
BREW™ 2.1 OEM API Reference
for MSM™ Platforms

QUALCOMM Incorporated
5775 Morehouse Drive

San Diego, CA. 92121-1714
U.S.A.

This manual was written for use with the BREW SDKTM for Windows, software version 2.1.0. This
manual and the BREW SDK software described in it are copyrighted, with all rights reserved. This
manual and the BREW SDK software may not be copied, except as otherwise provided in your software
license or as expressly permitted in writing by QUALCOMM Incorporated.

Copyright 2003 QUALCOMM Incorporated

All Rights Reserved

Printed in the United States of America

All data and information contained in or disclosed by this document are confidential and proprietary
information of QUALCOMM Incorporated, and all rights therein are expressly reserved. By accepting
this material, the recipient agrees that this material and the information contained therein are held in
confidence and in trust and will not be used, copied, reproduced in whole or in part, nor its contents
revealed in any manner to others without the express written permission of QUALCOMM Incorporated.

Export of this technology may be controlled by the United States Government. Diversion contrary to
U.S. law prohibited.

Binary Runtime Environment for Wireless, BREW, BREW SDK, TRUE BREW, BREWStone, MSM,
MobileShop, Eudora, and PureVoice are trademarks of QUALCOMM Incorporated.

QUALCOMM is a registered trademark and registered service mark of QUALCOMM Incorporated.

Microsoft, Windows, Visual Studio, and Sound Recorder are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

Macintosh is a registered trademark of Apple Computer, Inc.

UNIX and X-Windows are trademarks of The Open Group.

Adobe and Acrobat are trademarks of Adobe Systems Incorporated.

All trademarks and registered trademarks referenced herein are the property of their respective owners.

BREW™ 2.1 OEM API Reference for MSM™ Platforms

May 12, 2003

iii

Contents

Introducing the BREW OEM API Reference for MSM™ Platform 22
 In this reference 22
 BREW SDK™ documentation set 23
 BREW OEM documentation set 23
 BREW OEM acronyms 24
 BREW architecture 25
 For more information 26

AEEBitFont Interface 27
AEEBitFont_NewFromBBF() 28

AEE Media Interface 30
AEEMedia_AddRef() 32
AEEMedia_CallbackNotify() 33
AEEMedia_Delete() 34
AEEMedia_GetMediaParm() 35
AEEMedia_GetState() 36
AEEMedia_GetTotalTime() 37
AEEMedia_Init() 38
AEEMedia_New() 39
AEEMedia_Pause() 40
AEEMedia_Play() 41
AEEMedia_QueryInterface() 42
AEEMedia_Record() 43
AEEMedia_RegisterNotify() 44
AEEMedia_Release() 45
AEEMedia_Resume 46
AEEMedia_Seek() 47
AEEMedia_SetMediaParm() 48
AEEMedia_Stop() 49
OEMMedia_DetectType() 50

AEE Object Manager Interface 52
• Why is ObjectMgr needed? 52
4. ObjectMgr solves the problem 53

AEEObjectMgr_GetObject() 54

Contents

iv

AEEObjectMgr_Register() 55
AEEObjectMgr_Unregister() 56

I3D Interface 57
I3D_AddRef() 59
I3D_ApplyModelViewTransform() 60
I3D_CalcVertexArrayNormal() 61
I3D_CalcVertexArrayColor() 62
I3D_ClearFrameBuf() 63
I3D_GetClipRect() 64
I3D_GetCoordTransformMode() 65
I3D_GetCullingMode() 66
I3D_GetDestination() 67
I3D_GetFocalLength() 68
I3D_GetLight() 69
I3D_GetLightingMode() 70
I3D_GetMaterial() 71
I3D_GetModelViewTransform() 72
I3D_GetRenderMode() 73
I3D_GetScreenMapping() 74
I3D_GetTexture() 75
I3D_GetViewDepth() 76
I3D_PopMatrix() 77
I3D_PushMatrix() 78
I3D_QueryInterface() 79
I3D_RegisterEventNotify() 80
I3D_Release() 81
I3D_RenderTriangleFan() 82
I3D_RenderTriangles() 83
I3D_RenderTriangleStrip() 84
I3D_ResetZBuf() 85
I3D_SetClipRect() 86
I3D_SetCoordTransformMode() 87
I3D_SetCullingMode() 88
I3D_SetDestination() 89
I3D_SetFocalLength() 90
I3D_SetRenderMode() 91
I3D_SetScreenMapping() 92
I3D_SetTexture() 93
I3D_SetViewDepth() 94
I3D_SetLight() 95
I3D_SetLightingMode() 96
I3D_SetMaterial() 97
I3D_SetModelViewTransform() 98
I3D_StartFrame() 99

Contents

v

I3DUtil Interface 100
I3DUtil_AddRef() 101
I3DUtil_cos() 102
I3DUtil_GetRotateMatrix() 103
I3DUtil_GetRotateVMatrix() 104
I3DUtil_GetViewTransformMatrix() 105
I3DUtil_GetUnitVector() 106
I3DUtil_MatrixMultiply() 107
I3DUtil_QueryInterface() 108
I3DUtil_Release() 109
I3DUtil_SetIdentityMatrix() 110
I3DUtil_SetTranslationMatrix() 111
I3DUtil_sin() 112
I3DUtil_sqrt() 113

I3DModel Interface 114
I3DModel_AddRef() 115
I3DModel_Draw() 116
I3DModel_GetModelData() 117
I3DModel_GetModelVertexList() 118
I3DModel_Load() 119
I3DModel_QueryInterface() 120
I3DModel_Release() 121
I3DModel_SetTextureTbl() 122
I3DModel_SetSegmentMVT() 123

IBitmap Interface 124
IBITMAP_AddRef() 125
IBITMAP_BltIn() 126
IBITMAP_BltOut() 128
IBITMAP_CreateCompatibleBitmap() 130
IBITMAP_DrawHScanline() 131
IBITMAP_DrawPixel() 132
IBITMAP_FillRect() 133
IBITMAP_GetInfo() 134
IBITMAP_GetPixel() 135
IBITMAP_GetTransparencyColor() 136
IBITMAP_NativeToRGB() 137
IBITMAP_QueryInterface() 138
IBITMAP_Release() 139
IBITMAP_RGBToNative() 140
IBITMAP_SetPixels() 141
IBITMAP_SetTransparencyColor() 142

Contents

vi

 IBitmapCtl Interface 143
IBITMAPCTL_AddRef() 144
IBITMAPCTL_Enable() 145
IBITMAPCTL_NotifyRelease() 146
IBITMAPCTL_QueryInterface() 147
IBITMAPCTL_Release() 148
IBITMAPCTL_Restrict() 149

ICallHistory Interface 150
ICALLHISTORY_Clear() 152
ICALLHISTORY_AddEntry() 153
ICALLHISTORY_EnumInit() 154
ICALLHISTORY_EnumNext() 155
ICALLHISTORY_UpdateEntry() 156

ICamera Interface 157
ICAMERA_AddOverlay() 166
ICAMERA_AddRef() 167
ICAMERA_ClearOverlay() 168
ICAMERA_DeferEncode() 169
ICAMERA_EncodeSnapshot() 170
ICAMERA_GetDisplaySizeList() 171
ICAMERA_GetFrame() 172
ICAMERA_GetMode() 173
ICAMERA_GetParm() 174
ICAMERA_GetSizeList() 175
ICAMERA_IsBrightness() 176
ICAMERA_IsContrast() 177
ICAMERA_IsMovie() 178
ICAMERA_IsSharpness() 179
ICAMERA_IsSupport() 180
ICAMERA_IsZoom() 181
ICAMERA_Pause() 182
ICAMERA_Preview() 183
ICAMERA_QueryInterface() 184
ICAMERA_RecordMovie() 185
ICAMERA_RecordSnapshot() 186
ICAMERA_RegisterNotify() 187
ICAMERA_Release() 188
ICAMERA_Resume() 189
ICAMERA_RotateEncode() 190
ICAMERA_RotatePreview() 191
ICAMERA_SetAudioEncode() 192
ICAMERA_SetBrightness() 193
ICAMERA_SetContrast() 194
ICAMERA_SetDisplaySize() 195

Contents

vii

ICAMERA_SetFramesPerSecond() 196
ICAMERA_SetMediaData() 197
ICAMERA_SetParm() 198
ICAMERA_SetQuality() 199
ICAMERA_SetSharpness() 200
ICAMERA_SetSize() 201
ICAMERA_SetVideoEncode() 202
ICAMERA_SetZoom() 203
ICAMERA_Start() 204
ICAMERA_Stop() 206

IDIB Interface 207
 Pixel array structure 207
 Usage example: 207

 Pixel values 208
 Palette Map 209
 Software Support 209
IDIB_AddRef() 211
IDIB_FlushPalette() 212
IDIB_QueryInterface() 213
IDIB_Release() 214
IDIB_TO_IBITMAP() 215

IDNS Interface 216
IDNS_AddQuestion() 217
IDNS_AddRef() 218
IDNS_GetResponse() 219
IDNS_ParseDomain() 220
IDNS_QueryInterface() 221
IDNS_Release() 222
IDNS_Start() 223

IDownload Interface 224
IDOWNLOAD_Acquire() 226
IDOWNLOAD_AutoDisable() 227
IDOWNLOAD_Cancel() 228
IDOWNLOAD_CheckItemUpgrade() 229
IDOWNLOAD_CheckUpgrades() 230
IDOWNLOAD_Continue() 231
IDOWNLOAD_Credit() 232
IDOWNLOAD_Delete() 233
IDOWNLOAD_Enum() 234
IDOWNLOAD_EnumRaw() 235
IDOWNLOAD_Get() 236

Contents

viii

IDOWNLOAD_GetADSCapabilities() 237
IDOWNLOAD_GetADSList() 238
IDOWNLOAD_GetAllApps() 239
IDOWNLOAD_GetAppIDList() 240
IDOWNLOAD_GetAppIDListEx() 241
IDOWNLOAD_GetAutoDisableList() 242
IDOWNLOAD_GetAvailable() 243
IDOWNLOAD_GetCategory() 244
IDOWNLOAD_GetCategoryList() 245
IDOWNLOAD_GetConfigItem() 246
IDOWNLOAD_GetEULA() 249
IDOWNLOAD_GetHeaders() 250
IDOWNLOAD_GetItemInfo() 251
IDOWNLOAD_GetItemList() 252
IDOWNLOAD_GetModInfo() 253
IDOWNLOAD_GetSize() 254
IDOWNLOAD_GetSizeEx() 255
IDOWNLOAD_Lock() 256
IDOWNLOAD_LogEnumInit() 257
IDOWNLOAD_LogEnumNext() 258
IDOWNLOAD_OnStatus() 259
IDOWNLOAD_Restore() 260
IDOWNLOAD_Search() 261
IDOWNLOAD_SetADS() 262
IDOWNLOAD_SetHeaders() 263
IDOWNLOAD_SetSubscriberID() 264

IFont Interface 265
IFONT_AddRef() 266
IFONT_DrawText() 267
IFONT_GetInfo() 269
IFONT_MeasureText() 270
IFONT_QueryInterface() 271
IFONT_Release() 272

IGSM1xControl Interface 273
IGSM1xControl_ActivateNonGSM1xMode() 276
IGSM1xControl_EnableGSM1xMode() 277
IGSM1xControl_GetAvailableModes() 278
IGSM1xControl_GetCurrentMode() 279
IGSM1xControl_GetDFPresence() 280
IGSM1xControl_GetGSM1xPRL() 281
IGSM1xControl_GetGSM1xSIDNIDPairs() 282
IGSM1xControl_GetPLMN() 284
IGSM1xControl_GetSupportedProvisioningModes() 286
IGSM1xControl_GetUIMUniqueId() 287

Contents

ix

IGSM1xControl_ProvisionGSM1xParameters() 288
IGSM1xControl_SetGSM1xPRL() 289
IGSM1xControl_SetGSM1xSIDNIDPairs() 290
IGSM1xControl_SetPLMN() 291
IGSM1xControl_ValidatePRL() 292

IGSM1xSig Interface 293
IGSM1xSig_GetStatus() 295
IGSM1xSig_SendSignalingMessage() 296
IGSM1xSig_SendSignalingReject() 297

IGSMSMS 298
IGSMSMS_CreateDefaultMessage() 300
IGSMSMS_DecodeMessage() 302
IGSMSMS_DecodeUserData() 303
IGSMSMS_DeleteAllMessages() 304
IGSMSMS_DeleteMessage() 305
IGSMSMS_EncodeUserData() 306
IGSMSMS_GetMessage() 307
IGSMSMS_GetMessageStatus() 308
IGSMSMS_GetMemoryCapExceededFlag() 309
IGSMSMS_GetSCAddress() 310
IGSMSMS_GetStatusReport() 311
IGSMSMS_GetStoreSize() 312
IGSMSMS_GetTPMR() 313
IGSMSMS_IsInit() 314
IGSMSMS_MoveMessage() 315
IGSMSMS_SendMoreMemoryAvailable() 316
IGSMSMS_SendSMSDeliverReport() 317
IGSMSMS_SendSMSSubmit() 318
IGSMSMS_SetSCAddress() 319
IGSMSMS_SetMemoryCapExceededFlag() 320
IGSMSMS_SetMessageStatus() 321
IGSMSMS_SetTPMR() 322
IGSMSMS_StoreMessage() 323
IGSMSMS_StoreStatusReport() 324

ILogger Interface 325
ILOGGER_AddRef() 328
ILOGGER_GetParam() 329
ILOGGER_Printf() 330
ILOGGER_PutMsg() 332
ILOGGER_PutItem() 334
ILOGGER_Release() 336
ILOGGER_SetParam() 337

Contents

x

IPosDet Interface 338
IPOSDET_AddRef() 340
IPOSDET_GetGPSConfig() 341
IPOSDET_GetGPSInfo() 342
IPOSDET_GetOrientation() 344
IPOSDET_GetSectorInfo() 345
IPOSDET_QueryInterface() 346
IPOSDET_Release() 347
IPOSDET_SetGPSConfig() 348

IRingerMgr Interface 349
IRINGERMGR_AddRef() 351
IRINGERMGR_Create() 352
IRINGERMGR_EnumCategoryInit() 353
IRINGERMGR_EnumNextCategory() 354
IRINGERMGR_EnumNextRinger() 355
IRINGERMGR_EnumRingerInit() 356
IRINGERMGR_GetFormats() 357
IRINGERMGR_GetNumberFormats() 358
IRINGERMGR_GetRingerID() 359
IRINGERMGR_GetRingerInfo() 360
IRINGERMGR_Play() 361
IRINGERMGR_PlayEx() 362
IRINGERMGR_PlayFile() 363
IRINGERMGR_PlayStream() 364
IRINGERMGR_RegisterNotify() 365
IRINGERMGR_Release() 366
IRINGERMGR_Remove() 367
IRINGERMGR_SetRinger() 368
IRINGERMGR_Stop() 369

IRUIM Interface 370
IRUIM_AddRef() 371
IRUIM_CHVDisable() 372
IRUIM_CHVEnable() 373
IRUIM_GetCHVStatus() 374
IRUIM_GetId() 375
IRUIM_GetPrefLang() 376
IRUIM_IsCardConnected 377
IRUIM_PINChange() 378
IRUIM_PINCheck() 379
IRUIM_QueryInterface() 380
IRUIM_Release() 381
IRUIM_UnblockCHV() 382
IRUIM_VirtualPINCheck() 383
OEMRUIMAddr_GetFuncs() 384

Contents

xi

ITAPI Interface 385
 Notifications Sent by this Class: 385
 Receiving SMS Messages: 385
 Registering for Device Status Change: 386
ITAPI_AddRef() 388
ITAPI_ExtractSMSText() 389
ITAPI_GetCallerID() 390
ITAPI_GetStatus() 391
ITAPI_IsDataSupported() 392
ITAPI_IsVoiceCall() 393
ITAPI_MakeVoiceCall() 394
ITAPI_OnCallEnd() 396
ITAPI_OnCallStatus() 397
ITAPI_Release() 399
ITAPI_SendSMS() 400

ITextCtl Interface 402
ITEXTCTL_AddRef() 405
ITEXTCTL_EnumModeInit() 406
ITEXTCTL_EnumNextMode() 407
ITEXTCTL_GetCursorPos() 408
ITEXTCTL_GetInputMode() 409
ITEXTCTL_GetProperties() 410
ITEXTCTL_GetRect() 411
ITEXTCTL_GetText() 412
ITEXTCTL_GetTextPtr() 413
ITEXTCTL_HandleEvent() 414
ITEXTCTL_IsActive() 415
ITEXTCTL_Redraw() 416
ITEXTCTL_Release() 417
ITEXTCTL_Reset() 418
ITEXTCTL_SetActive() 419
ITEXTCTL_SetCursorPos() 420
ITEXTCTL_SetInputMode() 421
ITEXTCTL_SetMaxSize() 422
ITEXTCTL_SetProperties() 423
ITEXTCTL_SetRect() 424
ITEXTCTL_SetSoftKeyMenu() 425
ITEXTCTL_SetText() 426
ITEXTCTL_SetTitle() 427

ITransform Interface 428
ITRANSFORM_AddRef() 429
ITRANSFORM_QueryInterface() 430
ITRANSFORM_Release() 431

Contents

xii

ITRANSFORM_TransformBltComplex() 432
ITRANSFORM_TransformBltSimple() 434

OEM AEE Interface 436
AEE_Active() 438
AEE_AutoInstall() 439
AEE_BuildPath() 440
AEE_CheckPtr() 441
AEE_CheckStack() 442
AEE_CreateControl() 443
AEE_Dispatch() 444
AEE_EnumRegHandlers() 445
AEE_Event() 447
AEE_Exception() 448
AEE_Exit() 449
AEE_FreeMemory() 450
AEE_GetAppContext() 451
AEE_GetClassInfo() 452
AEE_GetShell() 453
AEE_Init() 454
AEE_IsInitialized() 455
AEE_IsTestDevice() 456
AEE_Key() 457
AEE_KeyHeld() 458
AEE_KeyPress() 459
AEE_KeyRelease() 460
AEE_LinkSysObject() 461
AEE_NetEventOccurred() 462
AEE_RegisterForDataService() 463
AEE_RegisterForValidTime() 464
AEE_Resume() 465
AEE_ResumeEx() 466
AEE_SetAppContext() 467
AEE_SetEventHandler() 468
AEE_SetSysTimer() 469
AEE_SocketEventOccurred() 470
AEE_Suspend() 471
AEE_TimerExpired() 472
AEE_UnlinkSysObject() 473

OEM Address Book Interface 474
OEMAddr_EnumNextRec() 475
OEMAddr_EnumRecInit() 476
OEMAddr_GetCatCount() 477
OEMAddr_GetCatList() 478
OEMAddr_GetFieldInfo() 479

Contents

xiii

OEMAddr_GetFieldInfoCount() 480
OEMAddr_GetNumRecs() 481
OEMAddr_RecordAdd() 482
OEMAddr_RecordDelete() 483
OEMAddr_RecordGetByID() 484
OEMAddr_RecordUpdate() 485
OEMAddr_RemoveAllRecs() 486
OEMAddrBook_CommonExit() 487
OEMAddrBook_CommonInit() 488
OEMAddrBook_Exit() 489
OEMAddrBook_Init() 490

OEM Application Interface 491
OEM_AuthorizeDownload() 492
OEM_CheckPrivacy() 493
OEM_GetItemStyle() 494
OEM_LockMem() 496
OEM_Notify() 497
OEM_SimpleBeep() 499
OEM_UnlockMem() 500

OEMBTSDP Interface 501
OEMBTSDP_CancelDiscovery() 502
OEMBTSDP_CloseLib() 503
OEMBTSDP_DiscoverDevices() 504
OEMBTSDP_GetDeviceName() 505
OEMBTSDP_GetServerChannel() 506
OEMBTSDP_Init() 507
OEMBTSDP_OpenLib() 508
OEMBTSDP_Shutdown() 509

OEMBTSIO Interface 510
OEMBTSIO_Close() 511
OEMBTSIO_DataAvailable() 512
OEMBTSIO_Init() 513
OEMBTSIO_Open() 514
OEMBTSIO_ProcessEvents() 515
OEMBTSIO_Read() 516
OEMBTSIO_Write() 517

OEM Configuration Interface 518
OEM_GetAddrBookPath() 519
OEM_GetAppPath() 520

Contents

xiv

OEM_GetConfig() 521
OEM_GetDeviceInfo() 522
OEM_GetDeviceInfoEx() 523
OEM_GetLogoPath() 524
OEM_GetMIFPath() 525
OEM_GetPath() 526
OEM_GetRingerPath() 527
OEM_GetSharedPath() 528
OEM_SetConfig() 529

OEM Cyclic Redundancy Check Interface 530
OEMCRC_16_step() 531

OEM Database Interface 532
OEM_DBClose() 533
OEM_DBCreate() 534
OEM_DBDelete() 535
OEM_DBFree() 536
OEM_DBInit() 537
OEM_DBMakeReadOnly() 538
OEM_DBOpen() 539
OEM_DBRecordAdd() 540
OEM_DBRecordCount() 541
OEM_DBRecordDelete() 542
OEM_DBRecordGet() 543
OEM_DBRecordNext() 544
OEM_DBRecordUpdate() 545

OEM Debug Interface 546
OEMDebug_Printf() 547
OEMDebug_VPrintf() 548

OEM Display Interface 549
IOEMDISP_Backlight() 550
IOEMDISP_GetDefaultColor() 551
IOEMDISP_GetDeviceBitmap() 552
IOEMDISP_GetPaletteEntry() 553
IOEMDISP_GetSymbol() 554
IOEMDISP_GetSystemFont() 555
IOEMDISP_MapPalette() 556
OEMDisp_New() 557
IOEMDISP_SetAnnunciators() 558
IOEMDISP_SetPaletteEntry() 559

Contents

xv

IOEMDISP_Update() 560

OEM File System Interface 561
OEMFS_Close() 562
OEMFS_EnumNext() 563
OEMFS_EnumStart() 564
OEMFS_EnumStop() 565
OEMFS_GetDirInfo() 566
OEMFS_GetFileAttributes() 567
OEMFS_GetLastError() 568
OEMFS_GetOpenFileAttributes() 569
OEMFS_Mkdir() 570
OEMFS_Open() 571
OEMFS_Read() 572
OEMFS_Remove() 573
OEMFS_Rename() 574
OEMFS_Rmdir() 575
OEMFS_Seek() 576
OEMFS_SpaceAvail() 577
OEMFS_SpaceUsed() 578
OEMFS_Tell() 579
OEMFS_Test() 580
OEMFS_Truncate() 581
OEMFS_Write() 582

OEM Heap Interface 583
OEM_CheckMemAvail() 584
OEM_Free() 585
OEM_GetRAMFree() 586
OEM_InitHeap() 587
OEM_Malloc() 588
OEM_Realloc() 589

OEMLogger Interface 590
OEMLogger_Printf() 594
OEMLogger_PutItem() 596
OEMLogger_PutMsg() 598
OEMLoggerDMSS_GetParam() 599
OEMLoggerDMSS_PutRecord() 600
OEMLoggerDMSS_SetParam() 601
OEMLoggerFile_GetParam() 602
OEMLoggerFile_PutRecord() 603
OEMLoggerFile_SetParam() 604
OEMLoggerWin_GetParam() 605
OEMLoggerWin_PutRecord() 606

Contents

xvi

OEMLoggerWin_SetParam() 607

OEM MD5 Interface 608
OEMMD5_Final() 609
OEMMD5_Init() 610
OEMMD5_Update() 611

OEM Net Interface 612
OEMNet_CloseNetlib() 613
OEMNet_GetPPPAuth() 614
OEMNet_GetRLP3Cfg() 615
OEMNet_GetUrgent() 616
OEMNet_MyIPAddr() 617
OEMNet_NameServers() 618
OEMNet_OpenNetlib() 619
OEMNet_PPPClose() 620
OEMNet_PPPOpen() 621
OEMNet_PPPSleep() 622
OEMNet_PPPState() 623
OEMNet_SetPPPAuth() 624
OEMNet_SetRLP3Cfg() 625

OEM Registry Interface 626
OEMRegistry_DetectType() 627

OEM Operating System Interface 629
OEMOS_ActiveTaskID() 630
OEMOS_BrewHighPriority() 631
OEMOS_BrewNormalPriority() 632
OEMOS_CancelDispatch() 633
OEMOS_GetLocalTime() 634
OEMOS_GetTimeMS() 635
OEMOS_GetUptime() 636
OEMOS_LocalTimeOffset() 637
OEMOS_SetTimer() 638
OEMOS_SignalDispatch() 639
OEMOS_Sleep() 640

OEM Random Number Generator Interface 641
OEMRan_GetNonPseudoRandomBytes() 642
OEMRan_Next() 643
OEMRan_Seed() 644

Contents

xvii

OEM SMS Interface 645
OEM_extract_SMS_text() 646
OEM_format_SMS_msg() 647
OEM_format_SMS_text() 648
OEM_uasms_config_listeners() 649

