bit unique identifiers
referred as ClassIDs. Instantiation of these classes is done using IEnv_CreateInstance(), or
IShell_CreateInstance() if the class has access to the IShell object. In the following example,
AEECLSID_CallMgr represents a ClassID of the call manager class.

IEnv_CreateInstance(piEnv, AEECLSID_CallMgr, (void**)&piCallMgr)
// returns an instance of call manager class in piCallMgr

2. Using a factory class. These classes have interfaces that output instances of another class. A
factory class is typically used to express the additional initialization parameters to make an object.
The following example returns an instance of class Call, initialized to its originating state with the
listener and destination phone number.

ICallMgr_OriginateVoice(piCallMgr, "8585555555", piListener,
&piCall)

Classes with static APIs are instantiated by directly invoking their constructor.

Types of classes in Brew MP

There are three types of classes in Brew MP:

• applet class on page 11
• in-process class on page 11
• service class on page 12

In-process and service classes are non-applet classes, and have some similar behaviors. Non-applet
classes are instantiated using a unique ClassID via IEnv_CreateInstance(), or IShell_CreateInstance()
if the caller has access to IShell. Non-applet classes are released via the Release() method exposed by
the classes. When a non-applet class is instantiated, the default interface is returned to the caller and the
caller can use the QueryInterface() method exposed by the class to discover other interfaces supported
by the class.

Programming Model for Developers Applet class

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 11

Applet class
Applet classes implement IApplet and are identified, dynamically discovered, and instantiated using
a unique Applet ID (see Unique ID's on page 60). Applet classes are also known as applets or
applications in Brew MP. These are IShell-dependent classes; they can only be instantiated inside BREW
Shell. IShell_StartApplet() or related APIs are used to start an applet and IShell_CloseApplet() or related
APIs are used to delete or terminate a running applet. The applet class is declared via the Applet primitive
in the CIF. See IShell on page 50 and MIF and CIF on page 64 for more information.

The following is an example of declaring an applet in CIF:

Applet {
 appletid = AEECLSID_MyApplet,
 resbaseid = 20,
 applethostid = 0,
 privs = { AEEPRIVID_UDP_NET_URGENT, AEEPRIVID_FS_FULL_READ },
 type = 0,
 flags = 0,
 newfunc = MyApplet_New,
}

MyApplet_New is the constructor of the applet class written in C/C++ code, and is invoked when the
applet is started by IShell_StartApplet() using AEECLSID_MyApplet. applethostid = 0 indicates that the
applet class is started in the kernel process. newfunc is explicitly specified in the CIF for MOD1 files. For
MOD files, the constructor is set up by helper files such as AEEModGen.c.

For more information on CIF, see the Resource File and Markup Reference. For information on Env,
Environments on page 18.

In-process class
In-process classes are non-applet classes that service the caller's request in the caller's process. Most
BREW APIs are implemented as in-process classes. These classes use the permissions and quota
limits of the caller to access resources. In Brew MP, all classes with static APIs are in-process classes
with respect to the user. In-process classes are usually contained in extensions in Brew MP, and can be
thought of as code extensions for the caller. The in-process object is created inside the Env of the caller
and its methods invoked by the caller result in direct function calls. It shares the same privileges as the
caller, and if created as a singleton, there exists only one instance of the class in the Env of the caller.

Programming Model for Developers Service class

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 12

See extensions on page 3 for more information on extensions. See Environments on page 18 for
more information on Env.

In-process classes that provide QCM interfaces can be registered with the component infrastructure using
the Class primitive in the CIF. See IShell on page 50 for more information on IShell-based classes,
which are in-process classes with certain characteristics.

The following is an example of declaring an in-process class in CIF:

Class {
 classid = AEECLSID_MyClass,
 newfunc = MyClass_New,
}

MyClass_New is the constructor of the in-process class written in C/C++ code and is invoked when
the class is instantiated by IShell_CreateInstance() or IEnv_CreateInstance() on AEECLSID_MyClass.
The class is instantiated in the same process (or more accurately, the Env) of the caller. newfunc is
explicitly specified in CIF for MOD1 files. For MOD files, the constructor is set up by the helper files, e.g.
AEEModGen.c

For more information on CIF, see the Resource File and Markup Reference.

Service class
Service classes are non-applet classes that service the caller's request in a designated process. They are
also known as services and are similar to a Windows service or Unix daemon running in the background.
Service classes were introduced in BREW 4.x and Brew MP, and are only supported in MOD1. Most
Brew MP APIs are implemented as service classes, whereas most BREW APIs are in-process classes.
See MOD1 on page 61 for more information.

A service class is essentially a code extension (to an applet) that is instantiated and executed outside
the application context and outside the BREW Shell (or thread). The execution context for service
classes can either be the kernel process or a server process, which is statically specified in the CIF of
the containing module. A server process provides a separate execution context other than the BREW
application (or applet) context. For more information, see System process model on page 18.

In Brew MP, any communication across the boundary of an execution context has to be performed
through a remote invocation mechanism (invoked via a stub and skeleton code). Since a service class is
always instantiated outside the application context, all calls from an applet to a service object are remote
invocations. See Remote Invocations on page 16 for more information.

Programming Model for Developers Service class

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 13

Service classes that provide QCM interfaces can be registered with the component infrastructure using
the Service primitive in the CIF. For a CIF example, see "CIF example for a service class" below. For
more information on CIF file format, see the Resource File and Markup Reference.

The service object is created in the designated process (kernel or server process). It can only be created
in the Env of the process outside the BREW Shell and therefore any service implementation or classes it
uses cannot use the IShell interface. In Brew MP, a service class cannot use static APIs such as IShell.

The privileges for a service object come from the hosting process. Methods invoked by a caller from the
same Env result in direct function calls. Methods invoked by a caller from a different Env result in remote
invocations. If the service object is created as a singleton, there is only one instance of the class in the
entire system.

Uses of service classes

Service classes provide the following functionality:

• Enable privilege separation and better security

While an in-process class is instantiated in the same execution context as its caller and therefore
acquires privileges from the caller, a service class acquires privileges from its hosting environment
(the kernel process or a server process). Each service class can also specify the privileges the
caller must possess to access the service (see Security on page 22 for more information).
Because a service object executes in a different execution context with its own set of privileges,
Brew MP can provide privilege separation and more granular control of privileged operations.

Privilege separation is a technique in which a program is divided into parts that are limited to the
specific privileges needed to perform a specific task. For example, if full access to the file system
requires privilege A, and any file can be deleted with that privilege, it is considered dangerous to
grant privilege A to any application. Instead, file access should be managed and controlled by a
trusted service class hosted in a process with privilege A. This service class then specifies that
callers must have privilege B and exposes reduced file access functionality to them. Only privilege B
needs to be granted to applications that need to gain file access (through the service class) instead
of privilege A. More granular privileges or access policies can also be enforced with the use of
IPrivSet in the service class. See the "Privileges" section in the OS Services Technology Guide for
Manufactures for more information.

• Promote higher fault tolerance

In legacy BREW, there is a single process environment in which there is only one BREW Shell (or
thread) in the process that hosts all applets and extension objects used by the applets. There is a
single execution and protection domain for all BREW objects and applets have unrestricted access
to memory and resources. One misbehaving applet can potentially crash the device or make it
unusable. An applet could potentially branch to any address in physical memory and read any area
of the device memory or use any of the peripherals.

When a service class is instantiated in a separate server process, the Brew MP operating system
and any applets that call the service are protected from any potential faults or crashes that may
be caused by the service object. Any misbehaving code inside a service class at worst causes its
hosting process to terminate, not the operating system nor the applets that call the service.

• Can make use of pre-emptive multithreading

Service classes can use pre-emptive multithreading because they are instantiated outside the
BREW Shell (a single-threaded application environment). For an application to make use of pre-
emptive multithreading, the portion of the functionality that needs to be preemptively multithreaded
should be separated from the applet class and implemented in a service class. See Using IThread1
on the Brew MP Developer Network for more information.

Programming Model for Developers Service class

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 14

• Enable data and resource sharing between applications

Each application runs in its own context (protection domain) and data or resources allocated by one
application cannot be directly accessed by another application. To share data between applications,
a singleton service class can be used. If a service class is instantiated as a singleton, there is only
one instance of the service class running in the Brew MP system. This singleton service is single
point of contact for managing and controlling access to data and can provide interfaces to allow data
to be shared between applications.

CIF example for a service class

A service class is declared via the Service primitive in the CIF, as shown in the following example. Note
that AEECLSID_MyClass is defined as a servedclassid for MyService, which is not done for the in-
process class definition.

Service {
 serviceid = AEECLSID_MyService,
 iid = AEEIID_MyService,
 serverid = 0,
 required_privs = {0},
 servedclassid = AEECLSID_MyClass
}

Class {
 classid = AEECLSID_MyClass,
 newfunc = MyClass_New,
}

MyClass_New is the constructor of the service class written in C/C++ code and is invoked when the
class is instantiated by IShell_CreateInstance() or IEnv_CreateInstance() on AEECLSID_MyService.
serverid = 0 indicates that the service class is instantiated in the kernel process, and AEEIID_MyService
specifies the default interface (defined in IDL and remotable) that the service class implements. For more
information on CIF, see the Resource File and Markup Reference.

Service classes publish QCM interfaces that meet remotable criteria, also referred as Directly Remotable
Interfaces (DRI). DRIs are interfaces for which a remote invocation framework can marshal data
and objects on the invocations across the domain boundaries. Examples of domains are processes,
processors, virtual machines, etc. Remotability must be maintained for any service implementation,
since the caller cannot reside in the same protection domain (Env) as the service object. The remote
invocations involve data marshaling and unmarshaling by the stub and skeleton code. If the invocations
need to go across process boundaries, a transport layer to bridge the stub and skeleton code is also
involved. For more information, see Remote Invocations on page 16.

Programming Model for Developers Class resolution in Brew MP

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 15

Class resolution in Brew MP
The following diagram illustrates an example of class resolution in Brew MP.

Programming Model for Developers Remote Invocations

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 16

Class Caller of the class

• The module's MIF (foo.mif) lists the
supported ClassIDs and class system
privileges.

The system populates the ClassID to the
module (foo.mod) table upon startup.

• foo.mod contains the implementation (the
classes) of the IFoo interface defined in
AEEFoo.h.

• Includes AEEFoo.h, which defines the
interface and can be used to invoke the
functions exposed by the interface.

• Requests the class that implements the IFoo
interface by invoking CreateInstance with the
ClassID of the class.

The system resolves the class, locates the
module that contains the class (foo.mod),
loads the module, and instantiates the class,
and the pointer to the instance of the class is
returned to the caller.

Remote Invocations
A remote invocation is a mechanism that allows a client to invoke an object in a different execution and
protection domain, such as a process, virtual machine, or CPU.

When a client invokes an object within its protection domain, it results in a direct invocation or direct
function call. However, when the client needs to invoke an object from a different protection domain, it
results in a remote invocation, as shown in the following illustration:

For a client to be able to trigger remote invocations and remotely invoke an object in a different protection
domain, the object needs to support interfaces that are remotable. The remotability of an interface relies
on the availability of the proxy code associated with the interface to marshal and unmarshall the data and
requests going across protection boundaries. Such proxy code in Brew MP consists of stub and skeleton
code. If the protection domains that separate the client and the object are processes or processors, there
is also a transport layer that bridges the communications between the stub and the skeleton.

Remote invocations allow the object and its caller to be hosted in different processes, which is the basis
of the multi-process execution environment Brew MP is designed to support. The caller does not need
to know where the actual object is created and invoked. For the caller, invoking an object in a different
process is no different from invoking an object within the same process. Any invocations across protection

Programming Model for Developers Components and modules

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 17

boundaries need to be granted; the callers need to have sufficient rights or privileges to access the
objects.

Components and modules

Components

Brew MP is a component-based framework. Applications and services used by the applications are
essentially various types of components. A component is a logical concept of one or more classes that
are self-contained and allow for dynamic linkability and inter-changeability at the binary level.

If the implementation of a class has to be statically linked to other pieces of software outside of the class
to perform certain functionality, that class itself does not qualify as a component. However, the class
along with other pieces of software together can be built into a component if those pieces of software
don't have any other external static dependencies. In other words, software within a component can be
tightly coupled and statically dependent on one another.

Modules

Brew MP modules are the fundamental unit of code loading. A module is an executable binary file that
consists of one or more components compiled into a single image. The module is a single point of entry
for the AEE shell to request classes owned by the module.

They can be statically linked (.lib), or stored in the file system (EFS) as dynamically loaded modules (see
.mod, .mod1 on page 61).