OEM Socket Interface 650
OEMSocket_Accept() 651
OEMSocket_AsyncSelect() 652
OEMSocket_Bind() 653
OEMSocket_Close() 654
OEMSocket_Connect() 655
OEMSocket_GetNextEvent() 656
OEMSocket_GetPeerName() 657
OEMSocket_GetSockName() 658
OEMSocket_Listen() 659
OEMSocket_Open() 660
OEMSocket_Read() 661
OEMSocket_Readv() 662
OEMSocket_RecvFrom() 663
OEMSocket_SendTo() 664
OEMSocket_Shutdown() 665
OEMSocket_Write() 666
OEMSocket_Writev() 667

OEM Sound Interface 668
OEMSound_DeleteInstance() 669
OEMSound_GetLevels() 670
OEMSound_GetVolume() 671
OEMSound_Init() 672
OEMSound_NewInstance() 673
OEMSound_PlayFreqTone() 674
OEMSound_PlayTone() 675
OEMSound_PlayToneList() 676
OEMSound_SetDevice() 677
OEMSound_SetVolume() 678
OEMSound_StopTone() 679
OEMSound_StopVibrate() 680
OEMSound_Vibrate() 681

OEM SoundPlayer Interface 682
OEMSoundPlayer_FastForward() 683
OEMSoundPlayer_GetTotalTime() 684
OEMSoundPlayer_Pause() 685

Contents

xviii

OEMSoundPlayer_Play() 686
OEMSoundPlayer_PlayRinger() 687
OEMSoundPlayer_Resume() 688
OEMSoundPlayer_Rewind() 689
OEMSoundPlayer_Stop() 690
OEMSoundPlayer_Tempo() 691
OEMSoundPlayer_Tune() 692

OEM String Interface 693
OEM_FloatToWStr() 694
OEM_GetCHType() 695
OEM_UTF8ToWStr() 696
OEM_vxprintf() 697
OEM_WStrLower() 698
OEM_WStrToFloat() 699
OEM_WStrToUTF8() 700
OEM_WStrUpper() 701

OEM Text Interface 702
OEM_TextAddChar() 703
OEM_TextCreate() 704
OEM_TextDelete() 705
OEM_TextDraw() 706
OEM_TextEnumMode() 707
OEM_TextEnumModesInit() 708
OEM_TextGet() 709
OEM_TextGetCurrentMode() 710
OEM_TextGetCursorPos() 711
OEM_TextGetMaxChars() 712
OEM_TextGetModeString() 713
OEM_TextGetProperties() 714
OEM_TextGetRect() 715
OEM_TextGetSel() 716
OEM_TextKeyPress() 717
OEM_TextQueryModes() 718
OEM_TextQuerySymbols() 719
OEM_TextSet() 720
OEM_TextSetCursorPos() 721
OEM_TextSetEdit() 722
OEM_TextSetMaxChars() 723
OEM_TextSetProperties() 724
OEM_TextSetRect() 725
OEM_TextSetSel() 726
OEM_TextUpdate() 727

Contents

xix

Data Types 728
AECHAR 732
AEE Events 733

 Event codes 733
AEE ITextCtl Properties 737
AEE Static Properties 738
AEE_ADDR_RECID_NULL 739
AEE3DColor 740
AEE3DCoordinateTransformType 741
AEE3DCullingType 742
AEE3DEventNotify 743
AEE3DLight 744
AEE3DLightingMode 745
AEE3DLightType 746
AEE3DMaterial 747
AEE3DMatrixMode 748
AEE3DModelData 749
AEE3DModelPoly 751
AEE3DModelSegment 752
AEE3DPoint 754
AEE3DPoint16 755
AEE3DPrimitiveType 756
AEE3DRenderType 757
AEE3DRotateType 758
AEE3DTexture 759
AEE3DTextureSamplingType 760
AEE3DTextureType 761
AEE3DTextureWrapType 762
AEE3DTLVertex 763
AEE3DTransformMatrix 764
AEE3DVertex 766
AEE_DBError 767
AEE_DBRecInfo 769
AEEAppStart 770
AEEBitmapInfo 771
AEECallback 772
AEECallHistoryEntry 773
AEECallHistoryField 774
AEECameraNotify 775
AEEDeviceInfo 776
AEEDeviceItem 778
AEEDNSClass 780
AEEDNSItem 781
AEEDNSResponse 782
AEEDNSType 783
AEEFileInfoEx 784
AEEFileUseInfo 785
AEEFontInfo 786
AEEGPSConfig 788

Contents

xx

AEEGPSInfo 790
AEEGSM1xSig_NotifyMessageType 792
AEEGSM1xSig_RejectMessageType 793
AEEGSM1xSig_SignalingMessageType 794
AEEGSM1xControl_statusType 795
AEELogBinMsgType 796
AEELogBucketType 797
AEELogItemType 798
AEELogParamType 799
AEELogRcdHdrType 802
AEELogVerHdrType 803
AEEMedia 804
AEEMediaCallback 805
AEEMediaCmdNotify 806
AEEMediaData 809
AEEMediaMIDISpec 810
AEEMediaMP3Spec 811
AEEMediaSeek 813
AEENotify 814
AEENotifyStatus 815
AEEOrientationInfo 816
AEEObjectHandle 817
AEEParmInfo 818
AEEPosAccuracy 819
AEEPositionInfo 820
AEERasterOp 821
AEERect 823
AEERingerCat 824
AEERingerCatID 825
AEERingerEvent 826
AEERingerID 827
AEERingerInfo 828
AEERLP3Cfg 829
AEESectorInfo 830
AEESize 831
AEESMSMsg 832
AEESMSTextMsg 833
AEESoundPlayerFile 834
AEETextInputMode 835
AEETextInputModeInfo 836
AEETileMap 837
AEETransformMatrix 839
AEEUDPUrgent 840
Camera Command codes 841
Camera Control Parameters 842
Camera Status codes 849
CameraExifTagInfo 850
CMediaFormat 851
CMediaMIDI 852
CMediaMIDIOutMsg 853

Contents

xxi

CMediaMIDIOutQCP 854
CMediaMP3 855
CMediaPMD 856
CMediaQCP 857
Configuation Parameters 858
CtlAddItem 863
CtlValChange 864
FileAttrib 865
FileInfo 866
GSMSMSEncodingType 867
GSMSMSMsg 868
GSMSMSMsgType 869
GSMSMSRawMsg 870
GSMSMSStatusType 871
GSMSMSStorageType 872
I3D_Events 873
IDC_COMMAND_RESERVED 874
IDIB 875
INAddr 877
INPort 878
ITransform Properties 879
NativeColor 880
NetSocket 881
NetState 882
OEMAppEvent 883
oemLogType 884
PFNCBCANCEL 885
PFNDLTEXT 886
PFNMEDIANOTIFY 887
Q12 Fixed Point Format 888
Q14 Fixed Point Format 889
Q16 Fixed Point Format 890
Q3D File Format 891
PFNNOTIFY 893
PFNPOSITIONCB 894
PFNRINGEREVENT 895
PFNSIONOTIFY 896
PhoneState 897
RGBVAL 898
SockIOBlock 899
Sprite Properties 900
TAPIStatus 902
Tile Map Properties 904
Tile Properties 905

Functions and Data Types 906

22

Introducing the BREW OEM
API Reference for MSM™

Platform

This document provides manufacturers with information about the Binary Runtime
Environment for Wireless (BREW) OEM functions. With these functions, OEM devices
become BREW-enabled.

In this reference
This remainder of the this reference manual contains the following sections:

Each function is listed with the following Information:

BREW API Interfaces Describes the BREW interfaces and functions that are used by the
OEM APIs.

Data Types Describes the data structures that are used by the OEM APIs.

Functions and Data types Provides an alphabetic listing of all functions and data types
discussed in this reference.

Description: An explanation of the function’s use.

Prototype: A sample of the structure of a call.

Parameters: The items to be input and the items returning.

Return Values: The items returning from the function call, including types, messages, values,
structures, and descriptions.

Comments: Any special considerations and extra information to assist in understanding the
function’s use, limitations, and boundaries.

Side Effects: Any behavior that the function exhibits that may not be normally considered when
using a function call. This heading only appears when there is a side effect.

See Also: Cross-references to any related function or data structure.

23

Introducing the BREW OEM API Reference for MSM™ Platform

BREW SDK™ documentation set
The BREW documentation set contains the following documents:

BREW OEM documentation set
The BREW OEM documentation set includes the following documents:

BREW SDK User’s Guide Introduces the components of the BREW Software Development Kit
(BREW SDK™) and their relationship to one another. The document
also contains general instructions for developing BREW applications
and for using the BREW Emulator.

BREW API Reference Provides information about BREW functions and data structures
needed to develop applications for BREW-enabled mobile platforms.

BREW Device Configurator
Guide

Describes how to use the BREW Device Configurator to create
effective wireless devices for emulation by the BREW Emulator.

BREW Resource Editor Guide Describes how to use the BREW Resource Editor to create the text
strings, images, and dialogs for BREW applications.

BREW MIF Editor Guide Describes how to use the BREW MIF Editor to create and modify
MIFs—a special type of BREW resource file that contains information
about the classes and applets supported by particular BREW
modules.

BREW SDK™ Utilities Guide Describes how to use the utilities, such as the PureVoice Converter,
included with the BREW SDK.

BREW Compressed Image
Authoring Guide

Describes how to use the BREW Compressed Image Authoring Tool
to create files for displaying and animating images in your
applications.

BREW OEM Porting Guide Describes the interfaces required from the OEM that allow the
BREW AEE to provide various applications services.

BREWapi OEM API Reference Describes the OEM mobile interface layer (MIL) and chip interface
layer (ChIL) details.

BREW OEM Application Test (OAT)
Guide

Describes which tests to run and how to run them.

BREW Core Application Guide Provides MobileShop/Application Manager application
requirements and reference UI specs for an OEM that is
developing a device for a carrier.

BREWStoneTM User’s Guide Describes the Brewstone benchmarking tool designed to test the
efficiency of BREW devices against the base device QCP3035.

24

Introducing the BREW OEM API Reference for MSM™ Platform

BREW OEM acronyms

ADS Application Download Server

AEE Application Execution Environment

APCS ARM Procedure Call Standard

API Application Programming Interface

ARM Asynchronous Response Mode

ASIC Application-specific integrated circuit

BREW Binary Runtime Environment for Wireless.

ChIL Chip Interface Layer

ClassID 32-bit IDs for identifying BREW classes and applets. These IDs are assigned at the
site www.qualcomm.com/brew/sdk/classid. BREW ClassIDs are available to
authenticated developers only.

DC Display Context

DMSS Dual Mode Subscriber Software

Interface An abstract class providing a set of methods for a specific service. For example,
the IDisplay interface provides a set of methods for basic display services. Each
interface has a unique class identifier (AEECLSID), and the name of each interface
begins with the letter “I.” In BREW, all the interfaces are derived from a base level
class interface called IBase. IBase consists of two standard methods for
incrementing and decrementing the reference count of an object. This reference
count mechanism allows an object to be shared by multiple users.

IP Internet Protocol

ISOD Interface Specification and Operational Description

MIDI Musical Instrument Digital Interface

MIF Module Information File. The MIF Editor generates this binary file, which contains
information regarding the list of classes and applets supported by the modules.

MIL Mobile Interface Layer

MIME Multipurpose Internet Mail Extensions

NVRAM Non-volatile random access memory

OAT BREW OEM Acceptance Test

OEM Original equipment manufacturer
The phrase 'called by the OEM” means the function is called from the device code.

PNG Portable Network Graphics

RAM Random access memory

SDK Software development kit

SDT Software development toolkit

SMS Short message service

http://www.qualcomm.com/brew/sdk/classid

25

Introducing the BREW OEM API Reference for MSM™ Platform

BREW architecture
The following figure illustrates BREW architecture and its interaction with other software
components of the device.

BREW architecture and interactions

TCP Transmission Control Protocol

UI OEM device user interface (non-BREW)

UTF8 Unicode Transformation format 8 bit encoding form. UTF8 serializes a Unicode
scalar value (code point) as a sequence of one to four bytes.

Wide string A character string composed of 16-bit characters. Wide strings are used for
character encoding, such as Unicode that require more than 8 bits per character.

BREW Applications
(Games, Browsers, Viewers, etc.)

Applet Java

MIL ChiL

OEM Drivers Chip Specific
Software

OS/Executive

OEM Hardware Processor

26

Introducing the BREW OEM API Reference for MSM™ Platform

For more information
Online information and support is available for BREW application developers. Please visit the
BREW web site for details: www.qualcomm.com/brew.

http://www.qualcomm.com/brew

27

AEEBitFont Interface

The Interface provides a way to create an IFont interface from a Brew Bit Font (BBF).

List of Header files to be included

The following header file is required:

AEEBitFont.h

List of functions

Functions in this interface include:

AEEBitFont_NewFromBBF()

The remainder of this section provides details for each function.

28

AEEBitFont Interface

AEEBitFont_NewFromBBF()
Description:

This function may be called by the OEM layer to create an IFont interface from a Brew
Bit Font (BBF). A BBF is created using the BBFGEN.EXE tool.

Prototype:
int AEEBitFont_NewFromBBF

(
const byte *pbyMem,
int cbMem,
void *pvStorage,
PFNREALLOC pfnRealloc,
IFont **ppIFont
)

Parameters:

Return Value:
SUCCESS if successful.
EBADPARM if a parameter is invalid.
EINVALIDFORMAT if pbyMem is not in BBF format.
ENOMEMORY if not enough memory.

Comments:
None.

pbyMem [in] Source data in BBF format.

cbMem [in] Size in bytes of the BBF data in pbyMem.

pvStorage [in] Controls how the memory in pbyMem[] is treated. It will hold
one of the following values:

1. pointer to memory block => the object can retain pointers
into pbyMem[] instead of copying out the data. If the object is
successfully created, it will free this pointer using pfnRealloc
at some point. If creation fails, this pointer will not be freed.

2. AEEBITFONT_COPYDATA => This function must copy
any data it needs from pbyMem[] before returning.

3. AEEBITFONT_STATICDATA => The IFont will retain
pointers into pbyMem[]. It does not need to free anything.

pfnRealloc [in] Pointer to realloc() function to be used for all memory
allocation and deallocation. This may be NULL, in which case
the BREW heap will be used for all memory operations.

ppIFont [out] New instance of IFont interface created from the BBF.

29

AEEBitFont Interface

See Also:
None.
Return to the List of functions

30

AEE Media Interface

AEEMedia is the base class of all IMedia-based classes. The Interface provides applications
the ability to

• Register the MIME type of the class

• Make sure a command can be executed in a particular state

• Manage the IMedia state machine

• Handle IMedia callbacks and makes callbacks into application

• Stop IMedia when IMedia is released

List of Header files to be included

The following header file is required:

AEEMedia.h

31

AEE Media Interface

List of functions

Functions in this interface include:

AEEMedia_AddRef()
AEEMedia_CallbackNotify()
AEEMedia_Delete()
AEEMedia_GetMediaParm()
AEEMedia_GetState()
AEEMedia_GetTotalTime()
AEEMedia_Init()
AEEMedia_New()
AEEMedia_Pause()
AEEMedia_Play()
AEEMedia_QueryInterface()
AEEMedia_Record()
AEEMedia_RegisterNotify()
AEEMedia_Release()
AEEMedia_Resume
AEEMedia_Seek()
AEEMedia_SetMediaParm()
AEEMedia_Stop()

The remainder of this section provides details for each function.

32

AEE Media Interface

AEEMedia_AddRef()
Description:

Increments the reference count of IMedia object.

Prototype:
uint32 AEEMedia_AddRef(IMedia * po);

Parameters:
po: Pointer to IMedia

Return Value:
Incremented ref count

Comments:
None

See Also:
AEEMedia_Release()
Return to List of functions

33

AEE Media Interface

AEEMedia_CallbackNotify()
Description:

This function is registered with CMediaMMLayer for callbacks from the multimedia
layer. It performs state management and calls the user-registered callback function.

Prototype:
void AEEMedia_CallbackNotify(AEEMedia * pme, AEEMediaCallback * pmcb);

Parameters:
pme: Pointer to AEEMedia
pmcb: Pointer to media callback structure

Return Value:
None

Comments:
This function is called in BREW context.

See Also:
AEEMediaCallback
AEEMedia_Play()
AEEMedia_Record()
AEEMedia_Stop()
Return to List of functions

34

AEE Media Interface

AEEMedia_Delete()
Description:

This function is the base class destructor.

Prototype:
void AEEMedia_Delete(IMedia * po);

Parameters:
po: Pointer to IMedia

Return Value:
None

Comments:
None

See Also:
None
Return to List of functions

35

AEE Media Interface

AEEMedia_GetMediaParm()
Description:

This function handles MM_PARM_MEDIA_DATA and MM_PARM_CLSID.

Prototype:
int AEEMedia_GetMediaParm

(
IMedia * po,
int nParamID,
int32 * pP1,
int32 * pP2
);

Parameters:
po: Pointer to the IMedia Interface object
nParmID: MM_PARM_XXX
pP1: Depends on parm
pP2: Depends on parm

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot get parm in the current state

Comments:
None

See Also:
None
Return to List of functions

36

AEE Media Interface

AEEMedia_GetState()
Description:

This function returns the current state of IMedia and also indicates the IMedia object is
currently in state transition.

Prototype:
int AEEMEDIA_GetState(IMedia * po, boolean * pbStateChanging);

Parameters:
po: Pointer to the IMedia Interface object
pbStateChanging: TRUE means IMedia is currently busy transitioning the state.

Return Value:
MM_STATE_XXX

Comments:
None

Side Effects:
If IMedia is currently is in state transition, then most of IMedia APIs fail and return
EBADSTATE.

See Also:
None
Return to List of functions

37

AEE Media Interface

AEEMedia_GetTotalTime()
Description:

This function checks if get total time command is valid in the current IMedia
state.

Prototype:
int AEEMedia_GetTotalTime(IMedia * po);

Parameters:
po: Pointer to IMedia

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot issue command in the current state

Comments:
None

See Also:
None
Return to List of functions

38

AEE Media Interface

AEEMedia_Init()
Description:

This function registers the MIME type in the Shell registry.

Prototype:
void AEEMedia_Init(IShell * ps, char * szMIME, AEECLSID clsHandler);

Parameters:
ps: Pointer to IShell
szMIME: MIME string
clsHandler: Class ID of the IMedia-based class

Return Value:
None

Comments:
This function is called only once during BREW initialization.

See Also:
None
Return to List of functions

39

AEE Media Interface

AEEMedia_New()
Description:

This function is the base class constructor.

Prototype:
int AEEMedia_New(IMedia * po, IShell * ps, AEECLSID cls);

Parameters:
po: Pointer to IMedia
ps: Pointer to IShell
cls: Class ID of the IMedia-based class

Return Value:
SUCCESS: Successful

Comments:
None

See Also:
AEEMedia_Delete()
AEEMedia_Init()
Return to List of functions

40

AEE Media Interface

AEEMedia_Pause()
Description:

This function checks if pause command is valid in the current IMedia
state.

Prototype:
int AEEMedia_Pause(IMedia * po);

Parameters:
po: Pointer to IMedia

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot issue command in the current state

Comments:
None

See Also:
None
Return to List of functions

41

AEE Media Interface

AEEMedia_Play()
Description:

This function checks if playback command is valid in the current IMedia
state.

Prototype:
int AEEMedia_Play(IMedia * po);

Parameters:
po: Pointer to IMedia

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot issue command in the current state

Comments:
None

See Also:
None
Return to List of functions

42

AEE Media Interface

AEEMedia_QueryInterface()
Description:

This function can be used to
(1) get a pointer to an interface or data based on the input class ID
(2) query an extended version of the IMedia-derived class
(3) support version compatibility

Prototype:
int AEEMEDIA_QueryInterface(IMedia * po, AEECLSID clsReq, void ** ppo);

Parameters:

Return Value:
Return SUCCESS on success, otherwise returns error code.

Comments:
If ppo is back a NULL pointer, the interface or data that we query is not
available.

Side Effects:
If an interface is retrieved, then this function increments its reference count.
If a data structure is retrieved, then a pointer to the internal structure is
given and user should not free it.

See Also:
None
Return to List of functions

po [in] Pointer to IMedia interface.

clsReq [in] A globally unique id to identify the entity (interface or data) that we
are trying to query.

ppo [out] Pointer to the interface or data that we want to retrieve. If the value
passed back is NULL, the interface or data that we query are not
available.

43

AEE Media Interface

AEEMedia_Record()
Description:

This function checks if record command is valid in the current IMedia state.

Prototype:
int AEEMedia_Record(IMedia * po);

Parameters:

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot issue command in the current state
MM_EBADMEDIADATA: Bad media data. Possibly ISource is used for recording.

Comments:
None

See Also:
None
Return to List of functions

po Pointer to AEE Media Interface object.

44

AEE Media Interface

AEEMedia_RegisterNotify()
Description:

This function registers a callback notification function with IMedia object.
IMedia reports asynchronous events thorough this callback.

Prototype:
int AEEMEDIA_RegisterNotify

(
IMedia * po,
PFNMEDIANOTIFY pfnNotify,
void * pUser
);

Parameters:

Return Value:
SUCCESS: Successful.
EBADSTATE: Error - IMedia is not in Ready state.

Comments:
None

See Also:
PFNMEDIANOTIFY
Return to List of functions

po Pointer to AEE Media Interface object.

pfnNotify User callback function pointer.

pUser User data to be used when calling pfnNotify().

45

AEE Media Interface

AEEMedia_Release()
Description:

Decrements the reference count of IMedia object. If reference count goes
down to zero, then it deregisters the user registered callback and
stops the IMedia playback/recording, if any.

Prototype:
uint32 AEEMedia_Release(IMedia * po);

Parameters:

Return Value:
Updated reference count. Zero if object is released.

Comments:
None

See Also:
AEEMedia_AddRef()
Return to List of functions

po Pointer to AEE Media Interface object.

46

AEE Media Interface

AEEMedia_Resume
Description:

This function checks if resume command is valid in the current IMedia
state.

Prototype:
int AEEMedia_Resume(IMedia * po);

Parameters:

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot issue command in the current state

Comments:
None

See Also:
None
Return to List of functions

po Pointer to AEE Media Interface object.

47

AEE Media Interface

AEEMedia_Seek()
Description:

This function checks if seek command is valid in the current IMedia state.

Prototype:
int AEEMedia_Seek(IMedia * po, AEEMediaSeek eSeek, int32 lTimeMS);

Parameters:

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot issue command in the current state

Comments:
None

See Also:
AEEMediaSeek
Return to List of functions

po Pointer to AEE Media Interface object.
eSeek The seek reference
lTimeMS The seek time

48

AEE Media Interface

AEEMedia_SetMediaParm()
Description:

This function handles MM_PARM_MEDIA_DATA in the Idle state.

Prototype:
int AEEMedia_SetMediaParm

(
IMedia * po,
int nParamID,
int32 p1,
int32 p2
);

Parameters:

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot set parm in the current state

Comments:
None

See Also:
None
Return to List of functions

po Pointer to the AEE Media Interface object

nParmID MM_PARM_XXX

p1 Depends on parm

p2 Depends on parm

49

AEE Media Interface

AEEMedia_Stop()
Description:

This function checks if stop command is valid in the current IMedia
state.

Prototype:
int AEEMedia_Stop(IMedia * po);

Parameters:

Return Value:
SUCCESS: Successful
EBADSTATE: Cannot issue command in the current state

Comments:
None

See Also:
None
Return to List of functions

po Pointer to AEE Media Interface object.

50

AEE Media Interface

OEMMedia_DetectType()
Description:

Given data in a buffer or the name of an object, this function detects the MIME type of
the media. This function is typically used to get the handler associated with the data
type. For example, if the data represents standard MIDI format, then this function
returns the MIME “audio/mid”. Using the MIME type, you can query Shell registry to
obtain the handler (Class ID) of type AEECLSID_MEDIA.

Prototype:
 int OEMMedia_DetectType

(
const void * cpBuf,
uint32 * pdwSize,
const char * cpszName,
const char ** pcpszMIME
);

Parameters:

Return Value:
SUCCESS: Data type is detected and MIME is returned
ENOTYPE: There is no type associated with this data
EBADPARM: Wrong input data (parameter(s))
ENEEDMORE: Need more data to perform type detection. *pdwSize contains the
required number of additional bytes.
EUNSUPPORTED: Type detection for the specified input is not supported

Comments:
pBuf takes precedence over pszName. If both of them are specified, then first pBuf is
used for type detection followed by pszName.
If the function returns ENEEDMORE, then *pdwSize is filled with the required
additional bytes to carry out the operation. Call this function again with (original dwSize
+ *pdwSize) bytes.

cpBuf [in] Buffer containing the data whose type needs to be determined

pdwSize [in/out] On input - Size of data in pBuf, unless pBuf is NULL, then ignored

On output - number of additional data bytes needed to perform
type detection

cpszName [in] Name of the object whose type needs to be determined (may be
null, if unknown).

pcpszMIME [out] MIME string returned to caller, on return, filled with a pointer to a
constant string (do not free)

51

AEE Media Interface

To determine the maximum number of bytes required to enable type detection, you can
call

if (ENEEDMORE == ISHELL_DetectType(ps, NULL, &dwReqSize, NULL,
NULL))
{
// dwReqSize contains the max bytes needed for type detection
}

See Also:
OEMRegistry_DetectType()
ISHELL_DetectType()
ISHELL_GetHandler()
ISHELL_CreateInstance().
Return to List of functions

52

AEE Object Manager
Interface

Object Manager provides an interface to

• Manage the contexts of BREW objects
(created in application context and of finite lifetime) that participate in asynchronous
operations of infinite timeout

• Facilitate the validation of the objects in asynchronous callbacks

Why is ObjectMgr needed?