• All dynamic modules are digitally signed
• Dynamic modules are loaded into RAM when needed and unloaded when no longer in use

APIs are exposed by modules as objects associated with interfaces and classes. Each module can
contain implementations for one or more classes, and must have a corresponding MIF associated with
it. The MIF contains information about the contents of the module, such as supported classes, supported
applets, applet privileges, and applet details (like the title and icon). The MIF also contains unique
ClassIDs for each of the module's classes, and specifies which classes are exported for use by other
modules. See the Resource File and Markup Reference, and the Tools Reference on the Brew MP Dev
Net for details on creating new MIFs.

Runtime environment
The following sections discuss Envs, the system process model, registry support, and inter-application
communication.

In a deployed Brew MP device, the runtime configuration is expected to be a number of user processes
hosting various applications and services (see user processes on page 18), and a single kernel
process hosting the component infrastructure and privileged services. In this Brew MP environment,
applications are implemented as applet objects, which are loaded and executed in the BREW application
framework (BREW Shell). To perform various tasks, applications can leverage utilities or services
available on the platform to access additional functionality. Most of the generic utilities or services are
already exposed to Brew MP applications through platform APIs (see the C/C++ API Reference). Any
additional services can be implemented and provided in the following ways:

1. Provide the utility as an in-process object. For example, providers of an image decoder such as
a software JPEG decoder can provide an implementation of the IImageDecoder interface that is
directly instantiable in the context of the Brew MP application that needs this functionality.

Programming Model for Developers Environments

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 18

2. Provide the utility as a Brew MP service, an advertised remote object. This service could be hosted
in a server process that has access to a hardware JPEG codec or DSP and is able to provide JPEG
decoding service to any Brew MP application or any other client running in any process that has the
privileges to use this service. A server is a process that hosts advertised objects. A service resource
(see the Resource File and Markup Reference included with the Brew MP SDK) identifies which
server hosts the object, which class should be used to instantiate the object in that host process,
and any privileges that are required to access the service.

Environments
In Brew MP, an environment (or Env) establishes an execution domain (or context) for each object in the
system.

Every object in the system reside in an Env. Objects residing in the same Env are considered local to
each other and can be invoked and accessed directly from each other. They share the same privileges
and access the same singleton instance created in the same Env.

Env manifests itself as an object that supports IEnv. When a class receives an IEnv pointer, it is the
object that the IEnv pointer points to that determines the execution domain for the object of the class. For
more information, see IEnv on page 50.

There is one Env per applet and per process. Brew MP supports multiple applets running in the same
process, so each applet applet has its own Env, with its own privileges, which is separate from the Env of
other applets in the same process. The Env determines the execution domain for an applet. The memory
protection domain is established by the Env of the process in which the applet resides. Applets in the
same process still share the heap memory in the memory protection domain.

System process model
Brew MP employs its system process model to host services and applications. A Brew MP process
defines the set of rights and restrictions for the execution of the code it governs to access memory or
other resources.

In BREW, applets execute in a single designated thread on the handset. This thread is commonly referred
as the BREW thread, and is a single task context shared by all the running applets. Most of the earlier
software implementations for BREW were created with the assumption that all the users of the software
would execute in the same thread.

Threads live in processes, and code executing in a thread is limited in its access to memory and
kernel services according to the process in which it lives. All operating system services of Brew MP
are represented by objects. For example, critical section functionality is provided via an object that
implements the ICritSect interface. The kernel enforces that user processes can only access objects that
they have been granted. The kernel does not decide to whom the objects are granted, nor does it dictate
what the objects can do. The kernel, therefore enforces the mechanism, and not the policy.

Each process is given an Env that maintains its rights and establishes the protection boundary for the
process. The protection domain and rights of a process are maintained via its Env. See Env on page
18 for more information.

The Brew MP system process model transparently supports memory-protected (multi-process), non
memory-protected (single-process), single processor and dual processor implementations. There are
two kinds of processes in which Brew MP objects can reside, the kernel process and the user process.
In Brew MP, a running system consists of threads executing in the kernel and some number of user
processes.

Programming Model for Developers Kernel process

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 19

For more information, see kernel process on page 19 and user process on page 19.

Kernel process
The Brew MP kernel process is a privileged execution environment that can access all memory, controls
user processes, enforces privileges, and controls process interaction. There is only one instance of the
kernel process on a Brew MP device.

The kernel process is the utmost privileged process that governs all the user processes and enforces
their rights to access memory and resources. It stores data structures that keep track of the object
references held by each process (see data structures on page 30) . An object table is maintained for
each remote object used by a process. By governing which remote objects the process can invoke or
pass to other processes, the object table enables the system to perform cleanup when the process is
killed. The kernel process also hosts critical system services.

User process
A Brew MP user process is a confined execution environment that can only access memory and system
(kernel) resources (files, devices, etc.), for which the process has been granted access. User processes
do not have any inherent authority over the system. They only have objects they have been granted, and
all kernel requests operate on objects.

There are two types of user processes, depending on the type of classes they host:

• BREW process - (supported in future versions of Brew MP) maintains a BREW Shell that hosts only
BREW applets as well as any objects the applets create in-process

• Server process - only hosts service objects

Brew MP supports pre-emptive threads whose memory and service access is governed by their host
process.

In Brew MP, services are transparently invoked between processes by way of remote invocations
(through generic stubs and skeletons). This mechanism allows caller and service implementation code to
remain constant across single process, multi-process, and multi-processor environments.

The following shows the BREW runtime environment, including kernel processes, BREW processes, and
Server processes.

Programming Model for Developers Registry support

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 20

Registry support
Brew MP provides a system-wide registry, which associates interfaces and classes with string-based
registry keys.

Common uses include multimedia and network protocol handlers (.jpg, .png, .http, etc.).

Searches are qualified by an associated interface (AEEIID), which enforces returning classes
(AEECLSIDs) that map to the expected definition. The queries can be made via ISHELL_GetHandler().
See the C/C++ API Reference for more details.

The system registry is generally populated at startup with registry entries specified in the digitally signed
MIF of their handlers. These entries are loaded in the order that the MIFs are loaded and parsed.

Registry values can also be updated at runtime. There are few restrictions on which entries can be
updated at runtime. However, these updates are not persistent and need to be repeated, if necessary,
each time the system is started.

Queries return an AEECLSID, which is then used to obtain the associated implementation.

Programming Model for Developers Inter-application communication

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 21

MIME Type

All objects in Brew MP are stored in a binary resource file with the associated MIME Type string. An
object resource always has a MIME type associated with it. MIME types are similar to file extensions,
used to identify the type of data a file contains. MIME Type registry entries are specified through the
SysRsc primitive in the CIF. For more information, see the Resource File and Markup Reference.

Inter-application communication
Brew MP provides several mechanisms for inter-application communication. One is a system-level FIFO
mechanism that allows processes to write to and read from named kernel memory buffers. Access control
for the FIFO buffer is specified in the CIF through the FIFO_ACL_Grant primitive. The data can take
any format and the API follows a familiar asynchronous I/O model. See the Resource File and Markup
Reference for more details.

Brew MP also supports local loopback sockets. Similar to FIFO buffers, this mechanism employs the
familiar socket I/O paradigm with the data transmitted between applications and processes rather than
over the network. As with FIFO buffers, the format of the data is private.

Programming Model for Developers Security

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 22

Applications can asynchronously dispatch URLs to other applications by way of ISHELL_PostURL and
ISHELL_BrowseURL. PostURL queues an event which later causes the application to be loaded. The
application can then choose to start if desired. BrowseURL synchronously loads and starts the associated
application with the URL. Brew MP supports a number of pre-defined URLs.

Security
Security covers running applications in user mode, privileges, and Access Control Lists (ACLs).

Programming Model for Developers User mode and kernel applications

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 23

User mode and kernel applications
The App Dispatcher framework allows Brew MP to host applications in user mode.

A user mode application runs in its own protected memory space. Programs running in user mode can
only interact with other programs that are user mode accessible. All service classes are user mode
accessible, though subject to privilege validation. Running applications in user mode requires that all APIs
used by the application are supported in user mode in one of two manners:

• In-process classes that are shared components (for example, Crypto)
• Service classes that can be remotely invoked (for example, GPS)

It is important to note that in Brew MP 1.0, not all service APIs are supported across process boundaries.
A user mode application does not have access to the entire API set in Brew MP. Some APIs are not safe
to use in user mode and are disabled. Existing Brew MP applications requiring services not currently
supported in user mode are loaded into a shared kernel mode process. An application runs in kernel
mode by default, unless the application's MIF specifies running in user mode.

Not all in-process classes are user-mode accessible. For an in-process class to be user mode accessible,
it should meet the following criteria:

• User-mode dependency ready: Any classes it depends on should either be service classes or other
user-mode accessible in-process classes.

• User mode reference ready: All the memory regions the object uses are negotiated by the OS for
use in that process runtime. This means no read and write references to non-const data of static

Programming Model for Developers Privileges and ACLs

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 24

storage classes, and no branches or static links to code that makes these references (which would
indirectly make references to the non-const static variables).

Privileges and ACLs
Brew MP's security model is based on least privileged execution. Processes and applications can access
only the services for which they have been granted access.

Privileges are used to control access to APIs. Brew MP provides Access Control Lists (ACLs), permitting
modules to share access to their private directories. ACLs are used in an application to allow a given file
or directory to be accessible to other applications.

Privileges are dynamic. They are not hard coded into the system. New privileges can be defined and
associated with any new interface. This allows OEMs or third party developers to protect system-critical
functionality without modifying the core Brew MP implementation.

For more information on privileges, see privileges on page 31.

Application UI model
Brew MP implements a top visible application UI model, where only one application can draw directly to
the display.

When an application is successfully started (EVT_APP_START), it becomes top visible or in the
foreground. It then receives all keypad and touch events and can draw directly to the display.

If another application is started, the system attempts to suspend (EVT_APP_SUSPEND) the previously
top-visible application. If the application handles this event, it remains loaded and can still perform all
normal tasks. It won't receive keypad or touch events and cannot draw to the display. Applications that do
not handle EVT_APP_SUSPEND are unloaded.

Brew MP maintains a list of applications with the top-visible application at the top of the list and the
suspended applications in order below. When the top-visible application is closed (EVT_APP_STOP),
Brew MP resumes (EVT_APP_RESUME) the next previously suspended application. If that application
was unloaded, it is restarted.

Programming Model for Developers UI Widgets

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 25

Applications can also place themselves in the background. These applications are not in the application
history stack, and only come to the foreground if they are started.

A running application can be in one of three states:

1. Top-visible/foreground: There is only one top-visible application in Brew MP at any given time.
2. Suspended: There can be many. A suspended application can be resumed when the application

that caused it to be suspended has terminated.
3. Background: There can be many, and they run in the background.

For more information on suspending and resuming applications, see the Application Management and
Technology Guide for Developers, on the Brew MP Dev Net, as well as event handling on page 33 in
this document.

UI Widgets
Brew MP UI Widgets is a C-based framework for creating UI applications.

Each widget represents a visible element on the display, and lives inside of a container that manages the
layout, z-ordering, focus, and event-routing for the widgets and other containers that it contains.

Programming Model for Developers UI Widgets

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 26

Widgets draw to the display through a cooperative invalidate-draw cycle. When a widget needs to update
its view, it invalidates its content. The invalidation makes its way up through the container hierarchy until
reaching the root container, at which point the draw cycle is initiated.

The draw cycle controls which widgets draw their content, and in what order. It preserves z-ordering of all
elements, and only redraws those widgets that need to be redrawn.

Widgets represent the basic UI drawing model in Brew MP that is leveraged by the Brew MP window
manager as well as the Flash and Trig application models.

Brew UI Widgets are loosely based on a model-view-controller (MVC) pattern, which separates UI,
controller logic, and data. In many cases, widgets combine the view and controller in a single object, but
keep a separate model.

While widgets have default built-in and/or associated controllers to handle events, it is also possible to
attach additional controllers (event handlers) to a widget to perform custom logic.

Programming Model for Developers UI Widgets

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 27

Some widgets are used with multiple different models to achieve different goals. For example, Frame
Widget can accept media frames from a camera viewfinder (CameraFrameModel), a video player
(MediaFrameModel), or other source that provides frame-based data for playback.

Widgets support properties that are exposed to controllers and applications through get/set methods.
Each widget supports properties that are specific to its function, in addition to common properties such as
location and extent. The visual appearance of a widget can be vastly modified by changing its properties.

For more information, see the Widgets Technology Guide on the Brew MP Dev Net.

Programming Model for Developers Windowed application model

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 28

Windowed application model
The Brew MP Window Manager application allows multiple applications to share the display.

When using windowed applications, the Window Manager is the top-visible application and the windowed
applications run in the background.

Because a windowed application is running in the background, it does not receive user events, such as
key and touch events, to its IApplet interface. Instead, the window manager forwards user events to the
window that currently has focus (for keypad events), or to the top-most window that was touched (for
touch events).

Non-user events (URLs, notifiers , etc.) are still sent to the windowed application's IApplet interface.