To illustrate the usage of ObjectMgr, consider the following situation:

1. An application creates IMedia-based object and calls IMEDIA_Play()

2. IMEDIA_Play() in OEM layer implementation calls lower-layer device multimedia
API that takes a callback function and user data to correlate the transaction.
Assume we set user data to IMedia object pointer

3. The callback function gets fired when multimedia task sends events to BREW in
that task's context. BREW correlates the transaction, identifies the IMedia object,
saves the event info and requests for a context switch.

4. When BREW gets scheduled, BREW processes the event info corresponding to
IMedia object and delivers the event to application If the application is unloaded just
before step (3) occurs, then IMedia object pointer returned in callback event in is
invalid. Also, step (3) could occur anytime.

53

AEE Object Manager Interface

ObjectMgr solves the problem

When the IMedia object is created, the OEM layer implementation must register IMedia object
with ObjectMgr. ObjectMgr saves object info and returns an opaque object context. This
context must be used as user data in asynchronous operations. In the callbacks, first query
ObjectMgr with object context to obtain the object pointer. If the pointer is NULL, then the
object has been freed either by application or due to application unloading. In this case, drop
the callback.

ObjectMgr API:

NOTES:

• ObjectMgr is never released. It is automatically released by BREW when BREW
exits.

List of Header files to be included

The following header file is required:

OEMObjectMgr.h

List of functions

Functions in this interface include:

AEEObjectMgr_GetObject()
AEEObjectMgr_Register()
AEEObjectMgr_Unregister()

The remainder of this section provides details for each function.

AEEObjectMgr_Register() Registers the BREW object and returns the
AEEObjectHandle

AEEObjectMgr_Unregister() Unregisters the BREW object and the object handle is
no more valid

AEEObjectMgr_GetObject() Given object handle, returns the object pointer

54

AEE Object Manager Interface

AEEObjectMgr_GetObject()
Description:

Given object handle, this function retrieves the object.

Prototype:
void * AEEObjectMgr_GetObject(AEEObjectHandle hObj);

Parameters:

Return Value:
NULL: Object does not exist
Otherwise valid object pointer

Comments:
None.

See Also:
None.
Return to List of functions

hObj Handle of the object

55

AEE Object Manager Interface

AEEObjectMgr_Register()
Description:

This function registers a BREW object with the ObjectMgr. ObjectMgr returns an
opaque context to the caller.

Prototype:
int AEEObjectMgr_Register

(
void * pObject,
AEEObjectHandle * phObject
);

Parameters:

Return Value:
SUCCESS: ObjectMgr cannot allocate handle.
Otherwise error.

See Also:
AEEObjectHandle.
Return to List of functions

pObject Object to be registered
phObject Handle to the object

56

AEE Object Manager Interface

AEEObjectMgr_Unregister()
Description:

This function unregisters the object and calls the caller-registered function, if any.

Prototype:
int AEEObjectMgr_Unregister(AEEObjectHandle hObj);

Parameters:

Return Value:
SUCCESS: Unregister succeeded
Otherwise Unregister failed

Comments:
The handle should not be used after unregistration.

See Also:
None.
Return to List of functions

hObj Handle of the object

57

I3D Interface

This interface provides definitions for the 3D graphics engine. Application developers
need to be aware of possible multiplication overflow when the range of individual
triangles becomes too large in the rendering process.
The 3D engine is a fixed-point implementation for rendering three dimensional
triangles. The graphics model coordinates are in 16.16 format. List of Header files to
be included

The following header file is required:

AEE3D.h

List of functions

Functions in this interface include:

I3D_AddRef()
I3D_ApplyModelViewTransform()
I3D_CalcVertexArrayNormal()
I3D_CalcVertexArrayColor()
I3D_ClearFrameBuf()
I3D_GetClipRect()
I3D_GetCoordTransformMode()
I3D_GetCullingMode()
I3D_GetDestination()
I3D_GetFocalLength()
I3D_GetLight()
I3D_GetLightingMode()
I3D_GetMaterial()
I3D_GetModelViewTransform()
I3D_GetRenderMode()
I3D_GetScreenMapping()
I3D_GetTexture()
I3D_GetViewDepth()
I3D_PopMatrix()
I3D_PushMatrix()
I3D_QueryInterface()
I3D_RegisterEventNotify()
I3D_Release()
I3D_RenderTriangleFan()
I3D_RenderTriangles()

58

I3D Interface

I3D_RenderTriangleStrip()
I3D_ResetZBuf()
I3D_SetClipRect()
I3D_SetCoordTransformMode()
I3D_SetCullingMode()
I3D_SetDestination()
I3D_SetFocalLength()
I3D_SetLight()
I3D_SetLightingMode()
I3D_SetMaterial()
I3D_SetModelViewTransform()
I3D_SetRenderMode()
I3D_SetScreenMapping()
I3D_SetTexture()
I3D_SetViewDepth()
I3D_StartFrame()

The remainder of this section provides details for each function.

59

I3D Interface

I3D_AddRef()
Description:

This function increments the reference count for the 3D graphics class.

Prototype:
uint32 I3D_AddRef(I3D* pI3D);

Parameters:

Return Value:
The updated reference count.

Comments:
None

See Also:
I3D_Release()
Return to the List of functions

pI3D Pointer to a I3D interface whose reference count need to be incremented.

60

I3D Interface

I3D_ApplyModelViewTransform()
Description:

General API for doing model-view transformation given a pointer to a sequence of
vertex coordinate vectors and number of vertices to be transformed. The Type of
transformation is determined by the transformation mode. The output will update the
location vectors in the vertex structure.

Prototype:
int I3D_ApplyModelViewTransform(

I3D* pI3D,
AEE3DTLVertex* pVertex,
AEE3DPoint* pVertexBuf,
uint32 n);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
AEE3DTLVertex
Return to the List of functions

pI3D :[in] Pointer to I3D interface.

pVertex :[out] Vertex structure for 3D rendering.

pVertBuf :[in] Pointer to a sequence of coordinates (x,y,z).

n :[in] Number of vertices.

61

I3D Interface

I3D_CalcVertexArrayNormal()
Description:

Calculates the normal components (nx, ny, nz) in the vertex normal array.

Prototype:
int I3D_CalcVertexArrayNormal
 (
 I3D* pme,
 AEE3DPoint16* pVertexNormalArray,
 uint16* pVertexIndexArray,
 uint32 num_triangles,
 AEE3DPoint* pVertexArray,
 AEE3DPrimitiveType Prim_type
)

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
AEE3DPoint
AEE3DPoint16
AEE3DPrimitiveType
AEE3DTLVertex
Return to the List of functions

pI3D [in] Pointer to I3D interface

pVertexNormalArray [in/out] Pointer to vertex normal array

pVertexIndexArray [in] Pointer to the index vertex array

num_triangles [in] Number of triangles

pVertexArray [in] Pointer to array of vertices

Prim_type [in] Type of primitive the Vertex Index Array is
referring to. (that is, triangles, triangle fan, and
so on)

62

I3D Interface

I3D_CalcVertexArrayColor()
Description:

Calculates the color (rgb) values in the AEETLVertex array.

Prototype:
int I3D_CalcVertexArrayColor

(
I3D* pI3D, AEE3DTLVertex* pVertexArray,
uint16* pVertexIndexArray,
uint32 num_vertices,
AEE3DPoint16* pVertexNormalArray,
AEE3DPrimitiveType Prim_type
)

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
AEE3DPoint
AEE3DPoint16
AEE3DPrimitiveType
AEE3DTLVertex
Return to the List of functions

pI3D [in] Pointer to I3D interface

pVertexArray [in/out] Pointer to a list of AEETLVertex

pVertexIndexArray [in] The index list of vertices

num_vertices [in] Number of vertices

pVertexNormalArray [in] The list of vertex normals

Prim_type [in] Type of primitive the pVertexList is referring
to. (that is, Triangles, Triangle fan, and so on)

63

I3D Interface

I3D_ClearFrameBuf()
Description:

Clear 3D frame buffer with background color

Prototype:
void I3D_ClearFrameBuf(I3D* pI3D);

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pI3D [in] Pointer to I3D interface.

64

I3D Interface

I3D_GetClipRect()
Description:

This function gets the clipping rectangle. All output parameters will be in terms of
number of pixels.

Prototype:
int I3D_GetClipRect(I3D* pI3D, AEERect* pRect);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
pRect->x: The horizontal coordinate for the top left corner of the rectangle.
pRect->y: The vertical coordinate for the top left corner of the rectangle.
pRect->dx: The width of the clipping rectangle.
pRect->dy: The height of the clipping rectangle.

See Also:
I3D_SetClipRect()
AEERect
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pRect [out] Pointer to a AEERect.

65

I3D Interface

I3D_GetCoordTransformMode()
Description:

NOTE: This function is currently not supported.
This function gets the coordinate transformation type from the graphics context. This
will indicate which coordinate transformation will be applied before triangles are
rendered.

Prototype:
int I3D_GetCoordTransformMode

(
I3D* pI3D,
AEE3DCoordinateTransformType* pType
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_SetCoordTransformMode()
AEE3DCoordinateTransformType.
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pType [out] Pointer to a Coordinate Transformation type.

66

I3D Interface

I3D_GetCullingMode()
Description:

This function gets the culling type. This will indicate which triangles should be
discarded before they are mapped to the screen. By default, triangles with vertices
arranged in counterclockwise rotation will be visible. A counterclockwise orientation
indicates front-facing. A clockwise orientation is considered back facing.

Prototype:
int I3D_GetCullingMode(I3D* pI3D, AEE3DCullingType* pFacing);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_SetCullingMode()
AEE3DCullingType
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pFacing [out] Pointer to culling type.

67

I3D Interface

I3D_GetDestination()
Description:

This function will get the Frame Buffer from I3D.

Prototype:
int I3D_GetDestination(I3D* pI3D,IBitmap** pFrameBuffer);

Parameters:

Return Value:
Return SUCCESS on success,
Otherwise returns error code.

Comments:
Currently, I3D only accepts 16 bpp device dependant bitmap (DDB). If pBitmap is not
16bpp DDB, it will return EUNSUPPORTED.

See Also:
I3D_SetDestination()
I3D_ClearFrameBuf()
I3D_ResetZBuf()
IBitmap Interface
Return to the List of functions

pI3D [in] Pointer to I3D interface.
pFrameBuffer [out] IBitmap* pointer for 3D graphics framebuffer.

68

I3D Interface

I3D_GetFocalLength()
Description:

This function gets the focal length. The output range will be within the depth of z-buffer
(1-32767).

Prototype:
int I3D_GetFocalLength(I3D* pI3D,uint16* pFocalLength);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
The z-buffer is 16 bits in this release.

See Also:
I3D_SetFocalLength()
I3D_GetViewDepth()
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pFocalLength [out] Pointer to a Focal Length

69

I3D Interface

I3D_GetLight()
Description:

This function will get the lighting properties for the specified light type.

Prototype:
int I3D_GetLight(I3D* pI3D,AEE3DLightType type, AEE3DLight* light);

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
AEE3DLight
AEE3DLightType
I3D_GetLightingMode()
I3D_SetLight()
Return to the List of functions

pI3D [in] Pointer to I3D interface

type [in] The lighting type

light [out] The light values

70

I3D Interface

I3D_GetLightingMode()
Description:

This function will get the lighting mode values. This mode will indicate what lighting is
enabled for rendering.

Prototype:
int I3D_GetLightingMode (I3D* pI3D, AEE3DLightingMode* pMode);

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
I3D_SetLight()
I3D_SetLightingMode()
AEE3DLight
AEE3DLightingMode
AEE3DLightType
Return to the List of functions

pI3D [in] Pointer to I3D interface

pMode [out] Pointer to current lighting mode

71

I3D Interface

I3D_GetMaterial()
Description:

This function gets the current material.

Prototype:
int I3D_GetMaterial(I3D* pI3D, AEE3DMaterial* pMaterial);

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
AEE3DMaterial
I3D_SetMaterial()
Return to the List of functions

pI3D [in] Pointer to I3D interface

pMaterial [out] Pointer to the material

72

I3D Interface

I3D_GetModelViewTransform()
Description:

This function gets the fixed point transformation matrix. It is copied from the
ModelViewTransform member of the graphics context structure.

Prototype:
int I3D_GetModelViewTransform

(
I3D* pI3D,
AEE3DTransformMatrix* pMatrix
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_SetModelViewTransform()
AEE3DTransformMatrix
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pMatrix [out] Pointer to a transformation matrix.

73

I3D Interface

I3D_GetRenderMode()
Description:

This function gets the rendering type. It indicates how the triangle will be filled based
on the surface color, texel and shading mode.

Prototype:
int I3D_GetRenderMode(I3D* pI3D, AEE3DRenderType* pType);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_SetRenderMode()
AEE3DRenderType
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pType [out] Pointer to a Render type

74

I3D Interface

I3D_GetScreenMapping()
Description:

This function gets the fixed-point screen mapping. The scaling part of the output is in
Q12 format. The translation or shift part is in pixel units.

Prototype:
int I3D_GetScreenMapping

(
I3D* pI3D,
int32* sx,
int32* sy,
int32* shftx,
int32* shfty
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
1 in Q12 = 4096

Also see:
Q12 Fixed Point Format
I3D_SetScreenMapping()
Return to the List of functions

pI3D [in] Pointer to I3D interface.

sx [out] Pointer that will contain the X-scaling in Q12 format.

sy [out] Pointer that will contain the Y-scaling in Q12 format.

shftx [out] Pointer that will contain the X-shift in number of pixels.

shfty [out] Pointer that will contain the Y-shift in number of pixels.

75

I3D Interface

I3D_GetTexture()
Description:

This function gets the texture of a specific type that is used in 3D rendering. A NULL
output pointer indicates that no texture image of the given type is being used.

Prototype:
int I3D_GetTexture

(
I3D* pI3D,
AEE3DTexture* pTexture
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_SetTexture()
AEE3DTexture
AEE3DTextureType
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pTexture [out] Pointer that contains the texture from the graphics context.

76

I3D Interface

I3D_GetViewDepth()
Description:

This function gets the view depth in graphics context. Objects outside the view depth
will not be rendered.

Prototype:
int I3D_GetViewDepth(I3D* pI3D, uint16* pZ0, uint16* pZ1);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
The z-buffer is 16 bit in this release.

See Also:
I3D_SetViewDepth()
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pZ0 [out] Pointer will contain value of the near view plane (1 <= z0 < z1)

pZ1 [out] Pointer will contain value of the far view plane (z0 < z1 <=32767)

77

I3D Interface

I3D_PopMatrix()
Description:

This function will pop the current Matrix off the stack.

Prototype:
int I3D_PopMatrix(I3D* pI3D)

Parameters:

Return Value:
Returns SUCCESS on success, otherwise returns error code.

Comments:
None

See Also:
I3D_PushMatrix()
AEE3DMatrixMode
Return to the List of functions

pI3D [in] Pointer to I3D interface

78

I3D Interface

I3D_PushMatrix()
Description:

 This function will push the current Matrix onto the stack.

Prototype:
 int I3D_PushMatrix(I3D* pI3D).

Parameters:

Return Value:
Returns SUCCESS on success, otherwise returns error code.

Comments:
The default max stack size is 32

See Also:
I3D_PopMatrix()
AEE3DMatrixMode
Return to the List of functions

pI3D [in] Pointer to I3D interface

79

I3D Interface

I3D_QueryInterface()
Description:

This function retrieves a pointer to what you query, according to the input class ID. This
function can be used to query an extended version of I3D. This supports version
compatibility.

Prototype:
int I3D_QueryInterface(I3D* pI3D, AEECLSID id, void** p);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
If “p” passes back a NULL pointer, the data or interface that we query are not
available.

See Also:
None
Return to the List of functions

pI3D [in] Pointer to I3D interface.

id [in] A globally unique id to identify the entity (interface or data) that we
are trying to query.

p [out] Pointer to the data or interface that we want to retrieve. If the value
passed back is NULL, the interface or data that we query are not
available.

80

I3D Interface

I3D_RegisterEventNotify()
Description:

Registers an event callback function to be invoked whenever there is some new event
or information to report about an asynchronous I3D operation. The application will not
block on 3D rendering functions. The application developer needs to register a
callback function to be notified when it is okay to start the next frame and to update the
display. See the 3D events section to understand what each event means.

Prototype:
int I3D_RegisterEventNotify(I3D* pI3D, PFNEVENTNOTIFY pfn, void*
pUser);

Parameters:

Return Value:
Always returns SUCCESS.

Comments:
An event callback function MUST be registered to properly use the 3D engine. It could
be possible to update the display in the middle of rendering a frame if the user does
not wait for the approriate event. Check the notified event to make sure it is okay to
modify data or update the display. YOU MUST USE THIS FUNCTION IN EVERY
APPLICATION.

Side Effects:
If not used the 3D application will not know when to update the display correctly.

See Also:
3D Events
AEE3DEventNotify
I3D_StartFrame()
Return to the List of functions

pI3D [in] Pointer to I3D interface object

pfn [in] Pointer to the callback function to invoke to notify the application
of events (NULL to deregister)

pUser [in] User data to be passed to callback when it is invoked

81

I3D Interface

I3D_Release()
Description:

This function decrements the reference count for the 3D graphics object and does
appropriate cleanup if the reference count reaches zero.

Prototype:
uint32 I3D_Release(I3D* pI3D);

Parameters:

Return Value:
The updated reference count

Comments:
None

See Also:
None
Return to the List of functions

pI3D Pointer to the I3D interface whose reference count needs to be decremented.

82

I3D Interface

I3D_RenderTriangleFan()
Description:

Render a triangle fan where each additional vertex defines a new triangle after the
initial two vertices are defined. The first vertex is part of every triangle.

Prototype:
int I3D_RenderTriangleFan

(
I3D* pI3D,
AEE3DTLVertex* pVertexArray,
const uint16* pVertexIndexArray,
uint32 num_of_triangles,
uint32 num_of_vertices
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_RenderTriangles()
I3D_RenderTriangleStrip()
AEE3DTLVertex
Return to the List of functions

pI3D Pointer to I3D interface

pVertexArray List of vertices

pVertexIndexArray Index list to the vertex list

num_of_triangles Number of triangles

num_of_vertices Number of vertices

83

I3D Interface

I3D_RenderTriangles()
Description:

Render one or more triangles.

Prototype:
int I3D_RenderTriangles

(
I3D* pI3D,
AEE3DTLVertex* pVertexArray,
const uin16* pVertexIndexArray,
uint32 num_of_triangles,
uint32 num_of_vertices
);

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
I3D_RenderTriangleStrip()
I3D_RenderTriangleFan()
AEE3DTLVertex
Return to the List of functions

pI3D [in] Pointer to I3D interface

pVertexArray [in] List of vertices

pVertexIndexArray [in] List of indicies into the vertex list. Every three of them
in sequence define a triangle

num_of_triangles [in] Number of triangles

num_of_vertices [in] Number of vertices

84

I3D Interface

I3D_RenderTriangleStrip()
Description:

Renders a triangle strip, where each additional vertex defines a new triangle after the
initial two vertices are defined.

Prototype:
int I3D_RenderTriangleStrip

(
I3D* pI3D,
AEE3DTLVertex* pVertexArray,
const uin16* pVertexIndexArray,
uint32 num_of_triangles,
uint32 num_of_vertices

);Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
I3D_RenderTriangles()
I3D_RenderTriangleFan()
AEE3DTLVertex
Return to the List of functions

pI3D [in] Pointer to I3D interface

pVertexArray [in] List of vertices

pVertexIndexArray [in] List of indices into the vertex list. Every three of them in
sequence define a triangle

num_of_triangles [in] Number of triangles

num_of_vertices [in] Number of vertices

85

I3D Interface

I3D_ResetZBuf()
Description:

This function resets the Z buffer to the highest depth value (65535 for 16 bit z-buffer).

Prototype:
void I3D_ResetZBuf(I3D* pI3D);

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pme [in] Pointer to I3D interface.

86

I3D Interface

I3D_SetClipRect()
Description:

This function sets the clipping rectangle. All input parameters are in pixel units. Objects
outside the clipping rectangle will not be rendered. The clipping rectangle is the full
display area by default.

Prototype:
int I3D_SetClipRect(I3D* pI3D, const AEERect* pRect);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
pRect->x: The horizontal coordinate for the top left corner
of the clipping rectangle.
pRect->y: The vertical coordinate for the top left corner
of the clipping rectangle.
pRect->dx: The width of the clipping rectangle.
pRect->dy: The height of the clipping rectangle.

See Also:
I3D_GetClipRect()
AEERect
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pRect [in] Pointer to a Clipping Rectangle.

87

I3D Interface

I3D_SetCoordTransformMode()
Description:

NOTE: This function is currently not supported.
Set coordinate transformation type. This will indicate which coordinate transformation
will be applied before triangles are rendered. Model view transformation, projection,
and screen mapping, all will be applied by default.

Prototype:
int I3D_SetCoordTransformMode

(
I3D* pI3D,
AEE3DCoordinateTransformType type
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_GetCoordTransformMode()
AEE3DCoordinateTransformType
Return to the List of functions

pI3D [in] Pointer to I3D interface.

type [in] Coordinate Transformation type.

88

I3D Interface

I3D_SetCullingMode()
Description:

Set FRONT or BACK face culling. This will indicate which triangles should be
discarded before they are rendered. By default, triangles with vertices arranged in
counter-clock wise rotation will be visible. A counter-clock wise rotation indicates front-
facing. A clock-wise rotation is considered back-facing.

Prototype:
int I3D_SetCullingMode(I3D* pI3D, AEE3DCullingType facing);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
Default value is BACK_FACING

See Also:
I3D_GetCullingMode()
AEE3DCullingType
Return to the List of functions

pI3D [in] Pointer to I3D interface.

facing [in] either FRONT or BACK facing polygons will be culled.

89

I3D Interface

I3D_SetDestination()
Description:

This function will set the Frame Buffer for I3D.

Prototype:
int I3D_SetDestination(I3D* pI3D, IBitmap* pFrameBuffer);

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
Currently, I3D only accepts 16 bpp device dependant bitmap (DDB). If pBitmap is not
16bpp DDB, it will return EUNSUPPORTED.

See Also:
I3D_GetDestination()
I3D_ClearFrameBuf()
I3D_ResetZBuf(),
IBitmap Interface,
Return to the List of functions

pI3D [in] Pointer to I3D interface

pFrameBuffer [in] IBitmap pointer for 3D graphics frame buffer

90

I3D Interface

I3D_SetFocalLength()
Description:

Set focal length. The input range should be within the depth of z-buffer. Perspective
division is not performed when focal length=0.

Prototype:
int I3D_SetFocalLength(I3D* pI3D,uint16 f);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_GetFocalLength()
Return to the List of functions

pI3D [in] Pointer to I3D interface.

f [in] Focal length (1<= f<= 32767)

91

I3D Interface

I3D_SetRenderMode()
Description:

This function sets the rendering type. It determines how the triangle will be filled based
on the surface color, texel, and shading mode. A triangle will be shaded with a single
color (flat-shading) by default.

Prototype:
int I3D_SetRenderMode(I3D* pI3D, AEE3DRenderType type);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_GetRenderMode()
AEE3DRenderType
Return to the List of functions

pI3D [in] Pointer to I3D interface.

type [in] Render type

92

I3D Interface

I3D_SetScreenMapping()
Description:

Set fixed-point screen mapping matrix. The scaling part of input is in Q12 Fixed Point
Format. The translation part is in number of pixels. Input range is not checked

Prototype:
int I3D_SetScreenMapping

(
I3D* pI3D,
int32 sx,
int32 sy,
int32 shftx,
int32 shfty
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
Q12 Fixed Point Format
I3D_GetScreenMapping()
Return to the List of functions

pI3D [in] Pointer to I3D interface.

sx [in] X-scaling in Q12 format (unit scaling = 4096)

sy [in] Y-scaling in Q12 format (unit scaling = 4096)

shftx [in] X-shift (in pixel).

shfty [in] Y-shift (in pixel).

93

I3D Interface

I3D_SetTexture()
Description:

Set texture to be used in 3D rendering. A NULL input pointer indicates that the
corresponding texture image will not be used. Texture is initialized to NULL by default.

Prototype:
int I3D_SetTexture

(
I3D* pI3D,
AEE3DTexture* pTexture
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_GetTexture()
AEE3DTexture
AEE3DTextureType
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pTexture [in] Pointer to a texture object.

94

I3D Interface

I3D_SetViewDepth()
Description:

Set view depth to be used in graphics context. Objects outside the view depth will not
be rendered. The default view depth is the entire range of the z-buffer (0-65535).

Prototype:
int I3D_SetViewDepth(I3D* pI3D,uint16 z0,uint16 z1);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
The z-buffer is 16 bit. The default view depth is set to (1,2048).

See Also:
I3D_GetViewDepth()
Return to the List of functions

pI3D [in] Pointer to I3D interface.

z0 [in] The near view plane (1 <= z0 < z1)

z1 [in] The far view plane (z0 < z1 < 32767

95

I3D Interface

I3D_SetLight()
Description:

 This function will set the lighting properties for the specified light type.