Windowed applications draw cooperatively through the window manager application using Brew MP's
widget draw cycle. A window that needs to update invalidates itself rather than drawing directly to the
display. The window's draw function is called by the window manager at the appropriate time to interleave
the drawing with other windows in the system.

For more information, see the Window Manager Technology Guide for Developers, on the Brew MP Dev
Net.

C/C++ application structure
The Brew MP SDK includes plugins that integrate with the Visual Studio and Eclipse development
environments to simplify many of the tasks performed when creating Brew MP applications. The plugins

Programming Model for Developers C/C++ application structure

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 29

include a wizard to generate an application framework for a Brew MP C/C++ application or extension that
provides a baseline project complete with comments. Required source files are included in the project.
The wizard also adds the header files into the #includes section. Additional header files are added as the
application is built upon. The default application framework created by the wizards is for MOD1/DLL1.

MOD1 project setup

The setup for MOD1 applications varies from that of MOD applications. The entry point for MOD1
applications is IMod_New(), rather than AEEMod_Load(). CIFC generates the module IMod stub, as well
as code to call the individual classes' New() functions, eliminating the need to write your own module
entry point.

For code in a MOD1 file:

• The IEnv object is the first object provided to each class upon creation.
• Rather than using AEEModGen.c, the CIF compiler (cifc.exe) generates code to provide the module

entry point.
• Only classes running inside the BREW Shell have access to the IShell object, and use it to discover

and create other objects available in the system.
• Heap memory is allocated via IEnv_ErrMalloc().

Avoid using AEEStdLib.h functions, including MALLOC, GETUPTIMEMS, and STRNCPY. Some
AEEStdLib.h functions can be replaced with functions from AEEStd.h. Malloc can be replaced with
IEnv_ErrMalloc(). Uptime functionality can be replaced with ISysClock functions. Timer functionality
is provided by ISysTimer.

The following is an example of the MOD1 entry point, which takes an IEnv* parameter rather than an
IShell* parameter. This piEnv is passed to the New() function for the class via IMod_CreateInstance().
The class structure can be changed to hold this Env pointer instead.

int IMod_New(IEnv *piEnv, AEEIID iid, void** ppiModOut)

MOD project setup

Along with the application source .c file, two other helper files are included:

• AEEAppGen.c - Defines a Brew MP application and provides general application functionality such
as event handling.

• AEEModGen.c - Defines a Brew MP module, loads it in memory, and provides access to the
module.

Without these helper files, you would have to define your module and applet on your own. Look through
these files for insight into how the module and application are created.

For code in a MOD file:

• The IShell object is the first object provided to each class upon creation.
• The IShell object is always available, and can be used to create and discover other objects available

in the system.
• Both MALLOC() (from AEEStdLib) and IEnv_ErrMalloc() can be used to allocate heap memory.
• MOD applications inherit IApplet, which provides a mechanism to the shell to pass events to an

applet.

The following is an example of a MOD entry point.

int AEEMod_Load(IShell *piShell, void *ph, IModule **ppMod)

Programming Model for Developers Coding

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 30

HandleEvent needs to be implemented when the class supports IApplet, which can be the case for both
MOD and MOD1.

For more information on MOD vs. MOD1, see the MOD vs. MOD1 in Brew MP Technology Guide on the
Brew MP Dev Net.

Coding
As a suggested approach to application development, consider an application state machine framework
to simplify application development and improve the efficiency of user interfaces.

 In this state machine framework, each component, screen, or function of your application can be built as
a state. Each state can then be stacked with other states, allowing the application to move freely through
the stack. For instance, a menu is activated thus activating the menu state. This menu state is pushed
onto the stack by the application. When a menu option is selected and the command is processed, this in
turn activates a new state on the stack. If the clear key is pressed while the menu is activated, the menu
state could be popped off the stack, thus presenting the previous state.

Data structures
The data structures used by Brew MP API functions define the format and content of the input/output data
passed between the functions and applications.

API data structure types

Most data structures are specific to a particular Brew MP interface, and their type definitions are
contained in the header file for that interface. More general, widely used data structures are found in
the AEE.h file. The description of each function contains links to the descriptions of all relevant data
structures.

The following are API data structure types.

• Structures and unions - Many Brew MP functions take pointers to structures as input parameters. To
use these functions, an instance of a structure is populated, and a pointer is passed to the instance
when calling the function. For example, the IGraphics shape-drawing functions have structures as
input parameters that define the dimensions of the shape to be drawn. Many Brew MP functions
return pointers to structures as output. The IFile and IImage interface functions, for example, return
information about files and images in structures.

• Enumerated types - Many Brew MP variables and structure members take on values from a finite
set defined by the C typedef enum construct. For example, the font types supported by the IDisplay
interface's text-drawing functions are specified with an enumerated-type definition.

• Constants - The Brew MP API functions make use of a number of constants defined with the #define
directive. For example, all of the Brew MP event codes are defined in this manner in AEEEvent.h.

API helper functions

The various helper functions provided by the AEE include string functions, functions in the standard C
library, utility functions, and other items. Standard C library refers to the ANSI standard C library supplied
with C/C++ compilers/Integrated Development Environments.

Some of the helper functions offered by AEE are wrappers that directly call the standard C library
functions to do the following:

• Eliminate unnecessary linkage with the standard C library. When there are multiple applications
loaded on the device, each application carries the extra baggage of the standard C runtime library.

Programming Model for Developers Privileges

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 31

To avoid this, AEE maintains a single copy of the standard C library. All applications can make use
of this copy. Applications must not make direct calls to the standard C library functions, so that the
static C runtime library does not become part of the binary image.

• Eliminate static data in dynamic applications. Linkage to standard C library functions can introduce
static data into an application, preventing it from being dynamically loadable.

Applications must not directly invoke the standard C library functions (memcpy(), for example). Instead,
applications must use the helper functions provided by the BREW AEE such as MEMCPY(). A distinct
difference between the helper functions and the rest of the AEE functions is that interface-specific
information is not needed to access the helper functions.

BREW applet structure
The applet structure is the data definition of a Brew MP application. Interface pointers, large buffers, and
global data should be included here. The following is the applet structure provided by the Brew MP Plugin
Wizard.

typedef struct _myapp {
 AEEApplet applet; // First element of this structure must be AEEApplet.
 IDisplay * piDisplay; // Copy of IDisplay Interface pointer for easy access.
 IShell * piShell; // Copy of IShell Interface pointer for easy access.
 AEEDeviceInfo deviceInfo; // Copy of device info for easy access.
 // Add your own variables here...

} myapp;

The following elements are included in the Wizard-generated applet structure.
• AEEApplet must be the first element in the structure. AEEApplet is defined in AEE.h as a BREW

applet type. Placing this element in the first position defines the address of the applet with the
same address as the data structure for the applet. In the code above, "applet" is declared as an
AEEApplet type.

• IDisplay is a primary interface used by all applets for rendering text and other information to the
display. The pointer *piDisplay is declared here to make the instance of the IDisplay interface
available to all applications.

• IShell is an interface used by all applications. The pointer *piShell is defined here for access to shell
services throughout the application.

• AEEDeviceInfo is a BREW data structure defined in AEEShell.h, used for holding device
configuration and capability information. The variable "deviceinfo" is declared as this type.

Additional interfaces are added here, along with large buffers, global variables, and other data that needs
to be allocated at application creation.

Privileges
Privileges imply rights or restrictions to access resource and/or objects such as memory access, CPU
time, and platform services.

Privileges are represented by 32-bit unique IDs (e.g. AEEPRIVID_XXX) and listed in the MIF. The
kernel maintains the privileges list for each object in the system to ensure processes or applications can
only access the objects to which they are given access. Access to services is controlled by privilege
sets maintained in the kernel. A privilege set is an extensible array of 32-bit AEEPRIVID values. The
AEEPRIVIDs correspond to privileges the requestor can obtain to gain access to certain resources. The
privilege set for a process or application is contained in its digitally signed MIF (module information file).
The kernel process establishes the privilege set for the process or application when it is loaded.

Programming Model for Developers Privileges

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 32

In the following example, both Applet 1 and Applet 2 intend to instantiate and access Service X. Since
only Applet 1 has sufficient privilege, Applet 1's request is granted and Applet 2's is denied.

To grant address book privileges, write the following code in the CIF, and compile the CIF to generate the
MIF.

Be sure to include the following to grant privileges:

"AEEPLPrivs.bid"

The AEEPRIVID_PLFile privilege in the CIF/MIF must be defined before the Call History database can be
accessed.

Applet {
appletid = AEECLSID_CALLHISTORYAPP,
 resbaseid = 1000, -- Applet base resource id
 applethostid = 0,
 privs = { AEEPRIVID_PLFile }, // AEEPRIVID_PLFile privilege
 type = AEE_AFLAG_HIDDEN
}

Acquiring/possessing Privileges

For applet objects to possess privileges, specify the following in the CIF:

Applet{
 ...
 privs = {AEEPRIVID_XXX},
}

For service objects to possess privileges, the privileges come from the hosting process. If the service
object is in the kernel process (Service.serverid = 0), it has the same privileges as the kernel. If it is in a
particular server process (Server.serverid = AEECLSID_SERVERSOMETHING), the server declaration is
similar to the following:

Server{
 …
 privs = {AEEPRIVID_ZZZ},
}

For in-process objects to possess privileges, the privileges come from the caller. Privileges aren't
specified for in-process objects.

Requiring Privileges

A service class or in-process class may require certain privileges that the caller must possess before they
can be instantiated.

• An in-process class can be declared to be a privileged class (as in the following) so that the caller
must possess the in-process class's ClassID as its privilege before it can instantiate the object:

Class{
 ...
 privileged = TRUE,
}

If the Class.privileged field does not exist in the declaration, no privileges are required to instantiate
this in-process class.

• A service class can be declared to require certain privileges so that the caller must possess one of
those privileges before it can instantiate it, as shown in the following example:

Programming Model for Developers Event handling

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 33

Service{
 ...
 required_privs = {AEEPRIVID_ABC, AEEPRIVID_EFG}
}

Service.required_privs = {0} designates that no privileges are required to instantiate this service.
• If the Service.required_privs field does not exist in the declaration, the service ID of the service

becomes the default privilege the caller needs prior to instantiating the service.
• If the class specified by Service.servedclassid is a privileged class, the caller needs to possess its

ClassID as its privilege prior to instantiating the service.

For more information on privileges, see the following:

• The Settings Technology Guide for Developers on the Brew MP website includes information on
setting ACLs.

• The PrivLevel section of the Resource File and Markup Reference.
• AEEShell.h in the C/C++ API Reference (System > Services > Privileges)
• The section on managing applets in the Resource Manager Help (also contained in the Tools

Reference)
• The privileges section of the OS Services Technology Guide for Developers.

Event handling
After an application is loaded, it receives all input via events. These events are received by the
HandleEvent() function of the application.

When Brew MP passes an event to an applet, the event is handed off to the application's main event
handler. This handler can handle the event and return, or pass the event to another handler, such as the
root container's IWidget interface. In any case, the applet (and subsequently any widgets to which the
event was passed) indicates whether it handled the event by returning TRUE (handled) or FALSE (not
handled).

Note that as a simple event-driven environment, Brew MP demands that events are handled in a timely
manner. An applet is expected to quickly handle the event and return. Some events are required system
events that must be handled by the application. System events include application startup and shutdown
as well as telephone and SMS interruptions. Failure to handle system events can cause the device to
function improperly.

This section covers the following event handling topics:

• Event handling concepts on page 33
• Event types on page 34
• Critical events on page 35
• Event delegation flexibility on page 35
• Publish and subscribe design pattern on page 37
• Event registration on page 38
• Event publish and dispatch on page 38

Event handling concepts
IApplet is the event-handling interface that implements services provided by an applet. All applets
must implement IApplet. IApplet is called by the shell in response to specific events. IApplet provides
a mechanism to the shell to pass events to an applet. When the shell responds to an applet, it calls
IApplet_HandleEvent(), and passes event-specific parameters to the function. This includes an event
code (ecode), defined in AEEEvent.h. Based on the event code, word (wParam) or doubleword
(dwParam) event-specific, context-sensitive data may also be sent.

Programming Model for Developers Event types

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 34

IApplet_HandleEvent() is only called by AEE Shell. To send events to other applications, use
IShell_SendEvent().

The following is a prototype of the main applet event handler:

boolean myapp_HandleEvent //Main Event Handler
(
 myapp * pMe, //pointer to applet
 AEEEvent eCode, //event eCode
 uint16 wParam, //context sensitive short param
 uint32 dwParam //context sensitive long param
)

There are three event-related inputs that applets receive, passed in as the second, third, and fourth
parameters of the HandleEvent() function.

• AEEEvent specifies the event code received by the applet. EVT_APP_START, EVT_KEY, and
EVT_ALARM are examples of events received by applets.