Prototype:
 int I3D_SetLight(I3D* pI3D,AEE3DLight plight);

Parameters:

Return Value:
Return SUCCESS on success.
Otherwise returns error code.

Comments:
None

See Also:
AEE3DLight
I3D_SetLightingMode()
I3D_GetLight()
Return to the List of functions

pI3D [in] Pointer to I3D interface.

plight [in] Pointer to a light.

96

I3D Interface

I3D_SetLightingMode()
Description:

This function will set the lighting mode. This mode will indicate what lighting is enabled
for rendering.

Prototype:
 int I3D_SetLightingMode(I3D* pI3D,AEE3DLightingMode mode);

Parameters:

Return Value:
Return SUCCESS on success
Otherwise returns error code

Comments:
None

See Also:
AEE3DLight
I3D_SetLight()()
I3D_GetLightingMode()
Return to the List of functions

pI3D [in] Pointer to I3D interface

mode [in] The lighting mode

97

I3D Interface

I3D_SetMaterial()
Description:

This function sets the current material properties.

Prototype:
int I3D_SetMaterial(I3D* pI3D,AEE3DMaterial* pMaterial);

Parameters:

Return Value:
SUCCESS on success
Error code otherwise

Comments:
None

See Also:
AEE3DMaterial
I3D_GetMaterial()
Return to the List of functions

pI3D [in] Pointer to I3D interface

pMaterial [in] Pointer to the material

98

I3D Interface

I3D_SetModelViewTransform()
Description:

Set fixed point transformation matrix. The input matrix is assumed to have the correct
Q-factor. It is copied to the Model View Transform Matrix of the graphics context
structure. Range of input is not checked.

Prototype:
int I3D_SetModelViewTransform

(
I3D* pI3D,
const AEE3DTransformMatrix* pMatrix
);

Parameters:

Return Value:
SUCCESS on success.
Error code otherwise.

Comments:
None

See Also:
I3D_GetModelViewTransform()
AEE3DTransformMatrix
Return to the List of functions

pI3D [in] Pointer to I3D interface.

pMatrix [in] Pointer to a Model-view transformation matrix.

99

I3D Interface

I3D_StartFrame()
Description:

This function will not block but will run asynchronous. It will tell the 3D graphics engine
to start processing and rendering the current frame.

Prototype:
int I3D_StartFrame(I3D* po);

Parameters:

Return Value:
SUCCESS: Command accepted.
EFAILED: General failure.
EBADPARM: Bad parm is passed.
ENOMEMORY: Not enough memory.

Comments:
MUST register an event callback function to properly use the 3D engine. It could be
possible to update the display in the middle of rendering a frame if the user does not
wait for the approriate event. Check the notified event to makes sure it is okay to modify
data or update the display. YOU MUST USE THIS FUNCTION IN EVERY
APPLICATION.

Side Effects:
If NOT called the 3D graphics engine will not know when to start rendering the current
frame. THIS FUNCTION MUST BE CALLED TO START THE RENDERING ENGINE.

See Also:
I3D_RegisterEventNotify()
3D Event types
Return to the List of functions

po [in] Pointer to I3D interface.

100

I3DUtil Interface

This interface provides definitions for the 3D graphics Utility made available by the AEE to the
application developers. This is a standard header file that must be included by all applications
using I3DUtil interfaces.

These utility functions provide the developer with simplified operations to obtain the model-
view transformation matrices and unit vectors.

NOTE: ALL I3DUtil functions are in Q12 format. Parameters are expected to be in Q12 fixed
point format.

List of Header files to be included

The following header file is required:

AEE3DUtil.h

List of functions
Functions in this interface include:
I3DUtil_AddRef()
I3DUtil_cos()
I3DUtil_GetRotateMatrix()
I3DUtil_GetRotateVMatrix()
I3DUtil_GetViewTransformMatrix()
I3DUtil_GetUnitVector()
I3DUtil_MatrixMultiply()
I3DUtil_QueryInterface()
I3DUtil_Release()
I3DUtil_SetIdentityMatrix()
I3DUtil_SetTranslationMatrix()
I3DUtil_sin()
I3DUtil_sqrt()

The remainder of this section provides details for each function.

101

I3DUtil Interface

I3DUtil_AddRef()
Description:

This function increments the reference count of the I3DUtil Interface object, allowing
the object to be shared by multiple callers. The object is freed when the reference
count reaches 0 (zero).

Prototype:
uint32 I3DUtil_AddRef(I3DUtil* pI3DUtil)

Parameters:

Return Value:
Incremented reference count for the object.

Comments:
A valid object returns a positive reference count.

See Also:
I3DUtil_Release()
Return to the List of functions

pI3DUtil Pointer to the I3DUtil Interface object.

102

I3DUtil Interface

I3DUtil_cos()
Description:

This function computes the cosine.

Prototype:
int32 I3DUtil_cos(I3DUtil* pI3DUtil, int32 angle)

Parameters:

Return Value:
Returns the cosine of the angle.

Comments:
None

See Also:
Q12 Fixed Point Format
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

angle [in] Q12 format (PI=2048).

103

I3DUtil Interface

I3DUtil_GetRotateMatrix()
Description:

This function computes the transformation matrix for a rotation about x, y, or z-axis.

Prototype:
int I3DUtil_GetRotateMatrix

(
I3DUtil* pI3DUtil,
int32 angle,
AEE3DTransformMatrix* pMatrixOut,
AEE3DRotateType axis
)

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
In respect to the angle (PI = 2048).

See Also:
Q12 Fixed Point Format
AEE3DTransformMatrix
AEE3DRotateType
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

angle [in] Rotation angle in Q12 format.

pMatrixOut [out] Pointer to the resulting transformation matrix.

axis [in] Axis to do rotation around.

104

I3DUtil Interface

I3DUtil_GetRotateVMatrix()
Description:

This function computes the transformation matrix for a rotation about a given vector
from origin.

Prototype:
int I3DUtil_GetRotateVMatrix

(
I3DUtil* pI3DUtil,
const AEE3DPoint* pVector,
int32 angle,
AEE3DTransformMatrix* pMatrixOut
);

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
None

See Also:
Q12 Fixed Point Format
AEE3DPoint
AEE3DTransformMatrix
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

pVector [in] Pointer to vector originated from origin for the rotation in Q12
format.

angle [in] Rotation angle in Q12 format (PI=2048).

pMatrixOut [out] Pointer to the resulting transformation matrix.

105

I3DUtil Interface

I3DUtil_GetViewTransformMatrix()
Description:

 This function computes the fixed point transformation matrix for a given position, look-
at-direction, and up-direction. Each directional vector is given as a 3D point or vector
in Q12 format.

Prototype:
int I3DUtil_GetViewTransformMatrix

(
I3DUtil* pI3DUtil,
const AEE3DPoint* pPosition,
const AEE3DPoint* pLook,
const AEE3DPoint* pUp,
AEE3DTransformMatrix* pMatrixOut
);

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
None

See Also:
Q12 Fixed Point Format
AEE3DPoint
AEE3DTransformMatrix
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

pPosition [in] Pointer to positional vector of the viewer.

pLook [in] Pointer to directional vector of the viewing direction.

pUp [in] Pointer to directional vector for the up-direction.

pMatrixOut [out] Pointer to the resulting transformation matrix.

106

I3DUtil Interface

I3DUtil_GetUnitVector()
Description:

This function computes the unit vector (dst) of a source vector (src). The resulting
vector is Q12.

Prototype:
int I3DUtil_GetUnitVector

(I3DUtil* pI3DUtil,
const AEE3DPoint* pSrc,
AEE3DPoint* pDst
)

Parameters:

Return Value:
Return SUCCESS on success.
Otherwise returns error code.

Comments:
 None

See Also:
AEE3DPoint
Q12 Fixed Point Format
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

pSrc [in] Pointer to source vector.

pDst [out] Pointer to resulting unit vector.

107

I3DUtil Interface

I3DUtil_MatrixMultiply()
Description:

This function multiplies two fixed point matrices. The multiplication is made using the
equation:
MaxtrixOut = MatrixOut * MatrixIn

Prototype:
int I3DUtil_MatrixMultiply

(
I3DUtil* pI3DUtil,
AEE3DTransformMatrix* pMatrixOut,
const AEE3DTransformMatrix* pMatrixIn
);

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
None

See Also:
Q12 Fixed Point Format
AEE3DTransformMatrix
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

pMatrixOut [in/out] Left multiplicant and the resulting matrix.

pMatrixIn [in] Right mutiplicant.

108

I3DUtil Interface

I3DUtil_QueryInterface()
Description:

This function asks an object for another API contract from the object in question.

Prototype:
int I3DUtil_QueryInterface

(
I3DUtil * pI3DUtil,
AEECLSID idReq,
void * * ppo
)

Parameters:

Return Value:
SUCCESS, interface found.
ENOMEMORY, insufficient memory.
ECLASSNOTSUPPORT, requested interface is unsupported.

Comments:
• If *ppo is an interface pointer, then the pointer in *ppo is set to the new interface (with

refcount incremented), or NULL if the ClassID is not supported by the object.

• If *ppo is a data structure pointer, then *ppo is set to the internal data represented by
the classID or set to NULL if classID is not supported by the object.

See Also:
None
Return to the List of functions

pI3DUtil [in] Pointer to the I3DUtil Interface object.

idReq [in] Requested ClassID exposed by the object.

ppo [in/out] Returned object. Filled by this function.

109

I3DUtil Interface

I3DUtil_Release()
Description:

This function decrements the reference count of the I3DUtil Interface object. The object
is freed from memory and is no longer valid when the reference count reaches 0 (zero).

Prototype:
uint32 I3DUtil_Release(I3DUtil * pI3DUtil)

Parameters:

Return Value:
Decremented reference count for the object.
0 (zero) if the object has been freed and is no longer valid.

Comments:
None

See Also:
I3DUtil_AddRef()
Return to the List of functions

pI3DUtil Pointer to the I3DUtil Interface object.

110

I3DUtil Interface

I3DUtil_SetIdentityMatrix()
Description:

Set the rotation part (3x3) of the transformation matrix to the identity matrix in Q12
format.
The transformation matrix will set to:

{ 4096, 0, 0, 0,
 0, 4096, 0, 0,
 0, 0, 4096, 0 }

Prototype:
int I3DUtil_SetIdentityMatrix

(
I3DUtil* pI3DUtil,
AEE3DTransformMatrix* pMatrixOut
)

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
None

See Also:
Q3D File Format
AEE3DTransformMatrix
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

pMatrixOut [out] Pointer to the resulting matrix.

111

I3DUtil Interface

I3DUtil_SetTranslationMatrix()
Description:

This function sets the translation part of the transformation matrix for a given
translation vector in Q12 Fixed Point Format.

Prototype:
int I3DUtil_SetTranslationMatrix

(
I3DUtil* pI3DUtil,
AEE3DPoint* pVector,
AEE3DTransformMatrix* pMatrixOut
);

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
None

See Also:
Q12 Fixed Point Format
AEE3DPoint
AEE3DTransformMatrix
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

pVector [in] Pointer to the translation vector in Q12 Fixed Point Format.
pMatrixOut [in&out] Pointer to the resulting matrix.

112

I3DUtil Interface

I3DUtil_sin()
Description:

This function computes the sine.

Prototype:
int32 I3DUtil_sin(I3DUtil* pI3DUtil, int32 angle)

Parameters:

Return Value:
Returns the sine of the angle.

Comments:
None

See Also:
Q12 Fixed Point Format
Return to the List of functions

pI3DUtil [in] Pointer to I3DUtil interface.

angle [in] Q12 format (PI=2048).

113

I3DUtil Interface

I3DUtil_sqrt()
Description:

This function computes the square root of the input parameter number.

Prototype:
uint32 I3DUtil_sqrt(I3DUtil* pI3DUtil, uint32 number);

Parameters:

Return Value:
Returns the square root of the number.

Comments:
None

See Also:
None
Return to the List of functions

pI3DUtil Pointer to I3DUtil interface.

number input parameter

114

I3DModel Interface

This interface provides definitions for 3D graphics models made available to the application
developers. A standard header file must be included by all applications using the I3DModel
interfaces.

The I3DModel provides high-level APIs for users to draw a structured group of triangles.

The reserved unique ClassID for I3DModel is defined to be AEECLSID_3DMODEL.

List of Header files to be included

The following header files are required for I3DModel

AEE3DModel.h

List of functions

Functions in this interface include:

I3DModel_AddRef()
I3DModel_Draw()
I3DModel_GetModelData()
I3DModel_GetModelVertexList()
I3DModel_Load()
I3DModel_QueryInterface()
I3DModel_Release()
I3DModel_SetTextureTbl()
I3DModel_SetSegmentMVT()

The remainder of this section provides details for each function.

115

I3DModel Interface

I3DModel_AddRef()
Description:

This function increments the reference count of the I3DModel Interface object, allowing
the object to be shared by multiple callers. The object is freed when the reference
count reaches 0 (zero).

Prototype:
uint32 I3DModel_AddRef(I3DModel* pI3DModel)

Parameters:

Return Value:
Incremented reference count for the object.

Comments:
A valid object returns a positive reference count.

See Also:
I3DModel_Release()
Return to the List of functions

pI3DModel Pointer to the I3DModel Interface object.

116

I3DModel Interface

I3DModel_Draw()
Description:

This function will draw a 3D model. The 3D model must be in the 3D model structure.

Prototype:
int I3DModel_Draw(I3DModel* pI3DModel, I3D* pI3D);

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
The lower-level function called in this routine is I3D_RenderTriangles. If lighting mode
is set to NONE then you can replace the AEE3DVertex list contained in the model
structure with the AEE3DTLVertex list, in which color has been defined per vertex.

See Also:
Q3D File Format
AEE3DVertex
AEE3DModelData
Return to the List of functions

pI3DModel [in] Pointer to I3DModel interface.

pI3D [in] Pointer to I3D interface.

117

I3DModel Interface

I3DModel_GetModelData()
Description:

This function will get the model information for an I3DModel instance.

Prototype:
int I3DModel_GetModelData

(
I3DModel* pI3DModel,
AEE3DModelData** pModel_out
)

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
None

See Also:
AEE3DModelData
Q3D File Format
Return to the List of functions

pI3DModel [in] Pointer to I3DModel interface.

pModel_out [out] Address of a pointer to a model structure.

118

I3DModel Interface

I3DModel_GetModelVertexList()
Description:

This function will get the vertex list stored in an I3DModel instance.

Prototype:
int I3DModel_GetModelVertexList(I3DModel* pI3DModel, AEE3DVertex**
pVertexList_out);

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
None

See Also:
Q3D File Format
AEE3DVertex
Return to the List of functions

pI3DModel [in] Pointer to I3DModel interface.

pVertexList_out [out] Address of a pointer to a vertex list.

119

I3DModel Interface

I3DModel_Load()
Description:

This function will load a 3D model. The 3D model must be in the Q3D file format.

Prototype:
int I3DModel_Load(I3DModel* pI3DModel,const char* pFilename);

Parameters:

Return Value:
SUCCESS on success.
Error code, otherwise.

Comments:
The internal model is only allocated when I3DModel_Load is called.

See Also:
Q3D File Format
AEE3DModelData
AEE3DVertex
I3DModel_GetModelData()
I3DModel_GetModelVertexList()
Return to the List of functions

pI3DModel [in] Pointer to I3DModel interface.

pFilename [in] File name string.

120

I3DModel Interface

I3DModel_QueryInterface()
Description:

This function asks an object for another API contract from the object in question.

Prototype:
int I3DModel_QueryInterface

(
I3DModel* pI3DModel,
AEECLSID idReq,
void** ppo
)

Parameters:

Return Value:
SUCCESS, interface found.
ENOMEMORY, insufficient memory.
ECLASSNOTSUPPORT, requested interface is unsupported.

Comments:
• If *ppo is an interface pointer, then the pointer in *ppo is set to the new interface (with

refcount incremented), or NULL if the ClassID is not supported by the object.

• If *ppo is a data structure pointer, then *ppo is set to the internal data represented by
the classID or set to NULL if classID is not supported by the object.

See Also:
None
Return to the List of functions

pI3DModel [in] Pointer to the I3DModel Interface object.
idReq [in] Requested ClassID exposed by the object.
ppo [in/out] Returned object. Filled by this function.

121

I3DModel Interface

I3DModel_Release()
Description:

This function decrements the reference count of the I3DModel Interface object. The
object is freed from memory and is no longer valid when the reference count reaches
0 (zero).

Prototype:
uint32 I3DModel_Release(I3DModel* pI3DModel)

Parameters:

Return Value:
Decremented reference count for the object.
0 (zero), If the object has been freed and is no longer valid.

Comments:
None

See Also:
I3DModel_AddRef()
Return to the List of functions

pI3DModel Pointer to the I3DModel Interface object.

122

I3DModel Interface

I3DModel_SetTextureTbl()
Description:

This function will set the texture table in a model.

Prototype:
int I3DModel_SetTextureTbl

(
13DModel* p13DModel,
AEE3DTexture* pTexture,
unit16 index
)

Parameters:

Return Value:
SUCCESS, EFAILED.

Comments:
None

See Also:
AEE3DTexture
Return to the List of functions

p13DModel [in] Pointer to I3DModel instance

pTexture [in] Pointer to a texture

index [in] Index for the model’s texture table

123

I3DModel Interface

I3DModel_SetSegmentMVT()
Description:

This function will set the texture table in a model.

Prototype:
int I3DModel_SetSegmentMVT(13DModel* p13DModel, AEE3DTransformMatrix*
trans, int16 index)

Parameters:

Return Value:
SUCCESS, EFAILED.

Comments:
None

See Also:
AEE3DModelData
AEE3DTransformMatrix
Return to the List of functions

p13DModel [in] Pointer to I3DModel instance

trans [in] Pointer to a transformation matrix

index [in] Segment index -1 will set all segments using this transformation

124

IBitmap Interface

This interface manipulate bitmaps. Each IBitmap instance represents a bitmap. IBitmap is an
interface with multiple implementations. Device-independent bitmaps (DIB) created with
IDISPLAY_CreateDIBitmap() are one class, and bitmaps that represent the handset's display
are another class. While both classes implement the IBitmap interface, each has different
capabilities. Both DIBs and display bitmaps can be used in blit operations. Display bitmaps
support all drawing operations, but DIBs do not generally support drawing, and return
EUNSUPPORTED from most functions. All functions that return an error code can potentially
return EUNSUPPORTED. Users should be prepared for all types of error codes.

List of Header files to be included

The following header file is required:

AEEBitmap.h

List of functions

Functions in this interface include:

IBITMAP_AddRef()
IBITMAP_BltIn()
IBITMAP_BltOut()
IBITMAP_CreateCompatibleBitmap()
IBITMAP_DrawHScanline()
IBITMAP_DrawPixel()
IBITMAP_FillRect()
IBITMAP_GetInfo()
IBITMAP_GetPixel()
IBITMAP_GetTransparencyColor()
IBITMAP_NativeToRGB()
IBITMAP_QueryInterface()
IBITMAP_Release()
IBITMAP_RGBToNative()
IBITMAP_SetPixels()
IBITMAP_SetTransparencyColor()

The remainder of this section provides details for each function.

125

IBitmap Interface

IBITMAP_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
IBITMAP_Release()
Return to the List of functions.

126

IBitmap Interface

IBITMAP_BltIn()
Description:

This function performs a bit-block transfer of the data corresponding to a rectangle of
pixels from the specified source bitmap into this bitmap. Each pixel in the source is
associated with a corresponding pixel in the destination. A logical operation is
performed on each pair of source and destination pixels, and the result is written over
the destination pixel.

Prototype:
int IBITMAP_BltIn

(
IBitmap * pIBitmap,
int xDst,
int yDst,
int dx,
int dy,
IBitmap *pSrc,
int xSrc,
int ySrc,
AEERasterOp rop
)

Parameters:
pIBitmap [in] Pointer to the IBitmap interface object into which the bit-block

transfer needs to be done.
xDst [in] Specifies the x-coordinate of the upper left corner of the

destination rectangular area.
yDst [in] Specifies the y-coordinate of the upper left corner of the

destination rectangular area.
dx [in] Specifies the width of the destination and source rectangles.

Negative values are treated as zero.
dy [in] Specifies the height of the destination and source rectangles.

Negative values are treated as zero.
pSrc [in] Pointer to another IBitmap interface that represents the source

bitmap.
xSrc [in] Specifies the x-coordinate of the upper left corner of the source

bitmap from where the bit-block transfer must begin.
ySrc [in] Specifies the y-coordinate of the upper left corner of the source

bitmap from where the bit-block transfer must begin.
rop [in] Specifies the raster operation that is used while doing the bit-

block transfer.

127

IBitmap Interface

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EUNSUPPORTED, if a non-supported raster operation is specified.
Other error code, if the operation is not supported. This might be due to the format
of the source bitmap or the type of raster operation that was requested or a
combination of the two.

Comments:
When either dx or dy is negative, nothing is written to the destination bitmap. The
rectangles are treated as empty.
It is legal for all or part of the source or destination rectangles that fall outside the
corresponding bitmap bounds, to include negative coordinates.
When parts of the source or destination rectangles exceed a bitmap's bounds, they are
clipped. Clipping will not affect the mapping from source to destination of any unclipped
portions, and will not result in an error code, even when everything is clipped.
When the width and height of the source bitmap are not known, to blit the entire bitmap,
very large values can be supplied for dx and dy, and clipping will limit the rectangle to
the size of the source.
The source bitmap may or may not be the same format as the destination bitmap, but
not all source formats are necessarily supported.

See Also:
AEERasterOp
IBITMAP_BltOut()
Return to the List of functions

128

IBitmap Interface

IBITMAP_BltOut()
Description:

Perform a bit-block transfer from this bitmap into a specified destination bitmap. Users
would not normally call this function directly. Instead, the destination bitmap's
IBITMAP_BltIn() member function should be called, because that will succeed in more
cases.

Prototype:
int IBITMAP_BltOut

(
IBitmap * pIBitmap,
int xDst,
int yDst,
int dx,
int dy,
IBitmap *pDst,
int xSrc,
int ySrc,
AEERasterOp rop
)

Parameters:
pIBitmap [in] Pointer to the IBitmap Interface object from which the bit-block

transfer needs to be done.

xDst [in] Specifies the x-coordinate of the upper left corner of the
destination rectangular area.

yDst [in] Specifies the y-coordinate of the upper left corner of the
destination rectangular area.

dx [in] Specifies the width of the destination rectangle.

dy [in] Specifies the height of the destination rectangle.

pDst [in] Pointer to another IBitmap interface that represents the
destination bitmap.

xSrc [in] Specifies the x-coordinate of the upper left corner of the source
bitmap from where the bit-block transfer must begin.

ySrc [in] Specifies the y-coordinate of the upper left corner of the source
bitmap from where the bit-block transfer must begin.

rop [in] Specifies the raster operation that is used while doing the bit-block
transfer.

129

IBitmap Interface

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EUNSUPPORTED, if a non-supported raster operation.
Other implementation-specific error codes

Comments:
There is no need to call this function except from the implementation of
IBITMAP_BltIn(). IBITMAP_BltOut() exists to help IBITMAP_BltIn(). IBITMAP_BltIn()
will delegate to the source bitmap's IBITMAP_BltOut() when the destination does not
support the operation and the bitmaps are of different classes. In this manner, both
classes have the opportunity to perform the operation, and it will succeed as long as
either class supports it. Note that IBITMAP_BltOut() cannot delegate likewise to
IBITMAP_BltIn(), because that would lead to infinite recursion.

See Also:
AEERasterOp
IBITMAP_BltIn()
Return to the List of functions

130

IBitmap Interface

IBITMAP_CreateCompatibleBitmap()
Description:

This function creates a new bitmap compatible with this bitmap interface (the first
parameter). Compatible means having equivalent pixel sizes and the same mapping
between pixel values (native colors) and RGB values. Width and height do not affect
compatibility. A blit operation involving two compatible bitmaps is reasonably fast,
because it does not need to perform complex translations of pixel data. Being a
common case, this type of operation is typically highly optimized. Also, copies between
compatible bitmaps do not result in the loss of any color information. A compatible
bitmap will generally support all the same drawing operations that the original bitmap
supports.

Prototype:
int IBITMAP_CreateCompatibleBitmap

(
IBITMAP *pIBitmap,
IBitmap **ppIBitmap,
uint16 w,
uint16 h
)

Parameters:

Return Value:
SUCCESS, if the function executed correctly.
Error code, if otherwise.

ENOMEMORY, if there was not enough memory for the operation.
Other implementation-specific error codes.

Comments:
The created bitmap inherits the transparency color from the bitmap it was created from.

See Also:
None
Return to the List of functions

pIBitmap [in] Pointer to the current bitmap interface.
ppIBitmap [out] Pointer to the interface of new bitmap that has the same format

of the current bitmap.
w [in] Width of the new bitmap.
h [in] Height of the new bitmap.

131

IBitmap Interface

IBITMAP_DrawHScanline()
Description:

This function draws a horizontal line.