• The third parameter is a short word value, which is context-sensitive and dependent on the event.
There may or may not be a wParam related to the event.

• The fourth parameter is a long (doubleword), context-sensitive value that is dependent on the event.
This can be a bit modifier, constant string, or other long value that is dependent on the event. There
may or may not be a dwParam related to the event.

See the C/C++ API Reference for details on the wParam and dwParam parameters for each event.

Event types
The following are some event types used in Brew MP. These event categories classify the type of event
based on where the event was generated.

Applet events are events generated by the shell for applet control:

• EVT_APP_START
• EVT_APP_STOP
• EVT_APP_SUSPEND
• EVT_APP_RESUME
• EVT_BROWSE_URL
• EVT_APP_START_BACKGROUND
• EVT_APP_MESSAGE

AEE Shell events are events generated by the shell:

• EVT_NOTIFY
• EVT_ALARM

Device events are generated by device state changes:

• EVT_FLIP
• EVT_HEADSET
• EVT_KEYGUARD
• EVT_SCR_ROTATE

User events are private to the application. Developers can define their own private events within the
range starting at EVT_USER:

• EVT_USER

Touch events are generated by touch-enabled devices:

Programming Model for Developers Critical events

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 35

• EVT_POINTER_DOWN
• EVT_POINTER_UP
• EVT_POINTER_MOVE
• EVT_POINTER_STALE_MOVE

Special events include EVT_APP_NO_SLEEP, which is sent to an applet after long periods in which the
applet is running timers but the user is not interacting with the device. Brew MP sends this event to the
applet to check whether to allow the device to enter power-saving mode, usually at a slower clock rate.
If the applet responds by returning TRUE, Brew MP does not allow the phone to enter low power mode.
Note that returning TRUE results in shorter battery life; applets should use this capability sparingly.

For a comprehensive list of events, see the header file AEEEvent.h, and the AEEEvent structure in the C/
C++ API Reference.

Critical events
When implementing an applet, handle only the events your applet might want to process. Some events
can be ignored, such as in a game that uses only up, down, left and right keys as input, an event
corresponding to a keypress of keys 0-9 can be ignored. Critical events received by an applet can't be
ignored, regardless of the state of the applet. Pay careful attention to receiving all the critical events in
any given state of the applet. Some events are not sent to the applet unless it specifically indicates that it
wants such notifications. Applets must register for these notification events either permanently in the MIF,
or dynamically using ISHELL_RegisterNotify().

The following events should be handled. The applet is closed if TRUE is not returned.

• EVT_APP_START
• EVT_APP_START_BACKGROUND
• EVT_APP_SUSPEND
• EVT_APP_RESUME
• EVT_APP_STOP

Event delegation flexibility
The event delegation model provides a great deal of flexibility. You may handle the event before and/or
after delegating the event to an active widget. This provides the ability to do additional processing behind
the scenes, and even to override or customize the behavior of a widget.

Key event delegation sequence

The sequence of a keypress event is illustrated below.
1. The process starts with the user pressing a key on the device.
2. The OEM software sends the key events to Brew MP.
3. Brew MP sends the event to the top-visible applet via the applet's IAPPLET_HandleEvent() method.
4. The applet can optionally handle that event first.

If processed, the event handler returns TRUE. If the event is not handled the handler returns
FALSE.

5. The event can be passed to Root Container's IWidget. The event will be routed to all applicable
containers and widgets for handling. IWidget_HandleEvent() will return TRUE if the event was
handled by the UI, FALSE otherwise.

6. The applet can optionally handle the event again. IAPPLET_HandleEvent() must return TRUE if the
applet (or any method to which the event handling was delegated) handled the event.

Programming Model for Developers Event delegation flexibility

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 36

The timely handling of events is crucial to the stability of the system. Failure to return from
IAPPLET_HandleEvent() methods can result in watchdog timeouts.

For more event handling information, see the Application Management Technology Guide for Developers
on the Brew MP website.

Programming Model for Developers Publish and subscribe design pattern

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 37

Publish and subscribe design pattern
Certain events, such as EVT_NOTIFY, require the applet to register to receive the event. When the event
is generated, it is only sent to those clients that have registered to receive the event. This is the Publish
and Subscribe design pattern.

The diagram below illustrates the following design pattern:

• Subscriber 1, a client for a service, is an object or interface that requests data to be provided by
another service. The data provided is an event code, a notification, or other data.

• Publisher 1 is a service, such as the system, an object, or an interface that generates the event
code, notification, or other data.

• A registration database, or system registry, is maintained by the system. This registry records and
maps each subscriber to the requested service publisher. Other parameters can be registered to
determine how the service is posted.

• The publisher generates a message and sends it to the system registry. The system then
dispatches the message to all registered subscribers for that message.

For more information on event handling, see the Application Management Technology Guide for
Developers on the Brew MP Dev Net.

Programming Model for Developers Event registration

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 38

Event registration
The first step in the design pattern is to subscribe to receive events. The AEE Shell maintains an event
registry. Applets register themselves with the shell to receive specific events from specific publishers.

Event publish and dispatch
Events can be generated from several sources, including the device environment (key presses , etc.)
or from the system (battery level warning, etc.). Since these services post events without knowledge
of which clients are receiving the events, a mechanism is required to send the event to the appropriate
subscribers.

The publishing of events from services, the system, or device environment, is handled through the AEE
Shell and the event registry. The shell receives the events as native event codes and then posts them to
the event registry. The registry then publishes the event to each subscribing service.

When the subscriber receives the event, the HandleEvent() function receives the event as an event code
along with other contextual data. The subscriber then processes the event in the application's main event
loop.

Programming Model for Developers Key press events

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 39

Key press events
Key press events are generated by keypad use, and are sent to the event handler as EVT_KEY.

When a key is released, the event EVT_KEY_RELEASE is sent to the event handler. An application can
determine if a key is being held by receiving notification that the EVT_KEY event is sent, then waiting for
the EVT_KEY_RELEASE event. Along with pressing and releasing keys, applications can also respond
when a key is pressed and held.

Programming Model for Developers Suspend and resume

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 40

• EVT_KEY is the standard key press event. It is used to receive the action of pressing and releasing
a key.

• EVT_KEY_PRESS is a response to a key press event. It is used to receive only the press (down)
action of the key.

• EVT_KEY_RELEASE is the response to a key being released. It assumes the key press event has
occurred.

Key press parameters include the following:

• wParam indicates which key was pressed.
• dwParam contains the bit modifier flags.

See AEEVCodes.h for more information.

The following is a description of a key press events sequence.

1. EVT_KEY_PRESS is sent when a key is pressed.
2. When a key is held, multiple EVT_KEY events are sent.
3. When a key is released, EVT_KEY is sent first, then EVT_KEY_RELEASE.

The clear key sets wParam equal to AVK_CLR, to move to the previous screen.

Suspend and resume
The current top-visible Brew MP application is suspended when another application needs to become top-
visible to have access to the display and the keypad. Examples include:

• Low battery warning
• Incoming phone call
• Incoming non-BREW SMS message

To demonstrate what happens during suspend/resume, consider the case of an incoming call while a
Brew MP application is running. EVT_APP_SUSPEND and EVT_APP_RESUME go hand-in-hand, while
the events EVT_APP_STOP and EVT_APP_START go hand-in-hand.

1. Brew MP sends the EVT_APP_SUSPEND event to the running application.
2. If the application does not handle the EVT_APP_SUSPEND (i.e., returns FALSE), Brew MP sends

EVT_APP_STOP to the application.
3. When the call ends, Brew MP sends EVT_APP_RESUME or EVT_APP_START to the application,

depending on whether the EVT_APP_SUSPEND was handled earlier.

When EVT_APP_SUSPEND is received, the following should take place:

• Cancel callback functions and timers.
• Stop animations.
• Release socket connections.
• Unload memory intensive resources.

Note: Each carrier has different guidelines for how an application performs when it is suspended/
resumed; refer to carrier guidelines for details.

For more information on suspend and resume, and other application management concepts, see the
Application Management Technology Guide for Developers on the Brew MP Dev Net.

Signals, callbacks, timers and alarms
Brew MP uses a single-threaded UI model that allows for cooperative multitasking on this thread.
Resources are limited on Brew MP devices, so this thread is monitored by an internal watchdog device

Programming Model for Developers Signals, callbacks, timers and alarms

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 41

to make sure function calls do not block the thread. You can think of the thread as a dispatch loop, where
functions are passed to be processed and on very short intervals the return values are passed back
to the calling function. If a function makes a call that takes time to process, the watchdog timer shuts
down the application. This typically occurs after approximately 30 seconds. To prevent this blocking
situation, signals or callbacks can be used to monitor the dispatch loop for return of the calling function.
Applications must use non-blocking calls to avoid locking the device. Signals or callbacks provide
a mechanism for processing without blocking calls. In Brew MP there are only separate threads for
background thread applications. Foreground UI applications are co-operative threaded.

Signals

Signals are notification objects sent within a process or across process boundaries that provide a method
of inter-process communication. For more information on signals, see the OS Services Technology Guide
for Developers on the Brew MP Dev Net.

Callbacks

A callback is executable code (a function) that is passed as an argument to other code, which allows one
software component to call a function defined in another software component. In Brew MP, it is used as a
notification mechanism. Instead of blocking the dispatch loop for data to be available, the application can
register a callback function and return control back to the dispatcher. When the data become available,
the callback function is called and the application can resume its operation. This mechanism is only
suitable when it's safe to pass the callback function pointer to the registering function.

Programming Model for Developers Signals, callbacks, timers and alarms

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 42

Timers

Timers perform an action when a specific amount of time has passed. These time periods are typically
short (seconds or milliseconds). Timers are callback-based, and each timer is only triggered once. Users
must reset the timer if they want it to repeat. This is usually done inside the callback function itself if
a repeating timer is needed. The watchdog timer resets the device if functions don't return in a timely
manner.

The AEE Shell's timer facility is used by a currently instantiated application (that is, an application whose
reference count is non zero) to perform an action when a specified amount of time has passed. You can
use AEE Shell's alarm functions to obtain notification when longer time periods have passed, even when
your application is not currently instantiated.

The following steps demonstrate an example of using a timer for animation:

1. Set the timer.

Programming Model for Developers Signals, callbacks, timers and alarms

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 43

2. When a function is called, draw the graphics, then set another timer.
3. Repeat the behavior for smooth animation.

The same timer and animation routine would automatically work on a faster CPU, without any recoding on
your part.

The following are common timer functions:

• ISHELL_SetTimer()
• ISHELL_CancelTimer()
• ISHELL_GetTimerExpiration()

For MOD1 applications, timer functionality is found in ISysTimer.

Alarms

Alarms allow for notification when time reaches a specific value. If an application is not running, Brew
MP starts it, then sends it the alarm event. Alarams are typically used when the time of notification is in
the distant future, such as calendar alarms that can be used to alert the user when the time of a calendar
appointment is about to be reached. Each alarm only triggers once.

The AEE Shell's alarm functions enable an application to be notified when the current time reaches a
specified value. Unlike timers, which can only be active while your application is running, you can receive
notification that an alarm has expired even when your application is not running.

Note that like timers, alarms do not repeat.

The following are common alarm functions:

• ISHELL_SetAlarm()
• ISHELL_CancelAlarm()

Using callbacks with timers
1. Create a function prototype for your callback function.
2. Call ISHELL_SetTimer() with the address of the callback function and a pointer to an application-

specific data structure. For example:

 ISHELL_SetTimer (pMe -> IShell , TIMER_VAL, (PFNNOTIFY) MyFunc , pMe);
3. When the timer expires, the shell calls the callback function.

Canceling timers

An individual timer can be cancelled with ISHELL_CancelTimer, as follows:

ISHELL_CancelTimer (pMe -> pIShell, (PFNNOTIFY) MyFunc, pMe);

All timers with the same data pointer can be canceled by passing NULL as the function pointer, as
follows:

 ISHELL_CancelTimer (pMe -> pIShell, NULL, pMe);

AEECallback

AEECallback is recommended over function pointers alone. AEECallback is a structure that contains a
function pointer, a data pointer, and other bookkeeping data and this structure can be passed quite easily.
Much of the bookkeeping data is instantiated by Brew MP and should not be directly accessed by your
application.

Programming Model for Developers Notifications

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 44

To initialize the AEECallback, call the CALLBACK_Init() method, passing in a pointer to the structure and
a pointer to your callback function, as shown in the code below:

CALLBACK_Init (& pMe -> myCallBack, (PFNNOTIFY) MyFunc, pMe);

Note that this AEECallBack structure should remain valid throughout the asynchronous request to ensure
that the function pointer and data are available. The CALLBACK_Cancel() macro can be used to cancel
the callback, such as in the case of suspend events. This macro takes a pointer to an AEECallback
structure.

The following code fragment shows the initialization of a callback structure AEECallback
named myCallBack, which is a member of the applet struct. The structure is initialized using the
CALLBACK_INIT() function, marking MyFunc as the function to call when task processing is returned
to the application. When the timer is set using ISHELL_SetTimerEx(), the callback is set as the third
parameter.

//In app struct
AEECallback myCallBack;

// MyFunc is a function defined in your application
// pMe is the pointer to your application struct

CALLBACK_Init(&pMe->myCallBack, (PFNNOTIFY)MyFunc, pMe);
ISHELL_SetTimerEx(pMe->pIShell, TIMER_VAL, &pMe->myCallBack);

For more information, see AEECallback in the C/C++ API Reference.

Notifications
IShell's notification mechanism allows a Brew MP class to notify other classes that certain events have
occurred. To receive a notification, a class must register its interest with the AEE Shell, specifying the
ClassID of the notifier class and the events for which notification is desired. When an event requiring a
notification occurs, the notifier class calls ISHELL_Notify(), sending a notification to each class that has
registered to be notified of the occurrence of that event.

The AEE Shell provides two ways for a class to register for notification of an event:

• You can register by specifying information about the notification in your application's CIF/MIF
file through the Notifier primitive (see the Resource File and Markup Reference). This method
of registering is used by applications that must be notified of events even when they are not
running. Brew MP maintains a list of notifications based on the information in the MIF. Brew MP
can send a notification to an applet that isn't running, wake up the applet, and the notification is
received by the application's HandleEvent function. One example is a call-logging application that
receives notification of each incoming and outgoing call; such an application would need to process
notifications even while the user was not running the application to display the call log.

• If notification is required only at certain times while your application is running, you can call
ISHELL_RegisterNotify() to initiate event notification. For example, a game application might
display a message when an incoming text message arrives that would allow the user to open
and read the message or continue playing the game. This application requires notification
of incoming text messages only while the user is actually playing the game, so it would call
ISHELL_RegisterNotify() when the user starts to play the game.

The following diagram shows how applications register for notifications.

Programming Model for Developers Notifications

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 45

Receiving Notifications

To receive a notification, the application must register for notifications. This can be done in one of two
ways:

• ISHELL_RegisterNotify() can be called during run-time to register for a notification from a given
applet (ClassID). Notifications can only be received after this call is made and registered with the
BREW Shell.

• The notifications to receive can be listed in the application MIF. This enables receipt of notifications
even when the application isn't running. This approach can be used to notify when the BREW Shell
is first initialized by listening to a notification from AEECLSID_SHELL called NMASK_SHELL_INIT.

Programming Model for Developers Notifications

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 46

For example, to register for FLIP, KEYGUARD, and SCR_ROTATE notifications in the CIF, add the
following Notifier primitives to the CIF:

Notifier {
 clstype = AEECLSID_DEVICENOTIFIER,
 clsnotify = AEECLSID_MyApp,
 mask = NMASK_DEVICENOTIFIER_FLIP,
}
Notifier {
 clstype = AEECLSID_DEVICENOTIFIER,
 clsnotify = AEECLSID_MyApp,
 mask = NMASK_DEVICENOTIFIER_KEYGUARD,
}

Notifier {
 clstype = AEECLSID_DEVICENOTIFIER,
 clsnotify = AEECLSID_MyApp,
 mask = NMASK_DEVICENOTIFIER_SCR_ROTATE,
}

To register for FLIP, KEYGUARD, and SCR_ROTATE notifications using ISHELL_RegisterNotify(), add
the following code to the application:

IShell_RegisterNotify(piShell, AEECLSID_MyApp, AEECLSID_DEVICENOTIFIER,
 NMASK_DEVICENOTIFIER_FLIP | NMASK_DEVICENOTIFIER_KEYGUARD |
 NMASK_DEVICENOTIFIER_SCR_ROTATE);

When an application registers for notifications, it receives the EVT_NOTIFY event when one of the
specified events occurs. The application can use the notification masks to determine which event
occurred. For example:

static boolean c_app_HandleEvent(c_app* pMe, AEEEvent eCode,
 uint16 wParam, uint32 dwParam)
{

 switch (eCode){
 case EVT_NOTIFY:
 {
 if(dwParam){
 AEENotify *pNotify = (AEENotify *) dwParam;
 AEEDeviceNotify * pDevNotify = NULL;

 //first check if it is a device notification
 if ((AEECLSID_DEVICENOTIFIER == pNotify->cls){
 // check if it is SCR_ROTATE
 if(NMASK_DEVICENOTIFIER_SCR_ROTATE | pNotify->dwMask){
 // pDevNotify->wParam will the the same wParam that
 // is sent with EVT_SCR_ROTATE
 // pDevNotify->dwParam will the same dwParam that
 //is sent with EVT_SCR_ROTATE

 pDevNotify = (AEEDeviceNotify *) pNotify->pData;
 }
 // check if it is FLIP
 if(NMASK_DEVICENOTIFIER_FLIP | pNotify->dwMask){
 // pDevNotify->wParam will the the same wParam that
 // is sent with EVT_FLIP
 // pDevNotify->dwParam will the same dwParam that is
 // sent with EVT_FLIP

 pDevNotify = (AEEDeviceNotify *) pNotify->pData;

 }
 // continue to check HEADSET, KEYGUARD if needed…

Programming Model for Developers Implementing classes

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 47

 }

 }
 break;
 }
 }
}

Sending Notifications

To send a notification, call ISHELL_Notify(). This results in all the applets registered for this notification
receiving an event called EVT_NOTIFY, along with the data sent with ISHELL_Notify().

The C/C++ API Reference contains more information on the functions mentioned, as well as related
functions for communicating between applets such as ISHELL_BrowseURL(), ISHELL_PostURL(), and
ISHELL_SendEvent().

For more information on notifications, see the Application Management Technology Guide for developers,
on the Brew MP Dev Net.

Implementing classes
This section provides information on implementing the following classes:

• applet class on page 47
• in-process class on page 47

Implementation of service classes is discussed in the Programming Model for Manufacturers.

Implementing an applet class

To implement an applet class, do the following:

1. Declare the applet class in the CIF for the module.

Each applet class must have a unique class ID (i.e. AEECLSID_XXXX). An applet class can also
specify its privileges (AEEPRIVID_XXXX) in the CIF file.

2. Implement the applet class in C/C++.
3. Build the applet class, as follows:

a. Compile the CIF and any CAR files to create the MIF and BAR files.
b. Compile the C/C++ source code, using an arm compiler, to generate the module for the applet

class.

For an example implementation of an applet class, see the c_basicapp example in the Brew MP Sample
Code.

The Brew MP IDE plugin for Visual Studio or Eclipse provide a wizard to facilitate the development of
applet classes.

Implementing an in-process class

To implement an in-process class, do the following:

1. Declare the in-process class in the CIF for the module.

Each in-process class must have a unique class ID (AEECLSID_XXXX).
2. Implement the in-process class in C/C++.

Programming Model for Developers Key APIs

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 48

3. Build the in-process class, as follows:
a. Compile the CIF and any CAR files to create the MIF and BAR files.
b. Compile the C/C++ source code, using an arm compiler, to generate the module for the in-

process class.

For an example implementation of an in-process class, see the c_basicext example in the Brew MP
Sample Code.

The Brew MP IDE plugin for Visual Studio or Eclipse provides a wizard to facilitate the development of in-
process classes.

Key APIs
This section provides an overview of some of the key Brew MP APIs and includes the following topics:

• IModule and IMod on page
• IShell and IEnv on page 50
• Widgets and IDisplay on page 52
• ISettings on page 52
• IApplet on page 58

Purpose of the APIs
• To standardize the programming environment for portability to multiple wireless products.
• To minimize the use of system resources.
• To shield application developers from having to deal directly with device drivers, telephony, etc.

Brew MP C/C++ API Reference

The C/C++ API Reference provides comprehensive information about the use of all Brew MP interfaces
and helper functions, along with the data structures and constants that accompany them. Each interface
is explained in an overview, followed by detailed information for each interface function. Related topics
are hyperlinked for easy navigation to relevant information.

The C/C++ API Reference is not tutorial in nature. How-Tos and sample code can be found on the Brew
MP Dev Net.

IModule and IMod
IModule is used with the MOD/DLL format, and IMod is used with the MOD1/DLL1 format.

IModule

The IModule interface provides a mechanism for controlling access to a group of associated classes
(applets and in-process classes) in a MOD file. The IModule interface allows modules to expose a wide
variety of classes without fixed entry points.

IModule can be leveraged to implement a singleton contract. The IModule interface is a singleton
enforced by Brew MP at creation time.

When Brew MP loads a module, the module is represented by a unique instance of the IModule class.
During execution, IModule creates instances of the classes it contains when requested by applications.
After all instances of these classes in the module are released, the module is released, freeing the
memory it used to contain its code and data. Brew MP only loads and creates a module once.

Programming Model for Developers IModule and IMod

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 49

AEEModGen.c is the implementation for the IModule interface. AEEModGen.c is a helper file provided by
the Brew MP Plugin Wizard, containing reference source code for modules. IModule is the pointer to the
module (DLL or MOD file), and deals with loading the entry point. It contains code that enables the MOD
file to be loaded, and exposes the single CreateInstance entry point to it.

AEEMod_Load() is the entry point for the module in MOD format and is implemented in AEEModGen.c.
AEEModGen.c also implements four methods of IModule:

• CreateInstance: Brew MP invokes this method when it needs an instance of a class provided by the
module.

• FreeResources: this method frees additional resources consumed by the module prior to its
destruction.

• AddRef: this method increments the module's reference count.
• Release: this method decrements the module's reference count and cleans up after the module

when its reference count reaches 0.

For more information on IModule, see the Brew MP C/C++ API Reference on the Brew MP Dev Net.

AEEClsCreateInstance() is the entry point for all classes inside the module and needs to be implemented
in source file of the classes. It is invoked by the AEEMod_CreateInstance() in AEEModGen.c file when a
class is being instantiated.

When the component infrastructure receives a request to instantiate an object via IEnv_CreateInstance(),
it performs the following actions:

1. Searches the module database (the set of all MIF files in the system) for a module that implements
the class.

2. Loads and links the module's code image in memory.
3. Calls the entry function, AEEMod_Load(), in the newly loaded module to instantiate the component.
4. Calls AEEMod_CreateInstance() on the resulting IModule, which calls AEEClsCreateInstance() to

instantiate the requested class. When idle modules (modules that have no references to their IEnv)
are released, AEEMod_FreeResources() is called before the module's code is released.

For more information on IModule, see the Brew MP C/C++ API Reference on the Brew MP Dev Net.

IMod

IMod is used to instantiate classes implemented by a module (DLL1 or MOD1 file). Each module exports
one entry function, IMod_New, executed when the module is loaded. This function must return an
instance of IMod, which is then used to instantiate classes implemented in that module.

Each module must provide implementation of IMod_New(). Modules typically do this by linking with
a1mod and building with code auto-generated by the CIF compiler (cifc.exe), which contains the
implementation for IMod_New.

When the component infrastructure receives a request to instantiate an object via IShell_CreateInstance()
or IEnv_CreateInstance(), it performs the following actions:

1. Searches the module database (the set of all MIF files in the system) for a module that implements
the class.

2. Loads and links the module's code image in memory.
3. Calls the entry function, IMod_New(), in the newly loaded module to instantiate the component.
4. Calls IMod_Init() on the resulting IMod.
5. Calls IMod_CreateInstance() to instantiate the requested class. When idle modules (modules that

have no references to their IEnv) are released, IMod_Exit() is called before the module's code is
released.

Programming Model for Developers IShell and IEnv

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 50

For more information on IMod, see the OS Services Technology Guide for Developers on the Brew MP
Dev Net.

IShell and IEnv
For every loaded and initialized Brew MP module, an IShell or IEnv pointer is passed to module code
when its classes are instantiated.

Class inheritance from BREW

Brew MP incorporates the BREW Application Framework, which provides a runtime environment for Brew
MP applications. Applets run in Brew MP within the environment created by the application framework.
Each environment scope is identified by an instance of the shell. The application framework provides
applications with an instance of the shell interface (IShell). Shell coordinates applets at runtime by
providing them with a method to create instances of classes by ID. The application framework also serves
applets with a set of utilities in AEEStdLib.h.

Most IShell-based classes in Brew MP were inherited from the BREW platform. In BREW there is no clear
separation between application framework and platform services. There is only one shared execution
environment and memory domain for the platform services. Some of these classes also made the
following assumptions:

• The main goal for these programs is to provide API services for direct consumption by applets or
indirect consumption by another IShell-based program. Some of these programs are strictly for
direct use by applets, and the implementation requires that the user of the program be capable of
receiving events on IApplet_HandleEvent(). Examples are deprecated controls such as text, menu,
etc.