Prototype:
int IBITMAP_DrawHScanline

(
IBitmap *pIBitmap,
unsigned y,
unsigned xMin,
unsigned xMax,
NativeColor color,
AEERasterOp rop
)

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EBADPARM, if raster operation is invalid.
Other implementation-specific error codes

Comments:
None

See Also:
AEERasterOp
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap Interface object to be used to draw the
horizontal line.

y [in] Y-coordinate of the line.
xMin [in] X-coordinate of the left end of the line.
xMax [in] X-coordinate of the right end of the line.
color [in] Specifies the color to be used to draw the line. This is a native

color, which is obtained using IBITMAP_RGBToNative().
rop [in] Specifies the raster operation that is used to draw the line. Only

AEE_RO_COPY and AEE_RO_XOR are valid.

132

IBitmap Interface

IBITMAP_DrawPixel()
Description:

This function draws a single pixel in the bitmap.

Prototype:
int IBITMAP_DrawPixel

(
IBitmap *pIBitmap,
unsigned x,
unsigned y,
NativeColor color,
AEERasterOp rop
)

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EBADPARM, if raster operation is invalid.
Other implementation-specific error codes

Comments:
If x or y is outside the bounds of the bitmap, nothing is drawn, and SUCCESS is
returned.

See Also:
AEERasterOp
IBITMAP_GetPixel()
IBITMAP_SetPixels()
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap Interface to which the pixel will be drawn.
x [in] X-coordinate of the pixel.
y [in] Y-coordinate of the pixel.
color [in] Specifies the color to be used to draw the pixel. This is a native

color, which is obtained using IBITMAP_RGBToNative().
rop [in] Specifies the raster operation that is used to draw the pixel. Only

AEE_RO_COPY and AEE_RO_XOR are valid.

133

IBitmap Interface

IBITMAP_FillRect()
Description:

This function draws a solid rectangle of the specified color.

Prototype:
int IBITMAP_FillRect

(
IBitmap *pIBitmap,
const AEERect *prc,
NativeColor color,
AEERasterOp rop
)

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EBADPARM, if raster operation is invalid.
Other implementation-specific error codes

Comments:
The prc parameter must be a valid pointer. Any portions of the rectangle that fall
outside the bitmap's bounds are silently ignored (no error is generated).

See Also:
AEERasterOp
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap Interface object to be used to fill the rectangle.
prc [in] A valid pointer to a rectangle that needs to be filled with the specified

color.
color [in] Specifies the color to be used to fill the rectangle. This is a native

color, which is obtained using IBITMAP_RGBToNative().
rop [in] Specifies the raster operation that is used while drawing the

rectangle. Only AEE_RO_COPY and AEE_RO_XOR are valid.

134

IBitmap Interface

IBITMAP_GetInfo()
Description:

This function retrieves the dimension of the bitmap.

Prototype:
int IBITMAP_GetInfo

(
IBitmap * pIBitmap,
AEEBitmapInfo * pinfo,
int nSize
)

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EUNSUPPORTED, if the size is not recognized by the bitmap

Comments:
This function should always succeed when nSize is equal to sizeof(AEEBitmapInfo),
and when pinfo is a valid pointer.

See Also:
AEEBitmapInfo
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap Interface.
pinfo [out] Pointer to AEEBitmapInfo, which contains the width, height, color

depth, and so on.
nSize [in] Set to the sizeof(AEEBitmapInfo) in the current version. The

AEEBitmapInfo structure may grow over time. This field allows
backward compatibility.

135

IBitmap Interface

IBITMAP_GetPixel()
Description:

This function retrieves the value of the specified pixel.

Prototype:
int IBITMAP_GetPixel

(
IBitmap *pIBitmap,
unsigned x,
unsigned y,
NativeColor *pColor
)

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EBADPARM, if the coordinate is out of range.
EUNSUPPORTED, if the operation is not supported.
Other implementation specific-error codes.

Comments:
None

See Also:
IBITMAP_SetPixels()
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap interface from which the pixel value is
retrieved.

x [in] X-coordinate of the pixel.
y [in] Y-coordinate of the pixel.
pColor [out] Color of the specified pixel.

136

IBitmap Interface

IBITMAP_GetTransparencyColor()
Description:

This function gets the current transparency color of the bitmap. This is used when this
bitmap is the source bitmap of a transparent bit blit operation.

Prototype:
int IBITMAP_GetTranparencyColor

(
IBITMAP *pMe,
NativeColor *pColor
)

Parameters:

Return Value:
SUCCESS, if the function executed correctly.
Error code, if otherwise.

EBADPARM, if pColor is NULL.
EUNSUPPORTED, if the operation is not supported.
Other implementation-specific error codes

Comments:
The transparency color is a NativeColor value, not an RGBVAL.

See Also:
IBITMAP_BltIn()
IBITMAP_BltOut()
IBITMAP_SetTransparencyColor()
Return to the List of functions

pMe [in] Pointer to the current bitmap interface.
pColor [out] Transparency color.

137

IBitmap Interface

IBITMAP_NativeToRGB()
Description:

This function obtains the RGB definition of a NativeColor value, in RGBVAL format.
Each valid NativeColor corresponds to an RGB value. The mapping of NativeColor
values is a property of the bitmap.

Prototype:
RGBVAL IBITMAP_NativeToRGB(IBitmap *pIBitmap, NativeColor clr)

Parameters:

Return Value:
The corresponding RGBVAL.

Comments:
If the NativeColor provided is not associated with a specific RGB value, the return
value from this function is undefined.

See Also:
NativeColor
RGBVAL
IBITMAP_RGBToNative()
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap Interface.
clr [in] Native color value.

138

IBitmap Interface

IBITMAP_QueryInterface()
Description:

This function retrieves a pointer to an interface conforming to the definition of the
specified ClassID. This can be used to query for extended functionality, like future
versions or proprietary features. Upon a successful query, the interface is returned.
The caller is responsible for calling Release() at some point in the future. One
exception is when the pointer returned is not an interface pointer. In that case, the
memory will share the lifetime of the object being queried, and the returned pointer will
not be used to free or release the object.

Prototype:
int IBITMAP_QueryInterface(IBitmap *pIBitmap, AEECLSID id, void **p);

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

Comments:
Many bitmaps support the IDIB interface (class id: AEECLSID_DIB), which contains
public data that allows the caller to directly access the bitmap data. Only bitmaps with
internal formats that conform to one of the documented IDIB formats can support IDIB.
As with other interfaces, the IDIB must be Released when the user finishes with it.
On failure, *p should be set to NULL, but it is good form to explicitly set *p to NULL
before calling IBITMAP_QueryInterface().

See Also:
None
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap interface.
id [in] A globally unique id to identify the entity (interface or data)

being queried.
p [out] Pointer to the data or interface to be retrieved. If the value

passed back is NULL, the queried interface or data is not
available.

139

IBitmap Interface

IBITMAP_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
IBITMAP_AddRef()
Return to the List of functions.

140

IBitmap Interface

IBITMAP_RGBToNative()
Description:

This function converts an RGBVAL value into a native color value (pixel value). Native
color values are the values stored in the pixel array; the mapping between native and
RGB values is a property of the bitmap. If no NativeColor corresponds exactly to the
specified RGBVAL, a close match is returned. This function is not required to return the
closest match, and for performance reasons a close match (but not the closest) may
be returned.

Prototype:
NativeColor IBITMAP_RGBToNative(IBitmap *pIBitmap, RGBVAL RGBColor)

Parameters:

Return Value:
The corresponding native color value.

Comments:
If the bitmaps lack palette information, the result is undefined.

See Also:
RGBVAL
IBITMAP_NativeToRGB()
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap Interface.
RGBColor [in] RGB value to be converted from. Only true RGB values are

supported. Color table indices are not supported.

141

IBitmap Interface

IBITMAP_SetPixels()
Description:

This function draws multiple pixels with the same color.

Prototype:
int IBITMAP_SetPixels

(
IBitmap *pIBitmap,
unsigned cnt,
AEEPoint *pPoint,
NativeColor color,
AEERasterOp rop
)

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

EBADPARM, if raster operation is invalid.
Other implementation-specific error codes

Comments:
Only AEE_RO_COPY and AEE_RO_XOR are valid raster operations.
Any other value passed as a parameter is treated like AEE_RO_COPY. In the current
version, this function returns EBADPARM.

See Also:
AEERasterOp
IBITMAP_GetPixel()
Return to the List of functions

pIBitmap [in] Pointer to the IBitmap Interface object to which the pixels are
drawn.

cnt [in] Number of pixels.
pPoint [in] Array of 2D points.
color [in] Specifies the color to be used to draw the pixels. This is a native

color, which is obtained using IBITMAP_RGBToNative().
rop [in] Specifies the raster operation that is used to draw the pixel.

142

IBitmap Interface

IBITMAP_SetTransparencyColor()
Description:

This function sets the transparency color of the bitmap. This is used when this bitmap
is the source bitmap of a transparent bit blit operation. For pixels that contain this
NativeColor, the corresponding destination pixel is unaffected.

Prototype:
int IBITMAP_SetTranparencyColor(IBITMAP *pMe, NativeColor color);

Parameters:

Return Value:
SUCCESS, if the function executed correctly.
Error code, if otherwise.

Or other implementation-specific error codes

Comments:
None

See Also:
NativeColor
IBITMAP_BltIn()
IBITMAP_BltOut()
IBITMAP_GetTransparencyColor()
Return to the List of functions

pMe [in] Pointer to the current bitmap interface.
color [in] Color to make transparent.

143

 IBitmapCtl Interface

The IBitmapCtl interface is used to enable and restrict access to the device bitmap. It is used
internally by BREW and is not available to applications.

The purpose is to allow BREW to control which application is allowed to write to the screen.
IBitmapCtl is an extension to the IBitmap interface, and is obtained through
IBITMAP_QueryInterface() with a class ID of AEECLSID_BITMAPCTL.

It is a requirement of the OEM that this interface be implemented for the device bitmap. This
interface does not need to be implemented for any other bitmaps.

List of Header files to be included

The following header file is required:

OEMDisp.h

List of functions

Functions in this interface include:

IBITMAPCTL_AddRef()
IBITMAPCTL_Enable()
IBITMAPCTL_NotifyRelease()
IBITMAPCTL_QueryInterface()
IBITMAPCTL_Release()
IBITMAPCTL_Restrict()

The remainder of this section provides details for each function.

144

IBitmapCtl Interface

IBITMAPCTL_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
IBITMAPCTL_Release()
Return to the List of functions

145

IBitmapCtl Interface

IBITMAPCTL_Enable()
Description:

This function is used to enable or disable drawing operations to the entire bitmap.

Prototype:
int IBITMAPCTL_Enable(IBitmapCtl *pIBitmapCtl, boolean bOn);

Parameters:

Return Value:
SUCCESS, or error code.

Comments:
None.

See Also:
IBITMAPCTL_Restrict()
Return to the List of functions

pIBitmapCtl [in] Pointer to the IBitmapCtl interface.

bOn [in] TRUE if drawing will be allowed, otherwise FALSE.

146

IBitmapCtl Interface

IBITMAPCTL_NotifyRelease()
Description:

This function is used to register for notification of release of the last reference to this
bitmap.

Prototype:
int IBITMAPCTL_NotifyRelease(IBitmapCtl *po, AEECallback *pcb);

Parameters:

Return Value:
SUCCESS is returned if function executed correctly.
EBADPARM if pcb is NULL.
Other values may be returned if other errors occur.

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to IBitmapCtl interface.
pcb Pointer to callback stucture. This callback will be triggered when the

last reference to this bitmap is released.

147

IBitmapCtl Interface

IBITMAPCTL_QueryInterface()
Description:

This function is inherited from IQI_QueryInterface().

See Also:
Return to the List of functions

148

IBitmapCtl Interface

IBITMAPCTL_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
IBITMAPCTL_AddRef()
Return to the List of functions

149

IBitmapCtl Interface

IBITMAPCTL_Restrict()
Description:

This function restricts drawing operations to a portion of the bitmap.

Prototype:
int IBITMAPCTL_Restrict(IBitmapCtl *pIBitmapCtl, AEERect *prc);

Parameters:

Return Value:
SUCCESS is returned if function executed correctly.
EBADPARM if prc is NULL.
EUNSUPPORTED if function is not implemented.

Comments:
None.

See Also:
IBITMAPCTL_Enable()
Return to the List of functions

pIBitmapCtl [in] Pointer to IBitmapCtl interface.

prc [in] Pointer to rectangle that that specifies where drawing is allowed.

150

ICallHistory Interface

Description:
The ICallHistory interface provides applications with the ability to add an entry to the
Call History list, remove the entries, enumerate the entries in the list as well as get the
number of entries in the list and the maximum list size.

Predefined Field Types:
An entry into the CallHistory is made up of one or more fields. Each field is composed
of a ClassID and FieldID which together indicate the type of data contained by the field.
BREW has several pre-defined field types that represent information commonly
associated with voice calls. For all of the predefined fields, the ClsId parameter should
be set to 0. User applications should not attempt to overload the predefined field types,
but rather make an extended type assocaited with their own ClassID and possibly
approximate the value with the predefined equivalent), so that applications that are not
aware of the extended data type can continue to operate correctly.

Predefined Fields:
AEECALLHISTORY_FIELD_CALL_TYPE (uint16):
The call type must be one of the following values:

AEECALLHISTORY_CALL_TYPE_TO
AEECALLHISTORY_CALL_TYPE_FROM
AEECALLHISTORY_CALL_TYPE_MISSED

AEECALLHISTORY_FIELD_NUMBER_TYPE (uint16):
The number type must be one of the following values:

AEECALLHISTORY_NUMBER_TYPE_INTERNATIONAL
AEECALLHISTORY_NUMBER_TYPE_NATIONAL
AEECALLHISTORY_NUMBER_TYPE_NETWORK
AEECALLHISTORY_NUMBER_TYPE_SUBSCRIBER
AEECALLHISTORY_NUMBER_TYPE_ABREVIATED
AEECALLHISTORY_NUMBER_TYPE_QCHAT

AEECALLHISTORY_FIELD_NUMBER_PLAN (uint16):
The number plan must be one of the following values:

AEECALLHISTORY_NUMBER_PLAN_TELEPHONY
AEECALLHISTORY_NUMBER_PLAN_DATA
AEECALLHISTORY_NUMBER_PLAN_TELEX
AEECALLHISTORY_NUMBER_PLAN_PRIVATE

AEECALLHISTORY_FIELD_DATE_TIME (uint32):

151

ICallHistory Interface

The date and time of the origination of the phone call expressed as the number of
seconds since Jan 6, 1980 00:00:00 GMT. This is the same format as the
GETTIMESECONDS() helper function.
AEECALLHISTORY_FIELD_CALL_DURATION (uint32):
The duration of the call, in seconds
AEECALLHISTORY_FIELD_NUMBER (ASCII unterminated string):
This is the number dialed. Valid characters for the string include the ASCII digits '0' -
'9', '#', '*', and ','. The comma represents and OEM-defined soft pause. OEMs are free
to truncate the number field as needed by their implementations.
AEECALLHISTORY_FIELD_NAME (Unicode unterminated string):
This is the text description of the call history entry. For custom call types like entries
without a AEECALLHISTORY_FIELD_NUMBER, this value will be displayed to
describe the call.
NOTE: OEMs may require certain pre-defined fields in an entry before that entry can
be added or updated to the Call History. Check OEM documentation to determine
which, if any, fields are required.
NOTE: OEMs may not store all field types. If an entry to be added/updated contains
field types that the OEM cannot store, the function will return SUCCESS, and only
those fields that are supported by the OEM will be available to be retrieved via the
enumeration functions. .

List of Header files to be included

The following header file is required:

AEECallHistory.h

List of functions

Functions in this interface include:

ICALLHISTORY_Clear()
ICALLHISTORY_AddEntry()
ICALLHISTORY_EnumInit()
ICALLHISTORY_EnumNext()
ICALLHISTORY_UpdateEntry()

The remainder of this section provides details for each function.

152

ICallHistory Interface

ICALLHISTORY_Clear()
Description:

This deletes all entries from the Call History list in the current storage.

Prototype:
int ICALLHISTORY_Clear(ICallHistory *pich)

Parameters:

Return Value:
SUCCESS if successful
EFAILED or other applicable BREW error if failed to delete entries

Comments:
None

See Also:
None

Return to the List of functions

pich Pointer to an ICallHistory interface object

153

ICallHistory Interface

ICALLHISTORY_AddEntry()
Description:

This function adds a new entry to the Call History list in the current set storage. If the
maximum number of entries is reached, the will delete the oldest entry in the list, and
add the new entry at the top of the list.

Prototype:
int ICALLHISTORY_AddEntry

(
ICallHistory *pich,
const AEECallHistoryEntry *pche
);

Parameters:

Return Value:
SUCCESS if successful
EBADPARM if field data is not valid for field type or invalid AEECallHistory entry
structure.
EFAILED or other applicable BREW error if failed to delete entries

Comments:
The memory specified in pche is copied by the ICALLHISTORY implementation, and
need not be maintained by the caller after the call to AddEntry()

See Also:
AEECallHistoryEntry
Return to the List of functions

pich Pointer to an ICallHistory interface object
pche new entry

154

ICallHistory Interface

ICALLHISTORY_EnumInit()
Description:

This initializes/resets the enumeration in the Call History list.

Prototype:
int ICALLHISTORY_EnumInit(ICallHistory *pich)

Parameters:

Return Value:
SUCCESS if successful
EFAILED or another BREW error if an error occurs (ENOMEMORY, etc.)

Comments:
None

See Also:
ICALLHISTORY_EnumNext()
Return to the List of functions

pich Pointer to an ICallHistory interface object

155

ICallHistory Interface

ICALLHISTORY_EnumNext()
Description:

This retrieves the next entry in the Call History list from current storage.
ICALLHISTORY_EnumInit() must be called before any successive calls to this
function. Call History entries are returned in reverse chronilogical order of addition to
the system (i.e. Newest record first).

Prototype:
const AEECallHistoryEntry ICALLHISTORY_EnumNext

(
ICallHistory *pche,
int *pnErr
);

Parameters:

Return Value:
The "next" callhistory entry, if applicable
NULL if we're at the last entry or an error occurs

Comments:
The memory pointed to by the returned AEECallHistoryEntry is owned by the
ICALLHISTORY object. Its contents will stay valid until the next call to
ICALLHISTORY_EnumNext(), ICALLHISTORY_EnumInit(), or
ICALLHISTORY_Release(). The contents of the returned pointer must not be modified
by the caller.

See Also:
AEECallHistoryEntry
Return to the List of functions

pich [in] Pointer to an ICallHistory interface object
pnErr [out] Pointer to an integer to hold any error value, set to

SUCCESS if successful or at end of enumeration EFAILED
or another BREW error if an error occurs

156

ICallHistory Interface

ICALLHISTORY_UpdateEntry()
Description:

This replaces the current call history entry with the one provided. The current entry is
defined as the entry that was returned during the most recent call to
ICALLHISTORY_EnumNext().

Prototype:
int ICALLHISTORY_UpdateEntry

(
ICallHistory *pich,
const AEECallHistoryEntry *pche
);

Parameters:

Return Value:
SUCCESS if successful
EFAILED or some other BREW error if failed to update entries
EBADPARM if field data is not valid for field type or invalid AEECallHistory entry
structure.

Comments:
None

See Also:
AEECallHistoryEntry
Return to the List of functions

pich Pointer to an ICallHistory interface object
pche New data to replace existing entry

157

ICamera Interface

ICamera interface provides a generic way to BREW applications to control device camera and
to record snapshots and movies in various formats like JPEG, MPEG4, and others.

Event Notification:
ICamera asynchronously notifies all the events to client app via the callback function.
App must register a callback notification function using ICAMERA_RegisterNotify().

Display:
ICamera dispatches the captured frames via user registered callback function in
preview, snapshot and movie modes. The frame is deliverd via
CAM_STATUS_FRAME callback. In the callback, user needs to call
ICAMERA_GetFrame() to get the frame represented by IBitmap.
It is app's responsibility to display these frames on to the screen or other destination.
ICamera DOES NOT perform any display operations.

Preview Mode:
Before you start camera in preview mode, you need to perform the following
operations:

(1) ICAMERA_SetDisplaySize() to set the frame display size
(2) [Optional] ICAMERA_SetFramesPerSecond() to set the FPS of the camera

ICAMERA_Preview() starts the camera in preview mode. CAM_STATUS_START
callback will be sent to app. Preview frames are delivered via CAM_STATUS_FRAME
callback. Use ICAMERA_GetFrame() to retrieve the frame.
ICAMERA_Pause() stops the frame callbacks. ICAMERA_Resume() resumes the
frame callbacks.
ICAMERA_Stop() stops the preview operation and puts the camera in ready mode.
CAM_STATUS_DONE callback will be sent to app.

Snapshot Mode:
Before you do snapshot operation, you need to perform the following operations:

(1) ICAMERA_SetMediaData()
(2) ICAMERA_SetSize()
(3) [Optional] ICAMERA_SetVideoEncode()
(4) [Optional] ICAMERA_SetQuality()
(5) [Optional] ICAMERA_SetFramesPerSecond()

158

ICamera Interface

ICAMERA_RecordSnapshot() starts the snapshot recording operation.
CAM_STATUS_START callback will be sent to app followed by CAM_STATUS_DONE
when recording is complete. When the encoding is completed,
{CAM_CMD_ENCODESNAPSHOT, CAM_STATUS_DONE} callback will be sent.
ICamera can be configured to defer the snapshot encoding as follows. This is known
as DeferEncode feature. Note that, by default, DeferEncode is disabled.

(1) ICAMERA_SetMediaData()
(2)ICAMERA_DeferEncode(). Use ICAMERA_DeferEncode(TRUE) to Indicate
that encoding must be defered

ICAMERA_EncodeSnapshot() starts the snapshot recording operation.
CAM_STATUS_START callback will be sent to app followed by CAM_STATUS_DONE
when recording is complete. Now, only raw frame is recorded and it is not yet encoded.
App can access the raw frame using ICAMERA_GetFrame() in the callback.
ICAMERA_EncodeSnapshot() encodes the frame and sends
{CAM_CMD_ENCODESNAPSHOT, CAM_STATUS_DONE} callback when encoding
is done. Do ICAMERA_SetMediaData() before calling ICAMERA_EncodeSnapshot().

Movie Mode:
Before you do start recording movie, you need to perform the following operations:

(1) ICAMERA_SetMediaData()
(2) ICAMERA_SetSize()
(3) [Optional] ICAMERA_SetVideoEncode() and ICAMERA_SetAudioEncode()
(4) [Optional] ICAMERA_SetQuality()
(5) [Optional] ICAMERA_SetFramesPerSecond()

Recorded frames are delivered via CAM_STATUS_FRAME callback. Use:
ICAMERA_GetFrame() to retrieve the frame.
ICAMERA_Pause() pauses recording as well as stops the frame callbacks.
ICAMERA_Resume() resumes the recording and the frame callbacks.
ICAMERA_Stop() stops the record operation and puts the camera in ready mode.
CAM_STATUS_DONE callback will be sent to app.

App Suspend/Resume:
When app gets EVT_APP_SUSPEND, it is recommended that app stop the camera
and release ICamera interface.
When app gets EVT_APP_RESUME, it can create ICamera interface and resume its
operation.