• Objects in these programs were created by the shell instance, so they always had access to pointer
to IShell. The implementation had heavy dependency on the shell, application local storage (or
application globals), and interfaces in AEEStdLib.h.

• They typically run in the single designated BREW thread in the system.

A few other program types belong to one of the above categories. They may also support a contract
needed by a particular framework. Some popular ones are the following:

• Applets are IShell-based programs that implement the IApplet interface. These programs typically
incorporate a user interface and are visible to the user in the application launcher.

• Notifiers are the IShell-based programs that implement the INotifier interface. Applets typically
subscribe to notifiers to receive notifications. The BREW application framework mediates the
subscription and notification operations between notifiers and applets.

IShell

An IShell object is the first object provided to each class when created in a MOD file. All classes created
in MOD are by default IShell-based classes. A class (or any class it uses) that has access to an IShell
object is instantiated and used inside the BREW Shell, and has an IShell dependency. The IShell object
is always available, exposes objects and services provided by the BREW Shell, and can be used to
discover and create other objects available in the system. It can discover and create any other object in
the system via IShell and IEnv.

An IShell-based class is defined as a class that is given the IShell object when instantiated. This can be
observed by examining whether an IShell pointer is passed to the class by the system via the constructor
or the new function of your class. For example:

int AEEClsCreateInstance(AEECLSID ClsId, IShell *pIShell,

Programming Model for Developers IShell and IEnv

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 51

 IModule *po, void **ppObj)

IShell-based classes exhibit the following characteristics:

• Single-threaded implementation
• BREW Shell is used, with interface IShell
• Only used within the execution environment provided by the BREW application framework
• Can't be used as a service class

In Brew MP, applets can be created to run in another process (an isolated protection domain), thus
running in a separate thread. Applets hosted in a separate process also have an instance of shell. An
IEnv object can be derived via IShell, but IShell can't be multi-threaded, since it resides in the single-
threaded BREW Shell.

All pre-existing applets, and any new ones that do not specify that they should run in a separate process,
will continue to work in the legacy shell space. Legacy shell instances are fully backward compatible for
applets created for BREW 3.1.2 and later BREW versions.

Applets with an affinity to the legacy shell are referred to as legacy applets. To maintain feature support
and backward compatibility for legacy applets, lthe legacy shell is hosted in the kernel process in Brew
MP. See kernel process on page 18 for more information.

IEnv

An IEnv object is the first object provided to each class created in a MOD1 file. An IEnv object exposes
services provided by Env, such as class discovery, instantiation, and memory allocation.

An IEnv-based class is defined as a class that was given an IEnv object when instantiated. This can be
observed by examining whether an IEnv pointer is passed to the class by the system via the constructor
or the new function of your class. For example:

int c_basicmod1app_New(IEnv* piEnv, AEECLSID cls, void** ppif)

Each object in Brew MP resides in an IEnv and has access to an IEnv object. If it has no IShell
dependency, it can be instantiated and used inside as well as outside the BREW Shell. If instantiated
inside the BREW Shell, it can discover and create any other object in the system via IShell and IEnv. An
IShell object can be derived via IEnv.

If instantiated outside the BREW Shell, the IEnv object can be used to discover and create other IEnv-
based objects that don't have an IShell dependency. It can be multi-threaded when instantiated outside
the BREW Shell. Some Brew MP APIs and all the classes in MOD1 are IEnv classes.

IEnv-based classes that have IShell dependency have all of the same characteristics of IShell-based
classes discussed previously. IEnv-based classes without IShell dependency exhibit the following
characteristics:

• Can be a service class
• Can contain multi-threaded implementation
• Free of BREW Shell
• Can be used inside or outside the execution environment provided by the BREW application

framework.

For more information on IEnv, see the Memory and Heap Technology Guide for Developers, on the Brew
MP Dev Net.

IShell and IEnv

The following diagram shows how both IShell and IEnv manifest in runtime memory.

Programming Model for Developers Widgets and IDisplay

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 52

Widgets and IDisplay
It is recommended you use Widgets to create user interfaces, instead of using IDisplay. You can also use
windows, which provide additional functionality.

For more information on Widgets and windows, see theWidgets Technology Guide and Window Manager
Technology Guide on the Brew MP Dev Net.

ISettings
ISettings allows the storage of settings in a key value format, stores application and user data, specifies
permissions, and restricts access by making certain settings private or public.

ISettings allows applets to get and set named keys with string values, supports heirarchical key
structures, allows enumerating over trees of keys, supports notifications when values change, and is
remotable.

Public settings

Public settings are made available to the rest of the system through a global settings registry. This
settings registry is provided by a singleton service.

The registry uses a URI-based settings tree (</path/to/a/setting>). This settings registry is made up of
smaller sub-registries provided by any number of modules that plug in to the top-level registry. Each sub-
registry owns a specific part of the tree, manages its own data store, and can manage its own privileges.

The settings registry allows various types of data storage and supports change notifications across
applications.

Programming Model for Developers ISettings

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 53

Private settings

Private settings are available to an application or component on a per-instance basis. These settings
aren't exposed to any other component in the system. Private settings are created using a factory and
require no modification of the MIF. The factory creates the desired ISettings object at run-time.

.ini file-based factories create settings that live in .ini files and persist in the EFS. Heap-based factories
create settings in the heap, which do not persist across power cycles.

I want to... Setting type Storage type Settings
Registration in
MIF

Settings ACLs
in MIF

Additional
notes

...expose my
app's .ini file-
based settings
to the system

Public .ini Yes Optional Must
provide .ini file

...expose my
app's heap-
based settings
to the system

Public heap Yes Optional

...expose my
custom settings
to the system

Public custom Yes No Must provide
custom
ISettings
implementation

...store some
persistent
data in my
component

Private .ini No No

...organize
some non-
persistent state
information in
my component

Private heap No No

...share
some non-
persistent state
information
between
component
instances

Public heap Yes Optional

...get
notifications on
a private heap
store

Private custom No No Must create
a custom
ISettings class
that internally
uses the heap
factory. All
methods are
delegated to
the object from

Programming Model for Developers ISettings

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 54

the factory,
but OnChange
must be
implemented
and Set,
Delete, and
Reset must
trigger a
notification.

Adding a public store

The following sections cover public .ini file-based, public heap based, and public custom settings store.

Type: public .ini file-based

Perform the following steps to add and access a public .ini file-based settings store to your component:

1. Copy the following into a file called mysettings.ini and place it into your component's module
directory in EFS.

[section1]
setting1=value1

2. Register the store with the system by adding the following to your component's CIF file.

local s = require 'SettingsCIFHelpers'
-- register my settings at "/myApp/myIniSettings/..."
s:RegisterIniFile {
 owner = 0x12345678, -- class id of my component
 key = "/myApp/myIniSettings",
 file ="mysettings.ini",
 acls = { ... } -- optional
}

3. ACLs to allow other applications access to your settings are optional in the CIF. For example:

acls = {
 { -- grant everyone read access to my settings but write access
 -- to only those modules belonging to the 0xdeadd00d group
 {
 groups = {0},
 perms = "r/r",
 },
 {
 groups = {0xdeadd00d},
 perms = "rw/rw",
 },
 path = "/myApp/myIniSettings"
 },
}

4. The following code accesses your setting:

{
 ISettings *piSettings = NULL;
 if (SUCCESS == IEnv_CreateInstance(piEnv, AEECLSID_SettingsReg,
 (void**)&piSettings)) {
 char outbuf[32];
 int result;
 result = ISettings_Get(piSettings,
 "/myApp/myIniSettings/section1/setting1",

Programming Model for Developers ISettings

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 55

 outbuf, sizeof(buf), NULL
);
 if (SUCCESS == result) {
 // outbuf will contain "value1"
 }
 ISettings_Release(piSettings);
 pSettings = NULL;
 }
}

Type: public heap-based

Adding and accessing a public heap-based settings store to your component is similar to the .ini file-
based store. The main difference is the absence of the .ini file. Instead, heap-based settings require a
quota value that determines the maximum amount of heap that may be used by the store.

1. Register the store with the system by adding the following to your component's CIF file:

local s = require 'SettingsCIFHelpers'

-- register my settings at
"/myApp/myHeapSettings/..."
s:RegisterHeap {
 owner = 0x12345678, --class id of my component
 key = "/myApp/myHeapSettings",
 quota = 0x1000, acls = { ... }
}

2. ACLs to allow other applications access to your settings are optional in the CIF. For example:

acls = {
 { -- grant everyone read access to my settings but write access
 -- to only those modules belonging to the 0xdeadd00d group
 {
 groups = {0},
 perms = "r/r",
 },
 {
 groups = {0xdeadd00d},
 perms = "rw/rw",
 },
 path = "/myApp/myHeapSettings"
 },
}

3. The following code accesses your setting. Note that a heap-based setting does not exist until
ISettings_Set() is called on it.

{
 ISettings *piSettings = NULL;
 if (SUCCESS == IEnv_CreateInstance(piEnv, AEECLSID_SettingsReg,
 (void**)&piSettings)) {
 char outbuf[32];
 int result;
 (void) ISettings_Set(piSettings, "/myApp/myIniSettings/foo",
 "bar");
 result = ISettings_Get(piSettings, "/myApp/myIniSettings/foo",
 outbuf, sizeof(buf), NULL
);
 if (SUCCESS == result) {
 // outbuf will contain "bar"
 }
 ISettings_Release(piSettings);
 pSettings = NULL;
 }
}

Programming Model for Developers ISettings

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 56

Type: public custom

Perform the following steps to add a custom ISettings implementation into the settings registry:

1. Write a component that implements ISettings.
2. Register the component with the system by adding the following code to the component's CIF file:

local s = require 'SettingsCIFHelpers'

s:RegisterClass {
class = 0xdeadbeef,
key = "/myApp/myCustomSettings",
}

3. Use the following code to access your setting. Note that any ISettings operations performed on the
registry class are delegated to the custom class.

{
 ISettings *piSettings = NULL;
 if (SUCCESS == IEnv_CreateInstance(piEnv, AEECLSID_SettingsReg,
 (void**) &piSettings)) {
 int nChildren = 0; int result;
 result = ISettings_GetNumChildren(piSettings,
 "/myApp/myCustomSettings",
 &nChildren);
 if (SUCCESS == result) {
 // do something
 }
 ISettings_Release(piSettings);
 pSettings = NULL;
 }
}

Creating a private store

The following sections cover private .ini file-based, private heap-based, and private custom settings
stores.

Type: private .ini file-based

Perform the following steps to access a private .ini file-based settings store from your component:

1. Copy the following into a file called mysettings.ini and place it into your component's module
directory in EFS.

[section1]
setting1=value1

2. Use the following code to access your setting.
Note that unlike public settings, access to the private store does not require the prefix "/myApp/
myIniSettings".

{
 ISettingsStoreFactory *piSSF = NULL;
 if (SUCCESS == IEnv_CreateInstance(piEnv,
 AEECLSID_SettingsIniFactory, (void**)&piSSF)) {
 ISettings *piSettings = NULL;
 int result; result = ISettingsStoreFactory_Create(piSSF,
 "owner=0x12345678;path=mysettings.ini",
 &piSettings);
 if(SUCCESS == result) {
 char outbuf[32];
 result = ISettings_Get(piSettings, "section1/setting1",

Programming Model for Developers ISettings

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 57

 outbuf, sizeof(buf), NULL);
 if(SUCCESS == result) {
 // outbuf will contain "value1"
 }
 ISettings_Release(piSettings);
 pSettings = NULL;
 }
 ISettingsStoreFactory_Release(piSSF);
 piSSF = NULL;
 }
}

Type: private heap-based

Accessing a private heap-based settings store from your component is similar to the .ini file-based store.
The main difference is the absence of the .ini file. Instead, heap-based settings require a quota value that
determines the maximum amount of heap that may be used by the store.

Use the following code to access your setting. Note that a heap-based setting does not exist until
ISettings_Set() is called on it.

{
 ISettingsStoreFactory *piSSF = NULL;
 if (SUCCESS == IEnv_CreateInstance(piEnv, AEECLSID_SettingsHeapFactory, (void**)
 &piSSF)) {
 ISettings *piSettings = NULL;
 int result;
 result = ISettingsStoreFactory_Create(piSSF,
 "quota=0x1000", &piSettings);
 if (SUCCESS == result) {
 char outbuf[32];
 (void)ISettings_Set(piSettings, "foo/bar", "Hello world");
 result = ISettings_Get(piSettings, "foo/bar", outbuf,
 sizeof(buf), NULL);
 if (SUCCESS == result) {
 // outbuf will contain "Hello world" }
 ISettings_Release(piSettings); pSettings = NULL;
 }
 ISettingsStoreFactory_Release(piSSF);
 piSSF = NULL;
 }
}

Type: private custom

Perform the following to access a custom ISettings implementation:

1. Write a component that implements ISettings.
2. Use the following code to access your setting:

{ ISettings *piSettings = NULL;
if (SUCCESS == IEnv_CreateInstance(piEnv, <classid>, (void**)
 &piSettings)) {
 int nChildren = 0;
 int result;
 result = ISettings_GetNumChildren(piSettings, "/path/to/my/settings",
 &nChildren);
 if (SUCCESS == result) {
 // do something
 }
 ISettings_Release(piSettings);
 pSettings = NULL; } }

Programming Model for Developers IApplet

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 58

For more information about ISettings, refer to the Settings Technology Guide for Developers on the Brew
MP Dev Net.

IApplet
IApplet is the base interface for all Brew MP applets. IApplet handles applet-specific functions, and is only
required if you are exporting an applet from your module.

Applet classes are event-driven programs. Brew MP invokes IApplet_HandleEvent() with events and
event data. The applet class implements logic to handle those events.

The implementation for the IApplet interface is AEEAppGen.c, which includes information in addition to
AEEModGen.c required to create an applet. It encapsulates the basic functionality of an applet, mostly
message handling. AEEAppGen.c is only provided for MOD applets, not for MOD1 applets.

For more information, see the Brew MP C/C++ API Reference on the Brew MP Dev Net.

Brew MP application files
This topic provides an overview of the Brew MP application files and how they work together. The file
types are discussed in more detail in the following sections.

 A Brew MP application or extension consists of the following required and optional files.

Required file types
• Module Information File (MIF), which provides the application entry point for your application. The

MIF is an application descriptor, providing information about external libraries that the application
needs for execution.

• Signature file (SIG), which is only required for the dynamic modules on a device. All Brew MP
components are digitally signed. The SIG file is stored in the component's home directory; the
signature spans at least the module's executable and MIF file.

• DLL or DLL1 for Simulator, built in your development environment.
• The Brew MP module binary file (MOD or MOD1), for devices. The MOD or MOD1 is the binary

executable for a Brew MP component. It is digitally signed and stored in the component's home
directory. Applications generally use the MOD module format while system components use the
MOD1 format.

Optional file types
• One or more BREW Application Resource (BAR) files. The BAR is a compiled, binary file that

contains resource information. These resources are localizable strings in menu controls, regional
images, or any resource that may change based on handset, language, or region.

• Any number of user files.

The following diagram shows how parts of a Brew MP application are built. An application MIF file,
resource file, and application binary are created, then tested on the Brew MP Simulator. The BID files
containing Brew MP ClassIDs are also included by the CIF.

Programming Model for Developers Brew MP application files

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 59

Module storage

Each Brew MP component is stored in a dedicated directory in the file system rooted in either the "sys" or
"user" directory. The component's home directory is the default location for all files created or accessed
by the component.

Application directory structure

Brew MP introduces a single-directory module format. Legacy BREW separated MIF and MOD files.
Brew MP introduces collections of files; a collection being a group of modules arranged in a similar way.
The application MIF is now in the same path as the rest of the application files. Some standard Brew MP
collections are pre-defined, such as those in the following table.

Name Location Module Type Description

BDS Mods fs:/mif and fs:/mod MIF and MOD Backwards compatibility
with legacy BREW,
Applications under
development and/or
test. Used for BDS
application downloads

User MODs fs:/UserMods ONEDIRMOD New collection for user-
installed modules. Not

Programming Model for Developers Unique IDs (BID)

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 60

Name Location Module Type Description

managed by a download
system.

System MODs fs:/sys/mod ONEDIRMOD For system modules
such as those that make
up Brew MP itself, and
those added by OEMs

Application directory

The application directory is defined as a parent directory for Brew MP applications, with each application
stored in a subdirectory under this parent. Individual applications reside in subdirectories that include
supporting files, such as text files, images, or data files for the application. The binary image for an
application is a DLL/DLL1 file for use in the Simulator, and in a MOD/MOD1 file on the device. The
application and its directory are required to have the same name. Note that the file system is case-
sensitive and all file names specified with the "fs:" qualifier are treated as case-sensitive, but file names
not specified with the "fs:" qualifier are treated as case-insensitive. Brew MP converts case-insensitive file
names to lowercase.

A MIF contains the application's icons and therefore is best suited for only one color depth. When working
with devices that don't all have the same color depth, it's usually easier to switch between different copies
of the MIF than to keep modifying a single MIF. The MIF filename must match the name of the application
module and its directory.

Unique IDs (BID)
In Brew MP, a unique ID is a 32-bit globally unique unsigned integer.

The unique ID is stored in a Brew MP ID (BID) file, which is a header file with a single define for the ID
number. There are three types of unique IDs that are common in Brew MP.

• An Interface ID's friendly name starts with AEEIID. It is used to uniquely identify an interface, and is
defined in the interface header.

#define AEEIID_IHFont 0x0102ef8e
• An ID's friendly name beginning with AEECLSID, is either a ClassID, used to identify a regular class,

an Applet ID to identify an applet class, or a Service ID to identify a service class. These IDs should
be defined in the BID files. The ClassID is declared through a #define statement matching it to a
ClassID name used in application startup, and the ClassID is embedded in the MIF. A #include is
used to embed the ClassID into the executable when the application is compiled.

#define AEECLSID_FILEMGR 0x01001003

Programming Model for Developers MOD, MOD1, DLL and DLL1

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 61

• A privilege ID name starts with AEEPRIVID. It is also defined in the BID file and uniquely identifies a
privilege to access one or a group of resources. A Group ID is a legacy concept from BREW that is
essentially the same thing.

 #define AEEPRIVID_DISPSETTINGS 0x0103081d

All production Brew MP applications require a unique ID. These 32-bit hexadecimal numbers are provided
by the BREW ClassID Generator available on the Brew MP Dev Net. The ClassID Generator provides a
BREW ClassID (BID) file containing the ClassID.

Trial IDs (local IDs) can be generated locally via the Resource Manager for use with the Brew MP
Simulator. The local IDs must be changed to commercially-generated IDs using the ClassID Generator
prior to testing the application on a device. The ClassID for an application is stored in an external BID
resource file as well as embedded in the MIF.

A bridge exists between the icon that the user selects in some type of application manager and the
application that should launch through the embedded ClassID. When the application is installed, its
ClassID is registered with Brew MP at runtime and the icon is made available. When the user selects the
icon from the Simulator or the device, the runtime environment matches the ClassID from the MIF to the
application and launches the application. A similar process takes place with external dependencies, such
as when an application calls to an extension or another application.

MOD, MOD1, DLL and DLL1
Brew MP supports two module formats for the device, MOD and MOD1, and two DLL formats for the
Simulator, DLL and DLL1.

Brew MP modules can by dynamically or statically linked with the platform.

• DLL for the Simulator and MOD for the device ensures backwards compatibility with BREW. Certain
new Brew MP capabilities may not be available to MOD applications such as code-sharing or
implementation for service classes.

• DLL1 for the Simulator, MOD1 for the device is an enhanced Brew MP format. All Brew MP
capabilities are available to MOD1 applications.

The main difference between MOD and MOD1 is the file format. MOD is fully-linked executable code that
can be run anywhere in RAM. MOD1 is in ELF format. The table below compares MOD and MOD1.

 MOD MOD1

File format Fully-linked executable code ARM ELF

Module entry point AEEMod_Load(IShell* piShell,
void* pvtStdLib, IModule**
ppiModule);

1. Provided by Generated
code from IDE wizard

2. IShell object is the first
object provided to every
object when created.

3. Supports AEEStdLib.h

IMod_New(IEnv* piEnv, AEEIID
id, void** ppiMod);

1. Provided by generated
code from cifc.exe

2. IEnv object is the first object
provided to every object
when created.

3. AEEStdLib.h not supported
with most of the alternatives
available in AEEStd.h and
AEEIEnv.h

Programming Model for Developers MOD, MOD1, DLL and DLL1

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 62

 MOD MOD1

Dependency on BREW
application framework (BREW
Shell)

Yes - classes in MOD are IShell-
based and are only usable inside
the BREW Shell.

No - classes in MOD1 are IEnv-
based and are usable anywhere
in the system.

Code sharing Per-process copy of code in RAM Single copy (if no writable data)
in the entire system or per-Env
copy (if writable data exists) of
code in RAM

Code used for Service classes No Yes

The module loading functions are different. The MOD module loading function is inside AEEModGen.c
when the IDE Wizard is used to generate the application framework. It shows that MOD receives a
pointer to the BREW Shell and a pointer to AEEStdLib. Every class in MOD is given an IShell object when
instantiated, and is an IShell-based class with a dependency on the BREW Shell.

The MOD1 module loading function is auto-generated by the CIF compiler (cifc.exe). MOD1 receives
a pointer to Env. Every class in MOD1 is given an IEnv object when instantiated, and is an IEnv-based
class.

For MOD backward compatibility in BREW, the code is shared by objects within the same process. Brew
MP copies the module to every process using the code from the module, as there is no way to determine
whether there is any writable data in the MOD file.

Since MOD1 is ELF format, the header of the ELF reveals if there is any writable data in the module. This
enables the system to determine whether to maintain only shareable copy in the entire system for module
that contains no writable data, or to give every Env its own copy if the module is non-shareable due to
writable data.

Mod contains only IShell-based classes, so it can only be used by objects inside the BREW Shell. Each
process that uses MOD code receives its own copy. The following diagram shows code sharing for MOD.

Figure1. Code Sharing for MOD

Programming Model for Developers MOD, MOD1, DLL and DLL1

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 63

MOD1 contains IEnv-based classes that can potentially be used anywhere in the system. If there is no
writable data in MOD1, the system only maintains one shareable copy of the code in the entire system.
If there is writable data in MOD1, it is considered non-shareable, and the system copies the file to each
Env. The following diagram shows code sharing for MOD1.

Figure2. Code sharing for MOD1

Programming Model for Developers MIF and CIF

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 64

For more information on MOD vs. MOD1, see the article MOD vs. MOD1 in Brew MP on the Brew MP
Dev Net.

MIF and CIF
A Component Information File (CIF) is the source file for the Module Information File (MIF).

Component Information File (CIF)

A CIF specifies the privileges and resources for the module. CIFs are compiled into MIF using the CIF
compiler, cifc.exe. CIFs are written in the LUA language, and are a replacement for the MFX file in
BREW.

The Brew MP Resource Manager can be used to create CIFs. The Resource Manager provides a UI and
a click-to-build interface. A second option to create CIFs is to use any text editor to manually create and
manage the CIFs. To compile the CIF to MIF, use cifc.exe, or the Brew MP build system, which internally
invokes cifc.exe.

Generally using Resource Manager to create CIFs is better suited to developers new to Brew MP. Once
you are familiar with the CIF syntax, you can switch to using a text editor and cifc.exe or the Brew MP
build system. CIF is basically a programming language, and it's difficult to wrap a UI around it, so the text-
editing environment gives you more flexibility.

Programming Model for Developers BAR and CAR

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 65

Module Information File (MIF)

A MIF contains module-specific information such as privileges, and resources such as applet names,
in binary format. The MIF is the component used to identify external dependencies, in the form of
external classes and extensions, that your application uses. The MIF is also used to provide classes and
functionality to other applications.

The MIF can be used to specify the following:

• Icons for your application used on the device's Brew MP menu
• Copyright information
• External extensions (libraries) that your application uses
• Extensions (libraries) that your application exposes for others to use
• Application's unique ID (ClassID)

BAR and CAR
BAR and CAR files are for resource management.

Component Application Resource File (CAR)

CAR is the source file for BAR, compiled to BAR using cifc.exe. CAR is a replacement for the BRX file in
BREW. A CAR contains ModRsc definitions for resources. A CAR should include a resource header file.
The resource header file contains all the #define definitions for the IDS_XXXX used in CAR and C/C++
source code. If the CAR is managed by Resource Manager, the resource header is generated only to be
used by C/C++ source code and is not included by the CAR.

A special case exists of a CIF, which contains only resource declarations.

Brew MP applications can be designed to execute on a variety of different devices, in a number of
different languages. Resource files can be used to support the different devices and languages. By
decoupling resources from your code and loading them at runtime, you can avoid cluttering your source
code with a separate compilation flag for each supported language and device. To create a version of an
application for a particular language or device, you need to create only system resource files instead of
the entire application.

Programming Model for Developers BAR and CAR

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 66

BREW Application Resource File (BAR)

The BAR contains resources such as strings and images in binary format.

Creating resource files

The following options are available to create and manage CAR/resource header files and compile them.

• Use Resource Manager, which provides a click-to-build UI. Brewrmc.exe is a command-line
alternative to generate the resource header and compile the CAR to BAR. The resource header is
not included in the CAR, it is auto-generated with the BAR.

The Resource Manager can be used to create external resources used in applications such as
strings, images, and binaries.