159

ICamera Interface

Sample Code:
The following code snippet starts the camera in preview mode and displays frames to
the device screen.
static int CApp_StartCameraInPreviewMode(CApp * pme)
 {
 int nErr;
 // Create ICamera instance.
 nErr = ISHELL_CreateInstance(pme->a.m_pIShell, AEECLSID_CAMERA,
(void **)&pme->m_pICamera);
 if (nErr)
 return nErr;
 // Register callback notification function.
 nRet = ICAMERA_RegisterNotify(pme->m_pICamera,
CApp_CameraNotify, pme);
 if (nErr)
 return nErr;
 ICAMERA_SetDisplaySize(pme->m_pICamera, &pme->m_sizePreview);
 nErr = ICAMERA_Preview(pme->m_pICamera);
 if (nErr)
 return nErr;
 return SUCCESS;
 }
static void CApp_CameraNotify(void * pUser, AEECameraNotify * pn)
 {
 CApp * pme = (CApp *)pUser;
if (!pme || !pn)
 return;
switch (pn->nStatus)
 {
 case CAM_STATUS_START:

// Preview has begun...
break;

case CAM_STATUS_FRAME:
 {

IBitmap * pFrame;
AEEBitmapInfo bi;

//
// IMPORTANT NOTE: You need to do IBITMAP_Release(pFrame) after
you're done with pFrame.
//
if (SUCCESS == ICAMERA_GetFrame(pme->m_pICamera, &pFrame))
return;

// Get the bitmap info...this can be saved in app global structure.
IBITMAP_GetInfo(pFrame, &bi, sizeof(bi));

// Display the frame at (0, 0) location of the screen
IDISPLAY_BitBlt(pme, 0, 0, bi.cx, bi.cy, pFrame, 0, 0,
AEE_RO_COPY);
IBITMAP_Release(pFrame);
break;

 }
case CAM_STATUS_DONE:

160

ICamera Interface

// ICAMERA_Stop() was called and preview operation stopped.
break;

case CAM_STATUS_ABORT:
// Preview got aborted.
break;

 }
 }

Camera State Machine:

Pause()
Resume()

READY

MOVIESNAPSHOTPREVIEW

Pause()
Resume()

Stop()Stop()

DONE/
ABORT

DONE/
ABORT

DONE/
ABORT

RecordMovie()RecordSnapshot()Preview()

161

ICamera Interface

ICamera Call Flow for Preview Mode
 BREW App

[ICamera
State]

BREW ICamera Example OEM Camera Layer

ICAMERA_SetDisplaySize() >

[READY] ICAMERA_Preview() >

camera_start_preview() >

[PREVIEW] < SUCCESS

< CAM_CMD_START/CAM_STATUS_START

< FRAME

< CAM_CMD_START/CAM_STATUS_FRAME

ICAMERA_GetFrame() >

 [returns PreviewFrame IBitmap] >

< FRAME

< CAM_CMD_START/CAM_STATUS_FRAME

ICAMERA_GetFrame() >

 [returns PreviewFrame IBitmap] >

…

ICAMERA_Stop() >

camera_stop_preview() >

[READY] < DONE

162

ICamera Interface

ICamera Call Flow for Picture Taking Mode

Record SnapShot (Immediate Encoding)

 BREW App
[ICamera

State]
BREW ICamera Example OEM Camera Layer

ICAMERA_SetMediaData() >

ICAMERA_SetVideoEncode() >

ICAMERA_SetSize() >

[Optional]ICAMERA_SetQuality() >

[READY] ICAMERA_RecordSnapshot() >

camera_take_picture() >

< SUCCESS

[SNAPSHOT] < CAM_STATUS_START

< DONE(SnapshotFrame)

[READY] < CAM_CMD_START/
CAM_STATUS_DONE

camera_encode(SnapshotFrame) >

< SUCCESS

< DONE

[READY] < CAM_CMD_ENCODESNAPSHOT/
CAM_STATUS_DONE

163

ICamera Interface

ICamera Call Flow for Recording SnapShot (deferred encoding) Mode

ICamera Call Flow for Recording Movie Mode

BREW App
[ICamera

State]
BREW ICamera Example OEM Camera Layer

ICAMERA_DeferEncode() >

ICAMERA_SetMediaData() >

ICAMERA_SetVideoEncode() >

ICAMERA_SetSize() >

ICAMERA_SetQuality() >

[READY] ICAMERA_RecordSnapshot() >

camera_take_picture() >

< SUCCESS

[SNAPSHOT] < CAM_STATUS_START

< DONE(SnapshotFrame)

[READY] < CAM_CMD_START/CAM_STATUS_DONE

ICAMERA_GetFrame() >

 [returns SnapshotFrame IBitmap] >

ICAMERA_EncodeSnapshot(SnapshotFrame) >

camera_encode(SnapshotFrame) >

< SUCCESS

< DONE

[READY] < CAM_CMD_ENCCODESNAPSHOT/
CAM_STATUS_DONE

 BREW App
[ICamera

State]
BREW ICamera Example OEM Camera Layer

ICAMERA_SetMediaData() >

ICAMERA_SetVideoEncode() >

ICAMERA_SetAudioEncode() >

ICAMERA_SetSize() >

[Optional]ICAMERA_SetQuality() >

[Optional]ICAMERA_SetFramesPerSecond() >

[READY] ICAMERA_RecordMovie() >

164

ICamera Interface

List of Header files to be included

The following header file is required:

AEECamera.h

camera_start_record() >

< SUCCESS

[MOVIE] < CAM_CMD_START/CAM_STATUS_START

< FRAME

< CAM_CMD_START/CAM_STATUS_FRAME

ICAMERA_GetFrame() >

 [returns MovieFrame IBitmap] >

< FRAME

< CAM_CMD_START/CAM_STATUS_FRAME

ICAMERA_GetFrame() >

 [returns MovieFrame IBitmap] >

…

ICAMERA_Pause() >

camera_pause_record() >

< SUCCESS

< CAM_CMD_START/CAM_STATUS_PAUSE

ICAMERA_Resume() >

camera_resume_record() >

< SUCCESS

< CAM_CMD_START/CAM_STATUS_RESUME

…

ICAMERA_Stop() >

camera_stop_record() >

< DONE

[READY] < CAM_CMD_START/CAM_STATUS_DONE

165

ICamera Interface

List of functions

Functions in this interface include:

ICAMERA_AddOverlay()
ICAMERA_AddRef()
ICAMERA_ClearOverlay()
ICAMERA_DeferEncode()
ICAMERA_EncodeSnapshot()
ICAMERA_GetDisplaySizeList()
ICAMERA_GetFrame()
ICAMERA_GetMode()
ICAMERA_GetParm()
ICAMERA_GetSizeList()
ICAMERA_IsBrightness()
ICAMERA_IsContrast()
ICAMERA_IsMovie()
ICAMERA_IsSharpness()
ICAMERA_IsSupport()
ICAMERA_IsZoom()
ICAMERA_Pause()
ICAMERA_Preview()
ICAMERA_QueryInterface()
ICAMERA_RecordMovie()
ICAMERA_RecordSnapshot()
ICAMERA_RegisterNotify()
ICAMERA_Release()
ICAMERA_Resume()
ICAMERA_RotateEncode()
ICAMERA_RotatePreview()
ICAMERA_SetAudioEncode()
ICAMERA_SetBrightness()
ICAMERA_SetContrast()
ICAMERA_SetDisplaySize()
ICAMERA_SetFramesPerSecond()
ICAMERA_SetMediaData()
ICAMERA_SetParm()
ICAMERA_SetQuality()
ICAMERA_SetSharpness()
ICAMERA_SetSize()
ICAMERA_SetVideoEncode()
ICAMERA_SetZoom()
ICAMERA_Start()
ICAMERA_Stop()

The remainder of this section provides details for each function.

166

ICamera Interface

ICAMERA_AddOverlay()
Description:

This function sets the overlay image that will be part of the recorded picture. This
operation is done any camera mode.

Prototype:
int ICAMERA_AddOverlay

(
ICamera * pICamera,
IBitmap * pb
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
You can add overlays on top of another image by calling this function repeatedly with
different images. To clear ALL overlays, call ICAMERA_ClearOverlay().

See Also:
ICAMERA_SetParm()
ICAMERA_ClearOverlay()
Return to the List of functions

pICamera Pointer to ICamera Interface.
pb Pointer to IBitmap representing the overlay

167

ICamera Interface

ICAMERA_AddRef()
Description:

This function increments the reference count of the ICamera Interface object. This
allows the object to be shared by multiple callers. The object is freed when the
reference count reaches 0 (zero).

Prototype:
uint32 ICAMERA_AddRef(ICamera * pICamera)

Parameters:
pICamera: Pointer to the ICamera Interface object

Return Value:
Incremented reference count for the object

Comments:
A valid object returns a positive reference count.

See Also:
ICAMERA_Release()
Return to the List of functions

168

ICamera Interface

ICAMERA_ClearOverlay()
Description:

This function clears all the overlaid images.

Prototype:
int ICAMERA_ClearOverlay(ICamera * pICamera);

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_GetParm()
ICAMERA_ClearOverlay()
Return to the List of functions

pICamera Pointer to ICamera Interface.

169

ICamera Interface

ICAMERA_DeferEncode()
Description:

This function defers the encoding of the snapshot done by
ICAMERA_RecordSnapshot() API. You need to explicitly call
ICAMERA_EncodeSnapshot() to encode the snapshot.

Prototype:
int ICAMERA_DeferEncode

(
ICamera * pICamera,
boolean bDefer
)

Parameters:

Return Value:
SUCCESS if successful.
Error code if failure.

Comments:
None

See Also:
ICAMERA_Start()
ICAMERA_RecordSnapshot()
ICAMERA_EncodeSnapshot()
Return to the List of functions

pICamera Pointer to ICamera Interface.
bDefer TRUE implies the encoding will be done by user.

170

ICamera Interface

ICAMERA_EncodeSnapshot()
Description:

This function, typically, encodes the recorded snapshot.

Prototype:
int ICAMERA_EncodeSnapshot

(
ICamera * pICamera,
)

Parameters:

Return Value:
SUCCESS if successful.
Error code if failure.

Comments:
This API is typically called in response to CAM_STATUS_DONE when
ICAMERA_RecordSnapshot(). You can use ICAMERA_GetFrame()() to get the latest
raw snapshot frame.
This function results in {CAM_CMD_ENCODESNAPSHOT, CAM_STATUS_DONE}
callback after the snapshot is encoded.
This API can be called in any mode. It may abort the current active operation like
preview, movie, encode snapshot, etc. It may also be used to encode any frame, if
supported.

See Also:
ICAMERA_Start()
ICAMERA_RecordSnapshot()
ICAMERA_GetFrame()
Return to the List of functions

pICamera Pointer to ICamera Interface.

171

ICamera Interface

ICAMERA_GetDisplaySizeList()
Description:

This function retrieves the list of discrete display sizes supported for specified mode or
continuous range (e.g. any size between 10x10 to 100x150).

Prototype:
int ICAMERA_GetDisplaySizeList

(
ICamera * pICamera,
AEESize ** ppList,
boolean * pbRange
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
The list should be copied and should not be freed.

See Also:
ICAMERA_GetParm()
AEESize
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
ppList [in] *ppList contains

CAM_MODE_PREVIEW/CAM_MODE_MOVIE
[out] Pointer to NULL- terminated size list

pbRange [out] Pointer to boolean when TRUE indicates the passed list is a
NULL-terminated paired list (i.e. multiple of 2) of ranges

172

ICamera Interface

ICAMERA_GetFrame()
Description:

This function returns the current frame captured by the camera.

Prototype:
IBitmap * ICAMERA_GetFrame(ICamera * pICamera, IBitmap ** ppFrame);

Parameters:

Return Value:
SUCCESS, if successful
Error code, if failure.

Comments:
This function is typically called in response to CAM_STATUS_FRAME callback. It is
caller's responsibility to release the IBitmap object after calling this function.
The caller can QueryInterface, on the returned IBitmap, for IDIB which, if supported,
allows access to frame data.

See Also:
ICAMERA_Start()
ICAMERA_Preview()
ICAMERA_RecordMovie()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
ppFrame [out] Frame IBitmap returned .

173

ICamera Interface

ICAMERA_GetMode()
Description:

This function returns the current camera mode.

Prototype:
int ICAMERA_GetMode

(
ICamera * pICamera,
int16 * pnMode,
boolean * pbPaused
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
EBADPARM: Bad parm

Comments:
None

See Also:
ICAMERA_Start()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
pnMode [out] Pointer to mode. CAM_MODE_XXX
pbPaused [out] TRUE/FALSE

Paused/Resumed

174

ICamera Interface

ICAMERA_GetParm()
Description:

This function gets the camera control parameters.

Prototype:
int ICAMERA_GetParm

(
ICamera * pICamera,
int16 nParmID,
int32 * pP1,
int32 * pP2
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
See Camera Control Parameters for parameter details.

See Also:
ICAMERA_SetParm()
Camera Control Parameters
Return to the List of functions

pICamera Pointer to ICamera Interface.
nParmID CAM_PARM_XXX
pP1 Depends on the nParmID parameter
pP2 Depends on the nParmID parameter

175

ICamera Interface

ICAMERA_GetSizeList()
Description:

This function retrieves the list of discrete sizes supported for specified mode or
continuos range (e.g. any size between 10x10 to 100x150).

Prototype:
int ICAMERA_GetSizeList

(
ICamera * pICamera,
AEESize ** ppList,
boolean * pbRange
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
The list should be copied and should not be freed.

See Also:
ICAMERA_GetParm()
AEESize
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
ppList [in] ppList contains

CAM_MODE_SNAPSHOT/CAM_MODE_MOVIE
[out] Pointer to NULL- terminated size list

pbRange [out] Pointer to boolean when TRUE indicates the passed list is a
NULL-terminated paired list (i.e. multiple of 2) of ranges

176

ICamera Interface

ICAMERA_IsBrightness()
Description:

This function checks if camera has brightness setting capability.

Prototype:
int ICAMERA_IsBrightness

(
ICamera * pICamera,
boolean * pbSupport
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_IsSupport()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
pbSupport [out] Pointer to boolean. TRUE/FALSE =>

Supported/Unsupported.

177

ICamera Interface

ICAMERA_IsContrast()
Description:

This function checks if camera has contrast setting capability.

Prototype:
int ICAMERA_IsContrast

(
ICamera * pICamera,
boolean * pbSupport
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_IsSupport()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
pbSupport [out] Pointer to boolean. TRUE/FALSE =>

Supported/Unsupported.

178

ICamera Interface

ICAMERA_IsMovie()
Description:

This function checks if camera has movie recording capability.

Prototype:
int ICAMERA_IsMovie

(
ICamera * pICamera,
boolean * pbSupport
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
pbSupport [out] Pointer to boolean.

TRUE/FALSE => Supported/Unsupported.

179

ICamera Interface

ICAMERA_IsSharpness()
Description:

This function checks if camera has sharpness setting capability.

Prototype:
int ICAMERA_IsSharpness

(
ICamera * pICamera,
boolean * pbSupport
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_IsSupport()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
pbSupport [out] Pointer to boolean. TRUE/FALSE =>

Supported/Unsupported.

180

ICamera Interface

ICAMERA_IsSupport()
Description:

This function checks if specified parameter is supported by ICamera Interface. This
function is useful to check the camera capabilities like setting of brightness, zoom, etc.

Prototype:
int ICAMERA_IsSupport

(
ICamera * pICamera,
int16 nParmID,
boolean * pbSupport
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
nParmID [in] CAM_PARM_XXX parameter ID.See Camera Control

Parameters
pbSupport [out] Pointer to boolean. TRUE/FALSE =>

Supported/Unsupported.

181

ICamera Interface

ICAMERA_IsZoom()
Description:

This function checks if camera has zoom capability.

Prototype:
int ICAMERA_IsZoom

(
ICamera * pICamera,
boolean * pbSupport
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Value returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot get parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_IsSupport()
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
pbSupport [out] Pointer to boolean. TRUE/FALSE =>

Supported/Unsupported.

182

ICamera Interface

ICAMERA_Pause()
Description:

This function pauses the camera operation. In preview and record modes, the frame
callbacks are paused. In record mode, the encoding is also paused.

Prototype:
int ICAMERA_Pause(ICamera * pICamera);

Parameters:

Return Value:
SUCCESS: Command accepted
EFAILED: General failure
ENOMEMORY: Not enough memory
EBADSTATE: Pause cannot be done in current state

Comments:
This API does not apply to Snapshot mode.
This function results in CAM_STATUS_PAUSE status callback.
In the callback, AEECameraNotify,
nCmd = CAM_CMD_START and nSubCmd = CAM_MODE_PREVIEW/CAM_MODE_MOVIE.

See Also:
ICAMERA_Start()
ICAMERA_Preview()
ICAMERA_RecordMovie()
ICAMERA_Resume()
Return to the List of functions

pICamera Pointer to ICamera Interface.

183

ICamera Interface

ICAMERA_Preview()
Description:

This function starts the camera operation in preview mode, which causes ICamera to
start sending frames to the client.

Prototype:
int ICAMERA_Preview(ICamera * pICamera);

Parameters:

Return Value:
SUCCESS: Command accepted
EFAILED: General failure
EBADPARM: Bad parm is passed
ENOMEMORY: Not enough memory
EBADSTATE: Preview cannot be done in current state

Comments:
You need to set the frame display size before calling this function. All the events that
originate due to this API and due to the following APIs will be reported via the user-
specified callback:

ICAMERA_Stop()
ICAMERA_Pause()
ICAMERA_Resume()

CAM_STATUS_START callback happens once the preview begins.
CAM_STATUS_FRAME callbacks happen continuously unless you pause.
CAM_STATUS_DONE callback occurs when preview is stopped.
CAM_STATUS_ABORT callback occurs when preview is aborted.

In the callback, AEECameraNotify,
nCmd = CAM_CMD_START and nSubCmd = CAM_MODE_PREVIEW.

See Also:
ICAMERA_Start()
ICAMERA_Stop()
ICAMERA_Pause()
ICAMERA_Resume()
ICAMERA_GetFrame()
Return to the List of functions

pICamera Pointer to ICamera Interface.

184

ICamera Interface

ICAMERA_QueryInterface()
Description:

This function can be used to
• Get a pointer to an interface or data based on the input class ID
• Query an extended version of the ICamera-derived class
• Support version compatibility

Prototype:
int ICAMERA_QueryInterface

(
ICamera * pICamera,
AEECLSID clsReq,
void ** ppo
)

Parameters:

Return Value:
Return SUCCESS on success, otherwise returns error code.

Comments:
If ppo is back a NULL pointer, the interface or data that we query is not available.

Side Effects:
If an interface is retrieved, then this function increments its reference count.
If a data structure is retrieved, then a pointer to the internal structure is given and user
should not free it.

See Also:
None
Return to the List of functions

pICamera [in] Pointer to ICamera Interface.
clsReq [in] A globally unique id to identify the entity (interface or

data) that we are trying to query.
ppo [out] Pointer to the interface or data that we want to retrieve.

If the value passed back is NULL, the interface or data
that we query are not available.

185

ICamera Interface

ICAMERA_RecordMovie()
Description:

This function starts the camera operation in movie mode, which causes recorded
frames to be sent to the caller while encoding those frames.

Prototype:
int ICAMERA_RecordMovie(ICamera * pICamera);

Parameters:

Return Value:
SUCCESS: Command accepted
EFAILED: General failure
EBADPARM: Bad parm is passed
ENOMEMORY: Not enough memory
EBADSTATE: RecordMovie() cannot be done in current state

Comments:
You need to set the media data before calling this function. Also, you may want to
specify active encoding, picture format and quality that should be used for encoding
the movie.
All the events that originate due to this API and due to the following APIs will be
reported via the user-specified callback:

ICAMERA_Stop()
ICAMERA_Pause()
ICAMERA_Resume()

CAM_STATUS_START callback happens once the recording begins.
CAM_STATUS_FRAME callbacks happen continuously unless you pause.
CAM_STATUS_DONE callback occurs when recording is stopped.
CAM_STATUS_ABORT callback occurs when recording is aborted. In the
callback, AEECameraNotify,
nCmd = CAM_CMD_START and nSubCmd = CAM_MODE_MOVIE.

See Also:
ICAMERA_Start()
ICAMERA_Stop()
ICAMERA_Pause()
ICAMERA_Resume()
ICAMERA_GetFrame()
Return to the List of functions

pICamera Pointer to ICamera Interface.

186

ICamera Interface

ICAMERA_RecordSnapshot()
Description:

This function starts the camera operation in snapshot mode which causes the camera
to take a snapshot. If Defer Encoding is not enabled (default), this function causes the
snapshot to be encoded.

Prototype:
int ICAMERA_RecordSnapshot(ICamera *pICamera);

Parameters:

Return Value:
SUCCESS: Command accepted
EFAILED: General failure
EBADPARM: Bad parm is passed
ENOMEMORY: Not enough memory
EBADSTATE: RecordSnapshot() cannot be done in current state

Comments:
You need to set the media data before calling this function. Also, you may want to
specify active encoding, picture format and quality that should be used for encoding
the snapshot. In the callback, AEECameraNotify, if nCmd = CAM_CMD_START, then
nSubCmd = CAM_MODE_SNAPSHOT.
This function results in {CAM_CMD_START, CAM_STATUS_START} callback
followed by {CAM_CMD_START, CAM_STATUS_DONE} callback after the snapshot
is taken. This is followed by {CAM_CMD_ENCODESNAPSHOT,
CAM_STATUS_DONE} callback after the snapshot is encoded.
You can defer encoding by calling ICAMERA_DeferEncoding(pICamera, TRUE); This
causes ICAMERA_RecordSnaphot() not to encode the snapshot. You can get the raw
snapshot frame using ICAMERA_GetFrame() and call ICAMERA_EncodeSnapshot()
to encode the snapshot.

See Also:
ICAMERA_Start()
ICAMERA_EncodeSnapshot()
ICAMERA_DeferEncode()
ICAMERA_GetFrame()
Return to the List of functions

pICamera Pointer to ICamera Interface.

187

ICamera Interface

ICAMERA_RegisterNotify()
Description:

This function registers a callback notification function with ICamera object. ICamera
reports asynchronous events using this callback.

Prototype:
int ICAMERA_RegisterNotify

(
IMedia * pICamera,
PFNCAMERANOTIFY pfnNotify,
void * pUser
)

Parameters:

Return Value:
SUCCESS: Successful.
EBADSTATE: Error - IMedia is not in Ready state.

Comments:
None

See Also:
None
Return to the List of functions

pICamera Pointer to the IMedia Interface object
pfnNotify User callback function pointer
pUser User data to be used when calling pfnNotify()

188

ICamera Interface

ICAMERA_Release()
Description:

This function decrements the reference count of an object. The object is freed
from memory and is no longer valid once the reference count reaches 0 (zero).

Prototype:
uint32 ICAMERA_Release(ICamera * pICamera)

Parameters:
pICamera: Pointer to the ICamera Interface object

Return Value:
Decremented reference count for the object. The object has been freed and is no
longer valid if 0 (zero) is returned.

Comments:
None

See Also:
ICAMERA_AddRef()
Return to the List of functions

189

ICamera Interface

ICAMERA_Resume()
Description:

This function resumes the camera operation. In preview and record modes, the frame
callbacks are resumed. In record mode, the encoding is also resumed.

Prototype:
int ICAMERA_Resume(ICamera * pICamera);

Parameters:

Return Value:
SUCCESS: Command accepted
EFAILED: General failure
ENOMEMORY: Not enough memory
EBADSTATE: Resume cannot be done in current state

Comments:
This API does not apply to Snapshot mode. This function results in
CAM_STATUS_RESUME status callback. In the callback, AEECameraNotify,
nCmd = CAM_CMD_START and nSubCmd = CAM_MODE_PREVIEW/CAM_MODE_MOVIE.

See Also:
ICAMERA_Start()
ICAMERA_Pause()
ICAMERA_Preview()
ICAMERA_RecordMovie()
ICAMERA_RecordSnapshot()
Return to the List of functions

pICamera Pointer to ICamera Interface.

190

ICamera Interface

ICAMERA_RotateEncode()
Description:

This function rotates the recorded and encoded frame. Only snapshot and movie
modes are affected.

Prototype:
int ICAMERA_RotateEncode(ICamera * pICamera, int32 nValue);

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_ROTATE_ENCODE details.

See Also:
ICAMERA_GetParm()
ICAMERA_RotatePreview()
Return to the List of functions

pICamera Pointer to ICamera Interface.
nValue Rotation angle

191

ICamera Interface

ICAMERA_RotatePreview()
Description:

This function rotates the preview frame. Only preview mode is affected.

Prototype:
int ICAMERA_RotatePreview(ICamera * pICamera, int32 nValue);

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_ROTATE_PREVIEW details.

See Also:
ICAMERA_GetParm()
ICAMERA_RotateEncode()
Return to the List of functions

pICamera Pointer to ICamera Interface.
nValue Rotation angle

192

ICamera Interface

ICAMERA_SetAudioEncode()
Description:

This function sets the active audio encoding type used to encode along with the
recorded snapshot/movie.

Prototype:
int ICAMERA_SetAudioEncode

(
ICamera * pICamera,
AEECLSID cls,
uint32 dwExtra
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_AUDIO_ENCODE details.

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
cls Encoding class ID. E.g. AEECLSID_MEDIAQCP, etc.
dwExtra Extra info regarding the encoding like sub formats. E.g. For

AEECLSID_MEDIAQCP, sub-format can be specified as
MM_QCP_FORMAT_FIXED_FULL_EVRC.

193

ICamera Interface

ICAMERA_SetBrightness()
Description:

This function sets the brightness of the camera.

Prototype:
int ICAMERA_SetBrightness

(
ICamera * pICamera,
int32 nValue
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_BRIGHTNESS details.

See Also:
ICAMERA_GetParm()
AEEParmInfo
Return to the List of functions

pICamera Pointer to ICamera Interface.
nValue Brightness value.

194

ICamera Interface

ICAMERA_SetContrast()
Description:

This function sets the contrast of the camera.

Prototype:
int ICAMERA_SetContrast

(
ICamera * pICamera,
int32 nValue
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_CONTRAST details.

See Also:
ICAMERA_GetParm()
AEEParmInfo
Return to the List of functions

pICamera Pointer to ICamera Interface.
nValue Contrast value.

195

ICamera Interface

ICAMERA_SetDisplaySize()
Description:

This function sets the frame display size where the captured data is displayed.

Prototype:
int ICAMERA_SetDisplaySize

(
ICamera * pICamera,
AEESize * pSize
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
pSize Frame display size within the main display/off-srceen buffer area

196

ICamera Interface

ICAMERA_SetFramesPerSecond()
Description:

This function sets the frames per second setting of camera in preview or movie mode.

Prototype:
int ICAMERA_SetFramesPerSecond

(
ICamera * pICamera,
uint32 dwFPS
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_FPS details.

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
dwFPS Frames per second. See dwFPS format in CAM_PARM_FPS

documentation.

197

ICamera Interface

ICAMERA_SetMediaData()
Description:

This function sets the media data where the recorded and encoded data will be saved.

Prototype:
int ICAMERA_SetMediaData

(
ICamera * pICamera,
AEEMediaData * pmd,
const char * cpszMIME
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
None

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
pmd Pointer to media data
cpszMIME MIME type of the media

198

ICamera Interface

ICAMERA_SetParm()
Description:

This function sets the camera control parameters.