• Use any text editor to manually create and manage the CAR and resource header. To compile the
CAR to BAR, use cifc.exe, or the Brew MP build system, which internally invokes cifc.exe, via Visual
Studio or the Eclipse IDE, and command-line make.

Programming Model for Developers Banned APIs

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 67

For more information on CIF and CAR files, see the Resource File and Markup Reference, included with
the Brew MP SDK and available on the Brew MP Dev Net.

Banned APIs
Certain functions should be used to avoid buffer overruns in code. The recommended replacements are
available in AEEStdLib.h and AEEStd.h.

These functions are banned because a single call to them results in vulnerability. They are often not used
in a safe way.

Banned function comments Replacements for
MOD (in AEEStdLib.h)

Replacements for
MOD1 (in AEEStd.h)

strcpy Too easy to create a
buffer overrun

STRLCPY std_strlcpy

strcat Too easy to create a
buffer overrun

STRLCAT std_strlcat

strncpy Doesn't always NULL
terminate

STRLCPY std_strlcpy

strncat Doesn't always NULL
terminate

STRLCAT std_strlcat

wstrcpy Too easy to create a
buffer overrun

WSTRLCPY std_wstrlcpy

Programming Model for Developers Families

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 68

Banned function comments Replacements for
MOD (in AEEStdLib.h)

Replacements for
MOD1 (in AEEStd.h)

wstrcat Too easy to create a
buffer overrun

WSTRLCAT std_wstrlcat

wstrncpy Doesn't always NULL
terminate

WSTRLCPY std_wstrlcpy

wstrncat Doesn't always NULL
terminate

WSTRLCAT std_wstrlcat

sprintf Difficult to avoid buffer
overruns with complex
format strings

SNPRINTF std_strlprintf

vsprintf Difficult to avoid buffer
overruns with complex
format strings

VSNPRINTF std_vstrlprintf

wsprintf Difficult to avoid buffer
overruns with complex
format strings

WSPRINTF (it is different
from wsprintf)

none

gets Unsafe gets was never in BREW gets was never in CS

strtok Not re-entrant none std_strchrsend (similar
functionality)

scanf Unsafe scanf was never in
BREW

std_scanul

Deprecated APIs

With the advent of Brew MP and lineage of prior BREW releases, certain APIs are deprecated. These
deprecated APIs are superceded with newer APIs. The older APIs may still be used, though it is highly
recommended that the newer APIs be used instead.

Deprecated APIs are documented in the C/C++ API Reference.

Families
Brew MP provides a variety of system-level functions and services to facilitate the development of applets
for Brew MP-enabled devices. Brew MP modules can contain one or more applets or classes. These
classes are exposed by a module at runtime and are loaded or unloaded on an as-needed basis.

Interface Services and Descriptions

Brew MP's AEE offers a number of distinct categories of services. The services provided, and the names
of the interfaces that implement those services, are listed in the table below.

Programming Model for Developers Families

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 69

Family Description Interfaces

Connectivity Bluetooth, WIFI and other
methods of local area
connectivity

IRemoteControl, IWIFI, wlan,
IBTServiceDiscovery

Databases Data storage on a mobile
device, such as SQLite
database support, call
history, personal contacts,
and timezone information

ITimeZone, IGallery, dbc_IConnect,
pim_IContacts, ICallHIstory

Hardware Managing the hardware of
a mobile device, such as
battery, camera, position
determination, USB, FM
radio, joysticks, and flip-
phones

IBacklight, IBattery, ICamera, IFlip,
IJoystick, IFMRadio, IHID, IKeysMapping,
IPosDet, ISensorUtil, IUSBDevice

Languages Adobe Flash, Trigs, Lua,
and Java application
management

IASArgs, IFlashPlayer, jams_IApp, ILua,
ICachingResFile, IActorContext, ITrig

Multimedia Support for multimedia
content , including music,
images and videos

IUnzipAStream, IContentMetaData,
drm_IRightsChange, IImage, IMedia,
ISound, IVocoder

Networking DNS operations, multicast
groups, the network
subsystem on the mobile
device, TCP and UDP
sockets, and network
connectivity.

IDNS, INetMgr, ISocket, ISSL, IAddrInfo,
IMcastSession, IQoSList, INetwork, IWeb

Security Encryption, certificates,
and public/private key
exchanges

IBN, ICipher1, IHashCtx, IPubKey

System The Application Execution
Environment (AEE),
core services, module
management, file system,
memory management,
locales, and settings
management

IShell, IApplet, IMod, IAppletCtl,
IResourceStatus, IDeviceNotifier, IFile,
IHeap, IPort, ISignal, INotifier, IEnv,
IControl, IBASE, IControl, ISettings

Telephony Telephony functionality of
a mobile device including
SMS messaging and call
handling

ISMS, ICallMgr, IPhoneCtl

UI Displays and bitmaps,
graphics, fonts, UI Widgets,
and window management

IDisplay, IGraphics, IDisplayCanvas, IFont,
IBitmap, IResFile, IWidget,

Programming Model for Developers For more information

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 70

For more information

Brew MP documentation

Brew MP documentation is available on the Brew MP Developer Network.

There are four categories of Brew MP documentation:

• Primers guide you through installing the tools, setting up the work environment, writing a basic
"Hello, World" application, and debugging it in the Simulator.

• Technology Guides help you understand Brew MP technologies and functional areas.
• How Tos provide solutions to specific programming problems, and include code snippets with

explanations and sample code files that you can download.
• References provide the detailed information you need when working with the tools and writing Brew

MP code to produce a successful application.

Brew MP sample code

The Brew MP SDK includes "hello world" type sample applications that you can study and use as a basis
for your own applications. These sample applications correspond to primers and demonstrate Brew MP
tools. The folder containing the sample code can be installed on your machine from the Brew MP SDK
Manager, in the setup tab. Additional applications that demonstrate API usage, and leverage various
Brew MP platform capabilities, are available on the Brew MP Dev Net.

In general, to view and edit the source code:

1. Run Visual Studio and open one of the sample project workspaces (*.sln and *vvproj). Sample .dsw
and .dsp files for use with Microsoft Visual Studio have also been shipped with the SDK. Run the
application in the Simulator.

2. Make a small change to the source code (for example, showing a different text message) and
rebuild the application using the Build menu in your compiler. Be sure to backup any projects you
use prior to making changes.

3. Run the Simulator, to verify that your change has taken effect.

While any development tool that can compile a Win32 DLL works, keep in mind the useful functionality
provided by the Brew MP Visual Studio and Eclipse Plugins.

When looking at the code, you may find many familiar things, such as function calls, loops, switch
statements. You may notice that the code is written in C with some C++ nuances.

Frequently asked questions

What are the differences between an extension and a service?

Extensions and services are two orthogonal concepts. One corresponds to the type of software module
and the other corresponds to the type of class the software module contains. See the table below. An
extension is a software module that does not implement the applet class, so it can only be loaded and
executed by Brew MP when it is called by an application. It is similar in concept to software plugins in the
PC world. A service is a type of Brew MP class. See the Classes on page 7 section for more details.

Brew MP Class types Supporting Module
Formats

Applicable Brew MP
Software Module

Supporting IDE
Wizards

https://brewmobileplatform.qualcomm.com/devnet/index.jsp

Programming Model for Developers Frequently asked questions

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 71

Applet Class MOD or MOD1 Application Application (Applet
Class)

In-Process Class MOD or MOD1 Application or Extension Extension (In-Process
Class)

Service Class MOD1 Application or Extension Extension (Service
Class)

• Brew MP class types: To write C/C++ programs in Brew MP is to implement three types of Brew MP
Classes: applet class, in-process class, and service class

• Supporting module formats: There are two types of module formats supported by Brew MP that
contain one or more Brew MP classes, MOD and MOD1. MOD can only contain applet and in-
process classes and MOD1 can contain all three types of classes. For more information on MOD
and MOD1, see the MOD vs. MOD1 in Brew MP Technology Guide.

• Applicable Brew MP software modules: A Brew MP application is a software module that contains
at least one applet class so that it can be loaded and executed directly by Brew MP. A Brew MP
extension is a software module that contains only non-applet classes and therefore can only be
loaded and executed by Brew MP when it is called by a Brew MP application.

• Supporting IDE Wizards: Wizards are provided by the Brew MP IDE plugins to assist developers
in auto-generating code for Brew MP classes in specified module formats. Currently, there are two
wizards available for C Applications and C Extensions. The C Application wizard generates code for
an applet class in MOD or MOD1 format. The C Extension wizard generates code for an In-process
class in MOD or MOD1 format.

What's the relationship between and an applet and an application?

An applet is a Brew MP class that supports IApplet. It can be loaded and executed by BREW Shell and
receive BREW EVT_XX events. An application is a software module that contains at least one applet
class that can be loaded and executed by Brew MP. An application may also contain any number of in-
process or service classes. Please see the Classes on page 7 section for more details.

What are the differences between an in-process class and a service class?

An in-process class is a class that can only be instantiated in the process (or more specifically, the same
Env) of the caller. A service class is a class that is instantiated in a designated process (specified in the
CIF in which the service class is declared). A service class must support one or more interfaces that
are remotable because the caller may call from a different process than the service object. For more
information, see the Classes on page 7 section of this document, and the Resource Files and Markup
Reference document on the Brew MP Developer Network.

Why should I use a service class instead of an in-process class?
• When you would like your class to be accessible to user mode.
• To be instantiated and protected in a designated process rather than in the caller's environment, as

is the case for an in-process class.
• To be preemptively multi-threaded.
• If you manage shared data between clients and manage access to shared resources.

How does an applet interact with a service or an in-process class?

An applet calls IShell_CreateInstance() or IEnv_CreateInstance() to instantiate an in-process or a service
class. When an applet interacts with an in-process class, all the function calls are direct invocations
because they are in-process. When an applet interacts with service classes, the calls are remote

Programming Model for Developers Frequently asked questions

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 72

invocations because service objects are not in the same context or environment of the calling applet. See
the Classes on page 7 section for more information.

How does an applet interact with another applet?

Applets can only "start" another applet by calling IShell_StartApplet() or related APIs, but not by calling
IShell_CreateInstance() or IEnv_CreateInstance(). The applets interact with one another by posting
events (for example, using IShell_PostEvents()), shared files (permitted in FS_ACL_Grant in CIF), IFIFO
IPC communication (permitted in FIFO_ACL_Grant in CIF), or a singleton service object, etc.

How are resources tracked and managed by applet, in-process, and services classes?

Resources that are loaded by an in-process class are always loaded in the context, and share the
privileges of, the invoking application. Memory allocated as a result of resource loading is always tracked
in the context of that application. In-process objects loaded by one application or extension in one
process should not be sent to another application in a separate process (e.g. IShell_SendEvent()) since
it is unsafe and violates the memory protection boundary. Applet and service objects have their own sets
of privileges and are hosted in their designated processes for their own resource tracking. Remotable
objects can be passed between service objects or between a service and an applet across process
boundaries.

Why should I create a Brew MP extension instead of an application?

An application can be loaded and executed directly by Brew MP like any executable in the PC world.
An extension is similar to a code extension or software plugin. Extensions can be re-used by various
applications so the code doesn't need to be duplicated or re-implemented in the module of each using
application.

Can I package an applet class, an in-process class, and a service class into a single module?

Yes. Extensions and applications are essentially software modules or repositories of classes. An
application has at least one applet class and any number of in-process and/or service classes. An
extension can have any number of in-process and/or service classes but cannot contain applet classes.
Currently, if the application or extension is to be distributed through QIS BDS, applet classes and non-
applet classes must be in separate modules. This is a BDS restriction rather than a Brew MP restriction.

	Programming Model for Developers
	How Brew MP relates to BREW
	Applications and extensions
	Brew MP architecture
	Qualcomm Component Model (QCM)
	Interfaces
	Classes
	Applet class
	In-process class
	Service class
	Class resolution in Brew MP
	Remote Invocations
	Components and modules
	Runtime environment
	Environments
	System process model
	Kernel process
	User process
	Registry support
	Inter-application communication
	Security
	User mode and kernel applications
	Privileges and ACLs
	Application UI model
	UI Widgets
	Windowed application model
	C/C++ application structure
	Coding
	Data structures
	Privileges
	Event handling
	Event handling concepts
	Event types
	Critical events
	Event delegation flexibility
	Publish and subscribe design pattern
	Event registration
	Event publish and dispatch
	Key press events
	Suspend and resume
	Signals, callbacks, timers and alarms
	Notifications
	Implementing classes
	Implementing an applet class
	Implementing an in-process class

	Key APIs
	IModule and IMod
	IShell and IEnv
	Widgets and IDisplay
	ISettings
	IApplet
	Brew MP application files
	Unique IDs (BID)
	MOD, MOD1, DLL and DLL1
	MIF and CIF
	BAR and CAR
	Banned APIs
	Families
	For more information
	Frequently asked questions