Prototype:
int ICAMERA_SetParm

(
ICamera * pICamera,
int16 nParmID,
int32 p1,
int32 p2
)

Parameters:

Return Value:
SUCCESS: Successful. Operation is completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
See Camera Control Parameters for parameter details.

]See Also:
ICAMERA_GetParm()
Camera Control Parameters
Return to the List of functions

pICamera Pointer to ICamera Interface.
nParmID CAM_PARM_XXX. See Camera Control Parameters
p1 Depends on the nParmID parameter
p2 Depends on the nParmID parameter

199

ICamera Interface

ICAMERA_SetQuality()
Description:

This function sets the camera to capture specified picture quality.

Prototype:
int ICAMERA_SetQuality

(
ICamera * pICamera,
int16 nQuality
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_QUALITY details.

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
nQuality Picture quality

200

ICamera Interface

ICAMERA_SetSharpness()
Description:

This function sets the sharpness of the camera.

Prototype:
int ICAMERA_SetSharpness

(
ICamera * pICamera,
int32 nValue
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_SHARPNESS details.
ICAMERA_GetParm() with CAM_PARM_SHARPNESS, returns AEEParmInfo that
specifies the sharpness info.

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
nValue Sharpness value.

201

ICamera Interface

ICAMERA_SetSize()
Description:

This function sets the camera to record a snapshot or movie in specified size.

Prototype:
int ICAMERA_SetSize

(
ICamera * pICamera,
AEESize * pSize
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_SIZE_LIST details.

See Also:
ICAMERA_GetParm()
CAM_PARM_SIZE_LIST
Return to the List of functions

pICamera Pointer to ICamera Interface
pSize Size of the picture

202

ICamera Interface

ICAMERA_SetVideoEncode()
Description:

This function sets the active video/image encoding type used to encode the recorded
snapshot/movie.

Prototype:
int ICAMERA_SetVideoEncode

(
ICamera * pICamera,
AEECLSID cls,
uint32 dwExtra
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_VIDEO_ENCODE details.

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
cls Encoding class ID

 CAM_ENCODE_RAW, AEECLSID_JPEG
 AEECLSID_MEDIAMPEG4, etc.

dwExtra Extra info regarding the encoding like sub formats.

203

ICamera Interface

ICAMERA_SetZoom()
Description:

This function sets the zoom of the camera.

Prototype:
int ICAMERA_SetZoom

(
ICamera * pICamera,
int32 nValue
)

Parameters:

Return Value:
SUCCESS: Successful. Operation completed.
CAM_PENDING: Result returned via the registered callback
EBADPARM: Bad parm
ENOMEMORY: Not enough memory
EBADSTATE: Cannot set parm in the current state
EUNSUPPORTED: Parm not supported by the class

Comments:
For ICAMERA_GetParm() information, see Camera Control Parameters for
CAM_PARM_ZOOM details.
ICAMERA_GetParm() with CAM_PARM_ZOOM, returns AEEParmInfo that specifies
the zoom info.

See Also:
ICAMERA_GetParm()
Return to the List of functions

pICamera Pointer to ICamera Interface.
nValue Zoom value

204

ICamera Interface

ICAMERA_Start()
Description:

This function starts camera operation in preview, snapshot, or movie mode.

Prototype:
int ICAMERA_Start

(
ICamera * pICamera,
int16 nMode,
uint32 dwParam
);

Parameters:

Return Value:
SUCCESS: Command accepted
EFAILED: General failure
EBADPARM: Bad parm is passed
ENOMEMORY: Not enough memory
EBADSTATE: Start cannot be done in current state

Comments:
All the events that originate due to this API and due to the following API will be reported
via the user-specified callback.

ICAMERA_Preview()
ICAMERA_RecordSnapshot()
ICAMERA_RecordMovie()
ICAMERA_Stop()
ICAMERA_Pause()
ICAMERA_Resume()

In the callback, AEECameraNotify,
nCmd = CAM_CMD_START and nSubCmd = nMode.

See Also:
AEECameraNotify
ICAMERA_Start()
ICAMERA_Stop()

pICamera Pointer to ICamera Interface
nMode CAM_MODE_PREVIEW

CAM_MODE_SNAPSHOT
CAM_MODE_MOVIE

dwParam Reserved

205

ICamera Interface

ICAMERA_Pause()
ICAMERA_Resume()
ICAMERA_GetFrame()
ICAMERA_Preview()
ICAMERA_RecordMovie()
ICAMERA_RecordSnapshot()
Return to the List of functions

206

ICamera Interface

ICAMERA_Stop()
Description:

This function stops the current camera operation and puts it in Ready state.

Prototype:
int ICAMERA_Stop(ICamera * pICamera);

Parameters:

Return Value:
SUCCESS: Command accepted
EFAILED: General failure
ENOMEMORY: Not enough memory
EBADSTATE: Stop cannot be done in current state

Comments:
This function results in CAM_STATUS_DONE status callback.
In the callback, AEECameraNotify, nCmd = CAM_CMD_START and nSubCmd =
CAM_MODE_PREVIEW/CAM_MODE_MOVIE.

See Also:
ICAMERA_Start()
ICAMERA_Preview()
ICAMERA_RecordMovie()
ICAMERA_RecordSnapshot()
Return to the List of functions

pICamera Pointer to ICamera Interface.

207

IDIB Interface

IDIB is a structure and an interface. IDIB inherits all of the member functions of IBitmap, so an
IDIB may be used as an IBitmap by type casting. The IDIB_TO_IBITMAP in-line function is
supplied for type safe casting. Unlike other BREW interfaces, IDIB also has public data
members. These data members can be used to efficiently read or modify image data.

An application typically obtains an IDIB pointer from an IBitmap pointer by calling
IBITMAP_QueryInterface() with the class ID AEECLSID_DIB. Not all IBitmap classes support
IDIB, and in those cases the QueryInterface function will return an error code. On success, an
IDIB pointer is returned, which must be released when the caller has finished using it.

A bitmap consists of a 2-dimensional array of pixels. IDIB contains members that indicate
where in memory the pixels are, and how the pixel values are to be interpreted.

Pixel array structure
The locations and sizes of pixels in the pixel array are described by the pBmp, nPitch, and
nDepth members. The nPitch field specifies the distance (in bytes) from the beginning of any
row to the beginning of the next row. Pitch is typically function of the bitmap width, the padding
being applied, and whether it is a top-down or bottom-up bitmap. A bottom-up bitmaps will
have a negative pitch value.

Users of an IDIB should honor the nPitch value and make no assumptions about padding or
direction in the bitmap.The pBmp parameter points to the top scan line, y=0, in the memory
buffer that holds the pixel data of a DIB. For a top-down DIB, the pointer points to the first row
of the buffers pixel data. For a bottom-up DIB, the pointer points to the last row of the buffers
pixel data.

Usage example:
For a bitmap of color depth 8 (one byte per pixel), width of 9, and height of 10, the following
representations are possible (among others):

208

IDIB Interface

In all of these cases, and in fact for any 8-bit DIB, the code for reading a pixel remains the
same:

COLORVALUE = pdib->pBmp[y * pdib->nPitch + x]

Alignment: Rows typically starts at 32-bit boundaries, but alignment is not guaranteed except
in two cases. When nDepth is 32, rows should be 32-bit aligned, and when nDepth is 16, each
row must be aligned on a 16-bit boundary.

Within a row, the left most (x=0) pixel begins at the most significant bit of the fits byte. Pixels
are packed, bitwise, and split across bytes if necessary. 1, 2, 4, 8, and 16 bit bitmaps minimize
splitting of pixel values across bytes, and yield the most efficiency. While possible and well-
defined, sizes that tend to map irregularly to byte boundaries (like 3 or 12) will lead to reduced
efficiency.

Pixel values

The type NativeColor is defined to represent values stored in pixels in the pixel array. Palette
information (cntRGB and pRGB, or alternatively nColorScheme) describes how pixel values
map to red, green, and blue intensity values.

When cntRGB is non-zero, the pixel values are treated as indices into the palette, which is an
array of 32-bit R-G-B color values. (See pRGB.) When nColorScheme is non-zero, it
identifies a mapping of pixel values to R-G-B values. This can be thought of as a hard-coded
palette. (See nColorScheme.)

When both cntRGB and nColorScheme are zero, the color values of the bitmap are
undefined.

Note that this mapping between pixel values and colors is somewhat independent of pixel size.
A 4096 color bitmap requires 12 bits to represent all color values, but these may be stored in
12-bit (a packed representation) or 16-bit pixels (unpacked).

nPitch pBmp Start of bit array

Top-down BMP file 12 0

Bottom-up BMP file -12 96

Top-down packed bitmap 9 0

Bottom-up packed bitmap - 9 72

209

IDIB Interface

Transparency is a special case in interpreting pixel values. For operations that support
transparency, such as IBITMAP_BltIn() when called with the AEE_RO_TRANSPARENT raster
operation, pixels whose values match the transparent color (ncTransparent) are treated as
transparent, which means that the corresponding pixels in the destination are left unmodified.
ncTransparent is a NativeColor value, and the matching is performed on pixel values, not on
the corresponding R-G-B intensities.

Palette Map
The pPaletteMap member is provided as a way for driver software to cache information
computed from the bitmap's palette. This is not simply a function of the palette -- it depends
also on the graphics algorithm, and any other bitmaps with which the DIB might interact. This
member is set to NULL when there is no palette mapping object associated with the IDIB.

Every IDIB implementation must ensure that the pPaletteMap object (if set) is released when
the IDIB itself is deleted. The IDIB_FlushPalette() macro performed this task.

Any pPaletteMap must be released whenever an IDIB is modified such that the interpretation
of pixel values are affected (i.e. when cntRGB, pRGB[], nColorScheme, or ncTransparent
are modified). Otherwise, a graphics algorithm might proceed to use stale data or perhaps
even corrupt memory on a subsequent call.

Generally, users can ignore this value unless they modify a DIB palette’s data after it has been
used (i.e. graphics operations, such as IBitmap member functions, have been used on it). In
that case, IDIB_FlushPalette() must be called.

Software Support
IDIB presents a wide range of possibilities for bitmap layouts, but practical constraints limit the
number of formats that are supported by other software in the handset. Of the layouts that are
supported, not all of those are fully optimized. These limitations can differ from handset to
handset. The purpose of DIBs, however, is to communicate bitmap data to or from the graphics
driver, so the target device's level of support for particular formats is important to application
software. Here are some general guidelines:

• Each handset's primary display (whether monochrome, grey scale, or color) should
support blitting from palette-based 1-, 2-, 4-, and 8-bit DIBs.

210

IDIB Interface

• Color mapping generally is done in an expedient fashion rather than the most
accurate fashion. 1-bit and 8-bit operations should be particularly well optimized.
Additionally, 16-bit handsets will support 16-bit DIB formats using either
IDIB_COLORSCHEME_555 or IDIB_COLORSCHEME_565 color schemes, but
blitting a 5-5-5 DIB to a 5-6-5 device, or vice versa, will incur a performance penalty.

8-bit palette-based DIBs should work well with all color displays, and are much smaller than
16-bit images, so are recommended for color images. Since each 8-bit image can have its own
selection of 256 colors, color accuracy should not be a problem.

List of Header files to be included

The following header file is required:

AEEBitmap.h

List of functions

Functions in this interface include:

IDIB_AddRef()
IDIB_FlushPalette()
IDIB_QueryInterface()
IDIB_Release()
IDIB_TO_IBITMAP()

The remainder of this section provides details for each function.

211

IDIB Interface

IDIB_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
IDIB_Release()
Return to the List of functions

212

IDIB Interface

IDIB_FlushPalette()
Description:

This macro is used to release the pPaletteMap member of the IDIB structure. This is
necessary whenever the DIB's palette is modified, since the information cached in the
palette map will no longer be valid. This macro first check whether pPaletteMap is
NULL. If so, it does nothing. Otherwise, it calls the palette map's release function, and
sets pPaletteMap to NULL.

Prototype:
IDIB_FlushPalette(pdib) if ((pdib)->pPaletteMap)

{IQI_Release((pdib)->pPaletteMap);
(pdib)->pPaletteMap = 0;}

Parameters:

Return Value:
no return value

Comments:
None

See Also:
None
Return to the List of functions

pdib [in] Pointer to IDIB structure.

213

IDIB Interface

IDIB_QueryInterface()
Description:

This function is inherited from IQI_QueryInterface().

See Also:
IDIB
Return to the List of functions

214

IDIB Interface

IDIB_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
IDIB_AddRef()
Return to the List of functions

215

IDIB Interface

IDIB_TO_IBITMAP()
Description:

This function provides type safe casting from IDIB Interface pointers to IBitmap
Interface pointers. This function should be used when passing an IDIB interface to an
IBitmap function. This is safer than a simple cast, since the compiler will verify the
pointer type.

Prototype:
_inline IBitmap *IDIB_TO_IBITMAP(const IDIB *pIDIB);

Parameters:

Return Value:
Returns pIDIB cast to an IBitmap*.

Comments:
None

See Also:
IDIB
Return to the List of functions

pIDIB Pointer to an IDIB interface.

216

IDNS Interface

IDNS provides a way to perform DNS (Domain Name System) queries. IDNS provides a more
general interface to the DNS client than INETMGR_GetHostByName(). Alternate request
types and compound queries are supported. The DNS client will keep track of DNS servers
and handle retransmission and time-outs. IDNS converts domain names to the DNS protocol
representation, and provides a method for decoding compressed domain names in the
response. The user is responsible for specifying the content of DNS Question records, locating
the data of importance in the response, and interpreting those values. UDP is the only
transport supported. Requests and responses are limited to 512 bytes.

List of Header files to be included

The following header file is required:

aeedns.h

List of functions

Functions in this interface include:

IDNS_AddQuestion()
IDNS_AddRef()
IDNS_GetResponse()
IDNS_ParseDomain()
IDNS_QueryInterface()
IDNS_Release()
IDNS_Start()

The remainder of this section provides details for each function.

217

IDNS Interface

IDNS_AddQuestion()
Description:

This function adds a question to the set of question records in the request. This must
be called before Start() is called. This can be called multiple times to construct a
request message consisting of multiple question records.

Prototype:
int IDNS_AddQuestion (

IDNS *pIDNS,
AEEDNSType nType,
AEEDNSClass nClass,
const char *pszDomain
)

Parameters:

Return value:
SUCCESS means that the question was appended to the request message.
EFAILED, if the new question would make the DNS message exceed the maximum
size (512 bytes for DNS over UDP).
EBADPARM, if the domain name is malformed.
AEE_NET_EINVAL, if IDNS is not in the proper state for questions to be added.
Questions cannot be added after Start() has been called.
Other errors may be returned; the caller should verify that IDNS_AddQuestion()
succeeded.

Comments:
All domains are treated as fully-qualified domains by IDNS. There is no domain suffix
search list; suffixes are never attached to the provided domain string. Colon (:), slash
(/) and comma (,) characters do not delimit the domain name as in
INETMGR_GetHostByName(). When constructing a question record, IDNS does not
use the compressed form of domain names.

See Also:
AEEDNSType
AEEDNSClass
Return to the List of functions

nType DNS question type
nClass DNS class
pszDomain Zero-terminated string representing a domain name in dotted notation.

Single dot terminators as in “example.com.” are acceptable and treated
identically to domain names without a terminating dot. NOTE: Domain
search paths and relative domain names are not supported.)

218

IDNS Interface

IDNS_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
IDNS_Release()
Return to the List of functions

219

IDNS Interface

IDNS_GetResponse()
Description:

This function is to be called to obtain the DNS response after the query completes. On
success, it returns a pointer to a structure with the description of the DNS response.
Response data includes pointers to structures; the referenced memory will be valid
only for the lifetime of the IDNS object. None of those pointers should be retained or
used after the IDNS interface has been released.

Prototype:
int IDNS_GetResponse(IDNS *pIDNS, const AEEDNSResponse **pResp);

Parameters:

Return value:
SUCCESS: A response message was received from a DNS server; *pResp describes
the result. Success here does not imply that the query was successful, just that a
response was received. The application must inspect the AEEDNSResponse structure
to determine whether the requested data is present in the response.
In all error cases, *pResp will point to an empty AEEDNSResponse structure. No
assumptions should be made about the contents.
Error codes include:

ENOMEMORY if memory allocation failure prevented request or response
AEE_NET_ETIMEDOUT if retransmission time-out (no servers responded)
AEE_NET_ENETNONET, if socket-level error occurs

Comments:
None

See Also:
AEEDNSResponse
Return to the List of functions

pIDNS [in] Pointer to the IDNS Interface object
pResp [out] Pointer to a structure describing the response.

220

IDNS Interface

IDNS_ParseDomain()
Description:

This function converts a DNS representation of a domain name into a
zero-terminated string with dot (.) or dash (-) delimiter.

Prototype:
char *IDNS_*ParseDomain(IDNS *pIDNS, const byte *pbyDomain, int *pcb);

Parameters:

Return value:
Zero-terminated string giving the host name, or NULL on failure. Domain names are
returned in dotted notation, with no terminating dot character at the end. Failure may
be due to an allocation failure or a malformed domain name; *pcb can be used to
distinguish between the two.

Comments:
None

See Also:
None
Return to the List of functions

pIDNS Pointer to the IDNS Interface object
pbyData Pointer to the start of the domain name. This pointer must point into the DNS

response data as described by an AEEDNSItem record. This can be used to
decode pbyDomain values, or to decode values within the pbyData[] array.

pcb Pointer to value to hold the number of bytes occupied by the domain name (in
the source byte array, not in the resulting string). In the case of a malformed
domain name, *pcb will be set to zero. If pcb==NULL, it will be ignored.

221

IDNS Interface

IDNS_QueryInterface()
Description:

This function is inherited from IQI_QueryInterface().

See Also:
IDNS
Return to the List of functions

222

IDNS Interface

IDNS_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
IDNS_AddRef()
Return to the List of functions

223

IDNS Interface

IDNS_Start()
Description:

This function starts the query, and schedule callback to be called. In order to prevent
the callback from firing, and to cancel the operation, the user should release all
references to the IDNS. Start() should not be called twice.

Prototype:
IDNS_Start(IDNS *pIDNS, PFNNOTIFY pfn, void *pcxt);

Parameters:

Return value:
error code:

SUCCESS, if the operation started. This should always succeed when called the
first time.
AEE_NET_EINVAL, if this function is called more than once.

Comments:
Releasing all references to the IDNS object will cancel the operation and prevent the
callback from being called.

See Also:
PFNNOTIFY
Return to the List of functions

pIDNS Pointer to the IDNS Interface object
pfn Function to be called after the operation completes. This will only be called if

the operation starts successfully (i.e. when Start() returned SUCCESS).

pv Void pointer to be passed to the pfn() when it is called.

224

IDownload Interface

This interface provides access to BREW application and file download mechanisms. It is for
use ONLY by QUALCOMM, Handset Manufacturer and selected partners.

The IDownload interface consists of interface functions to query list(s) of application
categories and/or items, download items and remove/disable items. The interface has been
developed on the IWeb interface and shields the developer from all of the complexities
involved in downloading applications.

List of functions

Functions in this interface include:

IDOWNLOAD_Acquire()
IDOWNLOAD_AutoDisable()
IDOWNLOAD_Cancel()
IDOWNLOAD_CheckItemUpgrade()
IDOWNLOAD_CheckUpgrades()
IDOWNLOAD_Continue()
IDOWNLOAD_Credit()
IDOWNLOAD_Delete()
IDOWNLOAD_Enum()
IDOWNLOAD_EnumRaw()
IDOWNLOAD_Get()
IDOWNLOAD_GetADSCapabilities()
IDOWNLOAD_GetADSList()
IDOWNLOAD_GetAllApps()
IDOWNLOAD_GetAppIDList()
IDOWNLOAD_GetAppIDListEx()
IDOWNLOAD_GetAutoDisableList()
IDOWNLOAD_GetAvailable()
IDOWNLOAD_GetCategory()
IDOWNLOAD_GetCategoryList()
IDOWNLOAD_GetConfigItem()
IDOWNLOAD_GetEULA()
IDOWNLOAD_GetHeaders()
IDOWNLOAD_GetItemInfo()
IDOWNLOAD_GetItemList()
IDOWNLOAD_GetModInfo()
IDOWNLOAD_GetSize()
IDOWNLOAD_GetSizeEx()

225

IDownload Interface

IDOWNLOAD_Lock()
IDOWNLOAD_LogEnumInit()
IDOWNLOAD_LogEnumNext()
IDOWNLOAD_OnStatus()
IDOWNLOAD_Restore()
IDOWNLOAD_Search()
IDOWNLOAD_SetADS()
IDOWNLOAD_SetHeaders()
IDOWNLOAD_SetSubscriberID()

The remainder of this section provides details for each function.

226

IDownload Interface

IDOWNLOAD_Acquire()
Description:

Asynchronously downloads an application and registers a billing record with the server
for the associated price lt value.

Prototype:
void IDOWNLOAD_Acquire

(
IDownload * po,
DLITEMID id,
DLPRICEID idPrice,
PFNDLCOMMAND pfn,
void * pcxt
)

Parameters:

Return Value:
Upon completion, the callback specified is called with the associated completion
code/error value. A code of 0 indicates success.

Comments:
None

Side Effects:
This call will attempt to initiate a network connection.

See Also:
None
Return to the List of functions

po Pointer to the IDownload interface object.
id Application ID.
idPrice Price value ID.
pfn Pointer to the handle command function
pcxt Pointer to the user define data

227

IDownload Interface

IDOWNLOAD_AutoDisable()
Description:

This function is uaed to auto-disable applications. Applications are"auto-disabled" in
the following order...

1) List is scanned and applications are marked for "auto-disable" in least-recently-
usedorder until enough space is recovered.
2) This sub-list is scanned backward and applications are "unmarked" if the space
thenecessary space can be achieved without them.

This covers the following example:
Space Required: 33K

App A 10K
App B 11K
App C 23K

After Step 1, all three applications are marked for disable.
After Step 2, only App A and App C are marked. App B is no longer marked because
it can be left enabled and the space can still be recovered.

Prototype:
int IDOWNLOAD_AutoDisable(IDownload * po,DLITEMID iID);

Parameters:

Return Value:
SUCCESS - If applications are successfully auto-disabled
EFSFULL - Insufficient FS storage space (dwFSAvail < dwFSRequired)
ENOMEMORY - Insufficient contiguous RAM for the item (dwRAM <
dwEstRAMRequired)

Comments:
None

See Also:
IDOWNLOAD_GetAutoDisableList()
IDOWNLOAD_Lock()
Return to the List of functions

po [in] Pointer to the IDownload interface object.

id [in] Item ID for the operation.

228

IDownload Interface

IDOWNLOAD_Cancel()
Description:

Cancels all pending IDOWNLOAD operations.

Prototype:
void IDOWNLOAD_Cancel(IDownload * po)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.

229

IDownload Interface

IDOWNLOAD_CheckItemUpgrade()
Description:

This function checks whether there is an upgrade for the given ItemID.

Prototype:
void IDOWNLOAD_CheckItemUpgrade

(
IDownload * po,
DLITEMID id,
PFNDLENUM pfn,
void * pcxt
);

Parameters:

Return Value:
None

Comments:
None

See Also:
IDOWNLOAD_CheckUpgrades()
Return to the List of functions

po Pointer to the IDownload interface object.

id Item ID for the operation.

pfn User callback to be called for item retrieved.

pcxt User context handle passed as first parameter to callback.

230

IDownload Interface

IDOWNLOAD_CheckUpgrades()
Description:

This function checks for upgrades for all the items.

Prototype:
void IDOWNLOAD_CheckUpgrades

(
IDownload * po,
PFNDLENUM pfn,
void * pcxt
);

Parameters:

Return Value:
None

Comments:
None

See Also:
IDOWNLOAD_CheckItemUpgrade()
Return to the List of functions

po Pointer to the IDownload interface object.

pfn User callback to be called for item retrieved.

pcxt User context handle passed as first parameter to callback.

231

IDownload Interface

IDOWNLOAD_Continue()
Description:

This method is called to indicate how the download engine should process an in-
progress request. It is intended for use following a status callback of type
DEVT_AI_ASK, DEVT_AI_DENY, DEVT_AI_SUCCESS, DEVT_AI_FAILURE.

Prototype:
void IDOWNLOAD_Continue(IDownload * po, boolean bContinue)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
bContinue [in] TRUE to continue.

232

IDownload Interface

IDOWNLOAD_Credit()
Description:

This function credits the user.

Prototype:
void IDOWNLOAD_Credit

(
IDownload * po,
const char * psz,
PFNDLCOMMAND pfn,
void * pcxt
);

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IDownload interface object.

psz Credit-back access ticket.

pfn User callback to be called for item retrieved.

pcxt User context handle passed as first parameter to callback.

233

IDownload Interface

IDOWNLOAD_Delete()
Description:

Removes application files from persistent memory. If the boolean "bRemoveAllFiles"
parameter is specified, all files and sub-directories for the application are removed. If
not, the main resource and module files are removed.

Prototype:
int IDOWNLOAD_Delete

(
IDownload * po,
DLITEMID id,
boolean bRemoveAllFiles
)

Parameters:

Return Value:
SUCCESS if the item is disabled or removed.
EBADPARM if the itemnot found.
EITEMBUSY if the itemspecified is running/active.
EBADSID if the wrong subscriber attempts to remove item

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
id [in] Application ID.
bRemoveAllFiles [in] Indicates whether all files should be removed.

234

IDownload Interface

IDOWNLOAD_Enum()
Description:

This is the post-1.01 mechanism that supports advanced category and item
enumeration. The PFNDLENUM function callback is called for each item retrieved with
a pointer to the item retreived. When the operation is complete, the callback is called
one final time with a NULL DLEnumItem pointer.
Enumeration of the base/root category is initiated by calling the function with the
DL_CATEGORY_ROOT item ID value.
Calls to this function passing an item ID for an item of type DLI_CATEGORY will
enumerate the items inside that category. This allows the caller to enumerate the list
of categories and applications using a mechanism similar to that used for file/directory
enumeration.
A call to this function for an item of type other than DLI_CATEGORY will return the
DLItemInfo for that particular item.
A call to this mechanism cancels any other pending calls.
NOTE: Caching of information is provided inside the protocol. There is no need to
cache information. Information will not be retrieved from the network unless the cache
is invalid.

Prototype:
void IDOWNLOAD_Enum

(
IDownload * po,
DLITEMID id,
PFNDLENUM pfn,
void * pcxt
)

Parameters:

Return Value:
None

Comments:
None

See Also:
IDOWNLOAD_EnumRaw()
Return to the List of functions

po [in] Pointer to the IDownload interface object.
id [in] Item ID for the operation.
pfn [in] User callback to be called for each item retrieved.
pcxt [in] User context handle passed as first parameter to callback.

235

IDownload Interface

IDOWNLOAD_EnumRaw()
Description:

This is the post-1.0.1 mechanism that supports advanced category and item
enumeration. Returns all possible purchasing method for every known application with
out any checks such as inconsistent purchasing methods, if it is an already resident
app, etc.,. The PFNDLENUM function callback is called for each item retrieved with a
pointer to the item retreived. When the operation is complete, the callback is called one
final time with a NULL DLEnumItem pointer.
Enumeration of the base/root category is initiated by calling the function with the
DL_CATEGORY_ROOT item ID value. Calls to this function passing an item ID for an
item of type DLI_CATEGORY will enumerate the items inside that category. This allows
the caller to enumerate the list of categories and applications using a mechanism
similar to that used for file/directory enumeration.A call to this function for an item of
type other than DLI_CATEGORY will return the DLItemInfo for that particular item.A
call to this mechanism cancels any other pending calls.
NOTE: Caching of information is provided inside the protocol. There is no need to
cache information. Information will not be retrieved from the network unless the cache
is invalid.

Prototype:
void IDOWNLOAD_EnumRaw

(
IDownload * po,
DLITEMID id,
PFNDLENUM pfn,
void * pcxt
);

Parameters:

Return Value:
None

Comments:
None

See Also:
IDOWNLOAD_Enum()
Return to the List of functions

po [in] Pointer to the IDownload interface object.

id [in] Item ID for the operation.

pfn [in] User callback to be called for each item retrieved.

pcxt [in] User context handle passed as first parameter to callback.

236

IDownload Interface

IDOWNLOAD_Get()
Description:

Asynchronously downloads an application from the server. This involves getting the
package file, verifying it, and extracting the content files. The application's MIF file is
the last file written to the file system.

Prototype:
void IDOWNLOAD_Get

(
IDownload *po,
DLITEMID id,
PFNDLCOMMAND pfn,
void * pcxt
);

Parameters:

Return Value:
Upon completion, the callback specified is called with the associated completion
code/error value. A code of 0 indicates success.

Comments:
During operation several events are posted to the client application class specified by
clsID. These events are:
EVT_DOWNLOAD_COMPLETE to nofity client that the download has finished, either
successfully or not. Will be posted once.

Side Effects:
This call will attempt to initiate a network connection.

See Also:
IDOWNLOAD_Acquire()
Return to the List of functions

po Pointer to the IDownload interface object.

id Application ID

pfn Callback function pointer

pctxt Pointer to be passed back in the callback function

237

IDownload Interface

IDOWNLOAD_GetADSCapabilities()
Description:

This function returns the ADS capabilities. This allows the application to determine
whether some menu items (such as search) should be displayed.

Prototype:
void IDOWNLOAD_GetADSCapabilities(IDownload * po)

Parameters:

Return Value:
ADS_CAP_XXXX flags
0 = No ADS server connected

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.

238

IDownload Interface

IDOWNLOAD_GetADSList()
Description:

This function returns a list of ADS servers. It is supported only on test enabled
handsets. It is unsupported in production releases.

Prototype:
ADSInfoEntry * IDOWNLOAD_GetADSList(IDownload * po, int * pnCount)

Parameters:

Return Value:
Pointer to list of ADS servers or NULL if unsupported.

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
pnCount [in/out] Pointer to fill with count of servers. If NULL, the existing list is

freed.

239

IDownload Interface

IDOWNLOAD_GetAllApps()
NOTE: This function is a Version 1.0 legacy function. Use IDOWNLOAD_Enum()
instead.

Description:
Retrieves all the known applications that has been installed

Prototype:
void IDOWNLOAD_GetAllApps(IDownload *po);

Parameters:

Return Value:
None

Comments:
Upon completion the callback is called with the appropriate error value.
If the error code is 0 (success), the item list pointer provided is
valid.

See Also:
IDOWNLOAD_GetItemList()
Return to the List of functions

po Pointer to the IDownload interface object.

240

IDownload Interface

IDOWNLOAD_GetAppIDList()
Description:

This function returns a 0-terminated list of application IDs. Each DLITEMID can be
used to query specific information about the application via the
IDOWNLOAD_GetModInfo function.

Prototype:
DLITEMID * IDOWNLOAD_GetAppIDList(IDownload * po)

Parameters:

Return Value:
On SUCCESS, returns a 0-terminated list of DLITEMID values. This list is valid until a
subsequent call is made to IDOWNLOAD_GetAppIDList or the interface is released.
On FAILURE, returns NULL.

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.

241

IDownload Interface

IDOWNLOAD_GetAppIDListEx()
Description:

This function returns a NULL terminated list of application IDs including those that are
protected (modules that cannot be deleted by the user). Each DLITEMID can be used
to query specific information about the application via the IDOWNLOAD_GetModInfo()
function.

Prototype:
DLITEMID * IDOWNLOAD_GetAppIDListEx(IDownload *po);

Parameters:

Return Value:
SUCCESS: Returns a NULL terminated list of DLITEMID values.
FAILURE: Returns NULL

Comments:
The list returned is valid until a subsequent call is made to
IDOWNLOAD_GetAppIDListEx() or the interface is released.

See Also:
IDOWNLOAD_GetAppIDList()
Return to the List of functions

po [in] Pointer to the IDownload interface object.

242

IDownload Interface

IDOWNLOAD_GetAutoDisableList()
Description:

This function retrieves the list of entries that can be auto-disabled. The idWant/dwExtra
parameters can be specified in order to mark those items that would be candidates to
disable based upon size and date/time last used.
The list is returned sorted in least-recently used order. By using DLITEMID, this call is
equivalent to the IDOWNLOAD_AutoDisable() function without the function
automatically disabling the items.

Prototype:
DLDisableEntry * IDOWNLOAD_GetAutoDisableList

(
IDownload * po,
DLITEMID idWant,
uint32 dwExtra,
int * pnCount,
int * pnErr
)

Parameters:

Return Value:
Returns the list that can be auto-disabled
NULL - Indicates an error *pnErr:
SUCCESS - idWant + dwExtra size is available in file system
EFSFULL - idWant + dwExtra cannot be satisified by disable

Comments:
None

See Also:
IDOWNLOAD_Lock()
Return to the List of functions

po [in] Pointer to the IDownload interface object.
idWant [in] ID of item that may be downloaded. 0 if all entries
dwExtra [in] Extra number of bytes desired.
pnCount [out] Number of entries in the list
pnErr [out] Pointer to error

243

IDownload Interface

IDOWNLOAD_GetAvailable()
Description:

This method is called to populate available file and RAM space for
potential downloads.

Prototype:
int IDOWNLOAD_GetAvailable(IDownload * po,DLSizeInfo * psi);

Parameters:

Return Value:
AEE_SUCCESS if successful
EFSFULL - Insufficient FS storage space
(dwFSAvail < dwFSRequired)
ENOMEMORY - Insufficient contiguous RAM for the item
(dwRAM < dwEstRAMRequired)
EOUTOFNODES - Insufficient file handles available
(nFilesAvail < nEstFileRequired)
EBADPARM - If psi is NULL or the package is invalid

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.

psi [out] Size information

244

IDownload Interface

IDOWNLOAD_GetCategory()
NOTE: This function is a Version 1.0 legacy function depricated. Use
IDOWNLOAD_Enum() instead.

Description:
Asynchronously retrieves the list of categories for the specified category ID.

Prototype:
void IDOWNLOAD_GetCategory

(
IDownload *po,
DLCATID id,
PFNDLITEMLIST pfn,
void * pcxt
);

Parameters:

Return Value:
None

Comments:
Upon completion the callback is called with the appropriate error value.
If the error code is 0 (success), the item list pointer provided is
valid.

Side Effects:
This call will attempt to initiate a network connection.

See Also:
IDOWNLOAD_Enum()
Return to the List of functions

po Pointer to the IDownload interface object.

id Category ID (0 - all)

pfn Pointer to callback function.

pctxt Pointer to user data context passed as first argument to function.

245

IDownload Interface

IDOWNLOAD_GetCategoryList()
NOTE: This function is a Version 1.0 legacy function depricated. Use
IDOWNLOAD_Enum() instead.

Description:
Asynchronously retrieves the list of categories available on the server.

Prototype:
void IDOWNLOAD_GetCategoryList

(
IDownload * po,
PFNDLCATEGORYLIST pfn,
void * pcxt
)

Parameters:

Return Value:
Upon completion, the callback is called with the appropriate error value.
If the error code is 0 (success), the category list pointer provided is valid.

Comments:
None

Side Effects:
This call will attempt to initiate a network connection.

See Also:
IDOWNLOAD_Enum()
Return to the List of functions

po [in] Pointer to the IDownload interface object.

246

IDownload Interface

IDOWNLOAD_GetConfigItem()
Description:

This function retrieves the device configuration information related to
the download services.

Prototype:
int IDOWNLOAD_GetConfigItem

(
IDownload * po,
int i,
void * pItem,
int nSize
);

Parameters:

po [in] Pointer to the IDownload interface
object.

i [in] is fully consistent with OEM_GetConfig() changes.

CFGI_AUTOSTART, AEECLSID - Auto-Started Applet
(AEE_Init())

CFGI_BUSY_CURSOR_OFFSET, Position of hourglass (AEERect *)

char CFGI_CARDID Unique identifier that identifies the
attached card. The input buffer for this
will be the size returned by
CFGI_CARDID_LEN

int CFGI_CARDID_LEN Size in bytes of the CARDID (For e.g.,
RUIM./SIM)

CFGI_CLOSE_KEYS OEMCloseKeys * (see structure
below)

CFGI_DATA_NETWORK OEMDataNetwork *

CFGI_DEBUG_KEY OEMDebugKey * see
OEM_GetConfig()

CFGI_DISALLOW_DORMANCY boolean, if TRUE, disallow dormancy,

CFGI_DNS_IP1 32-bit IP, Domain Name Server(1) in
network byte-order

CFGI_DNS_IP2 32-bit IP, Domain Name Server(2) in
network byte-order

CFGI_DORMANCY_NO_SOCKETS boolean, whether to hold PPP (go
dormant) even if no sockets are open

CFGI_DOWNLOAD AEEDownloadInfo

247

IDownload Interface

CFGI_DOWNLOAD_BUFFER, Size in bytes to buffer data during
download before calling fs_write
(default 10K)

CFGI_DOWNLOAD_FS_INFO, DLItemSize * (Fill dwFSAvail,
dwFSSize)

CFGI_FILE_CACHE_INFO, OEMFileCacheInfo * (see structure
below)

CFGI_FIRST_OEM=CFGI_MAX OEM added config items should start
at this value

uint32 CFGI_GPSONE_LOCK, GPS lock

uint32 CFGI_GPSONE_SVRIP, GPS server IP address

uint32 CFGI_GPSONE_SVRPORT, GPS server IP port

uint32 CFGI_GPSONE_TRANSPORT, OEM GPS transport (IP, Data burst)

CFGI_HTTP_BUFFER, Size in bytes of HTTP read buffer
(default 4K)

CFGI_MAX, Holds max AEE value, not a function

CFGI_MAX_DISPATCH_TIME, Maximum time BREW should spend in
the dispatcher before relinquishing
control (default = 250 msecs)

CFGI_MIN_IDLE_TIME, Minimum time BREW must relinquish
from dispatcher (default = 35 msecs)

CFGI_MOBILEINFO, AEEMobileInfo

MIFFS
Limit

CFGI_MODULE_FSLIMIT, This identifies the maximum files and
maximum space that can be used up
by a module.

The default value for these are set to
the maximum permissible limit.

MIFFSLimit is broken down into the
following subcomponents:

Subcomponents - Type - Description

wMaxFiles - uint16 - Maximum
number of files in EFS this module is
allowed to create

dwMaxSpace - uint32 - Maximum EFS
space this module is allowed to
consume

CFGI_NET_CONNTIMEOUT, time in milliseconds! to wait for
connect()

CFGI_PROVISION_FIRST=0x1000, Offset to build dependent items

CFGI_PROVISION_LAST=0x2000, End of build dependent items

CFGI_SCREEN_SAVER, AEEScreenSaverInfo *

248

IDownload Interface

Return Value:
None

Comments:
None

See Also:
OEM_GetConfig()
Return to the List of functions

CFGI_SLEEP_TIMER_RESOLUTIO, Timer resolution during when
processor/os is in SLEEP mode
(default = 1.2 seconds)

CFGI_SUBSCRIBERID, 32-byte ASCIIZ

CFGI_SUBSCRIBERID_LEN Size in bytes of subscriber ID. The
default used if error returned. The
NULL terminator is counted in the
count returned

uint32 CFGI_SYSMEM_SIZE Size in bytes reserved to the system in
low-memory (default = 2K)

249

IDownload Interface

IDOWNLOAD_GetEULA()
Description:

This function gets the EULA for the given ItemID. When the text is fetched, it invokes
the callback function passed as argument to this function.

Prototype:
void IDOWNLOAD_GetEULA

(
IDownload * po,
DLITEMID id,
PFNDLTEXT pfn,
void * pcxt
);

Parameters:

Return Value:
None

Comments:
None

See Also:
PFNDLTEXT
Return to the List of functions

po Pointer to the IDownload interface object.

id Item ID for the operation.

pfn User callback to be called for item retrieved.

pcxt User context handle passed as first parameter to callback.

250

IDownload Interface

IDOWNLOAD_GetHeaders()
Description:

Returns the current HTTP headers set via the IDOWNLOAD_SetHeaders() call.

Prototype:
const char * IDOWNLOAD_GetHeaders(IDownload * po)

Parameters:

Return Value:
NULL: No headers set
Header strings

Comments:
None

See Also:
IDOWNLOAD_SetHeaders()
Return to the List of functions

po [in] Pointer to the IDownload interface object.

251

IDownload Interface

IDOWNLOAD_GetItemInfo()
Description:

This is the post-1.01 mechanism that allows the caller to query information about the
item associated the specified item ID. The download engine will either retrieve cached
information regarding the item or request the information from the server.
This call is passed a user callback. This callback will be called when the information for
the associated item has been retreived.
Unlike a call to IDOWNLOAD_Enum, this call will retrieve information ONLY about the
specified item. It will not enumerate the contents of an item of type DLI_CATEGORY.
A call to this mechanism cancels any other pending calls.
NOTE: Caching of information is provided inside the protocol. There is no need to
cache information. Information will not be retrieved from the network unless the cache
is invalid.

Prototype:
void IDOWNLOAD_GetItemInfo

(
IDownload * po,
DLITEMID id,
PFNDLENUM pfn,
void * pcxt
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
id [in] Item ID for the operation.
pfn [in] User callback to be called for each item retrieved.
pcxt [in] User context handle passed as first parameter to callback.

252

IDownload Interface

IDOWNLOAD_GetItemList()
Description:

** Version 1.0 Legacy Function - Use IDOWNLOAD_Enum() instead * *
Asynchronously retrieves the list of applications for the specified category ID. Note that
if the specified id is 0, all known applications will be retrieved.

Prototype:
void IDOWNLOAD_GetItemList

(
IDownload * po,
DLCATID id,
DLItemType t,
PFNDLITEMLIST pfn,
void * pcxt
)

Parameters:

Return Value:
Upon completion the callback is called with the appropriate error value.
If the error code is 0 (success), the item list pointer provided is valid.

Comments:
None

Side Effects:
This call will attempt to initiate a network connection.

See Also:
None
Return to the List of functions

po Pointer to the IDownload interface object.
 id Category ID (0 - all)
 t Type of item to download (0 - all)
 pfn Pointer to callback function.
 pctxt Pointer to user data context passed as first argument to function

253

IDownload Interface

IDOWNLOAD_GetModInfo()
Description:

This function allocates and returns a structure containing information regarding
applications associated with a particular DLITEMID.

Prototype:
AppModInfo * IDOWNLOAD_GeModInfo(IDownload * po, DLITEMID appID)

Parameters:

Return Value:
SUCCESS: Returns a pointer to the AppModInfo. This pointer is valid until a
subsequent call is made to IDOWNLOAD_GetModInfo or the interface is released.
FAILURE: NULL.

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
appID [in] Application ID (returned from IDOWNLOAD_GetAppIDList()).

254

IDownload Interface

IDOWNLOAD_GetSize()
Description:

This function returns the total size required to download any missing portions of the
specified item. If non-NULL, the pdwTotal is filled with the total size of all files for the
item.

Prototype:
uint32 IDOWNLOAD_GetSize

(
IDownload * po,
DLITEMID iID,
uint32 * pdwTotal
)

Parameters:

Return Value:
Size of non-resident file(s) to be downloaded.

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
iID [in] Item ID.
pdwTotal [out] Total bytes of all files (resident and non-resident).

255

IDownload Interface

IDOWNLOAD_GetSizeEx()
Description:

This method calculates the size required to store an item of 1-N packages. It returns
an error if the size required is unavailable on the device.

Prototype:
int IDOWNLOAD_GetSizeEx

(
IDownload * po,
DLITEMID iID,
DLItemSize * psi
);

Parameters:

Return Value:
SUCCESS - If the size is obtained
EFSFULL - Insufficient FS storage space (dwFSAvail < dwFSRequired)
ENOMEMORY - Insufficient contiguous RAM for the item (dwRAM <
dwEstRAMRequired)
EOUTOFNODES - Insufficient file handles available (nFilesAvail < nEstFileRequired)
EBADPARM - If psi is NULL or the package is invalid

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.

iID [in] Item ID to check

psi [out] Size information

256

IDownload Interface

IDOWNLOAD_Lock()
Description:

This function is used to either lock or unlock a module. Locking a module prevents it
from being auto-disabled.

Prototype:
boolean IDOWNLOAD_Lock(IDownload * po, DLITEMID id, boolean bLock);

Parameters:

Return Value:
TRUE - Module locked or unlocked
FALSE - Lock or unlock failed

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.

id [in] Item ID for the operation.

bLock [in] TRUE if needs to be locked, FALSE otherwise

257

IDownload Interface

IDOWNLOAD_LogEnumInit()
Description:

Initializes the enumeration of download log entries.

Prototype:
int IDOWNLOAD_LogEnumInit(IDownload * po)

Parameters:

Return Value:
SUCCESS - Successfully initialized
EFAILED - Log file does not exist.

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.

258

IDownload Interface

IDOWNLOAD_LogEnumNext()
Description:

Returns the next available log entry. Returns FALSE if there are no more log items to
enumerate.

Prototype:
boolean IDOWNLOAD_LogEnumNext(IDownload * po, DLLogItem * pli)

Parameters:

Return Value:
TRUE - success
FALSE - no more items

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
pli [in/out] Pointer to log item entry to fill.

259

IDownload Interface

IDOWNLOAD_OnStatus()
Description:

This function is passed a function callback that is called when any activity occurs as a
result of calls to the IDownload class. This includes status regarding recalled
applications, download status, etc.

Prototype:
void IDOWNLOAD_OnStatus(IDownload * po, PFNDLSTATUS pfn, void * pUser)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
pfn [in] Pointer to status callback function.
pUser [in] Pointer to user data context passed as first argument to function.

260

IDownload Interface

IDOWNLOAD_Restore()
Description:

Asynchronously restores an applet that has been removed to save memory. The
application is downloaded free of charge and no billing transaction is generated.

Prototype:
void IDOWNLOAD_Restore

(
IDownload * po,
DLITEMID id,
PFNDLCOMMAND pfn,
void * pcxt
)

Parameters:

Return Value:
Upon completion, the callback specified is called with the associated completion
code/error value. A code of 0 indicates success.

Comments:
None

Side Effects:
This call will attempt to initiate a network connection.

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
id [in] Application ID.

261

IDownload Interface

IDOWNLOAD_Search()
Description:

This is the post-1.01 function initiates a search of ADS items that fulfill the search
criteria specified. The return value works identically to the IDOWNLOAD_Enum()
function.

Prototype:
void IDOWNLOAD_Search

(
IDownload * po,
const AECHAR * psz,
DLSearchType st,
PFNDLENUM pfn,
void * pcxt
)

Parameters:

Return Value:
None

Comments:
None

See Also:
IDOWNLOAD_Enum()
Return to the List of functions

po [in] Pointer to the IDownload interface object.
psz [in] Search string. The string specified is a comma separated list of

keywords,
st [in] Search type (ANY, ALL).
pfn [in] Search callback.
pcxt [in] User context.

262

IDownload Interface

IDOWNLOAD_SetADS()
Description:

This function allows the caller to set the server that the download mechanism will use.
It is provided ONLY for debug purposes and is NOT supported on production handsets.

Prototype:
boolean IDOWNLOAD_SetADS(IDownload * po, ADSInfo * ps)

Parameters:

Return Value:
TRUE - success
FALSE - function not supported

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
ps [in] Pointer to structure containing server information.

263

IDownload Interface

IDOWNLOAD_SetHeaders()
Description:

This is the post-1.01 function allows the application to specify a special HTTP headers
that will be sent to the ADS on all requests. The format is as follows:
"Name:Val\r\nName:Val\r\nName:Val\r\n"
Passing a NULL value for the header removes the extra headers.

Prototype:
void IDOWNLOAD_SetHeaders(IDownload * po, const char * pszHeader)

Parameters:

Return Value:
None

Comments:
None

See Also:
IDOWNLOAD_GetHeaders()
Return to the List of functions

po [in] Pointer to the IDownload interface object.
pszHeaders [in] Pointer to HTTP headers.

264

IDownload Interface

IDOWNLOAD_SetSubscriberID()
Description:

This function allows the caller to set the subscriber ID.

Prototype:
void IDOWNLOAD_SetSubscriberID

(
IDownload * po,
const char * pszSID,
int nSize
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IDownload interface object.
pszSID [in] Pointer to SID.
nSize [in] Size in bytes of subscriber ID (if <= 0 assumed to be

DEFAULT_SUBSCRIBERID_LEN).

265

IFont Interface

This interface provides functions for drawing and measuring text. Applications will not typically
call IFont member functions directly. IDisplay provides a friendlier and more convenient
interface to drawing text, with support for system colors and clipping state, as well as many
features related to drawing text, such as underlining, centering, framing, and erasing
backgrounds. IFont's functions are stricter about arguments and less flexible in defaulting
values. As IDisplay builds on IFont and any IFont can be passed to IDisplay for it to manage,
using IFont directly offers no increase in functionality.

IFont is an interface with multiple implementations. Some IFont classes might work only with
a particular class of IBitmap, whereas others will work with any IBitmap that supports 1-bit blits.
By default, IDisplay uses IFont objects provided by the OEM. These can differ in size and
appearance from handset to handset, and some may not support off-screen bitmaps.

List of Header files to be included

The following header file is required:

AEEFont.h

List of functions

Functions in this interface include:

IFONT_AddRef()
IFONT_DrawText()
IFONT_GetInfo()
IFONT_MeasureText()
IFONT_QueryInterface()
IFONT_Release()

The remainder of this section provides details for each function.

266

IFont Interface

IFONT_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
IFONT_Release()
Return to the List of functions

267

IFont Interface

IFONT_DrawText()
Description:

This function draws text into a bitmap. The x and y parameters describe the placement
of the top-left corner of the left most character cell.
The drawing operation is limited to the rectangle *prcClip. Any portions of the text that
fall outside of this rectangle (or outside the bounds of the bitmap) will not be drawn.
Clipping affects whether or not pixels are drawn; clipping never affects where things
are drawn.
All parameters to IFONT_DrawText() should be valid. Invalid or special values are not
interpreted to have special meanings, as in IDisplay. The dwFlag parameter consists
of a set of bit flags that select certain options. The values are defined as for
IDISPLAY_DrawText(), but only IDF_TEXT_TRANSPARENT is supported. When
IDF_TEXT_TRANSPARENT is specified, only the foreground portion (i.e. the
graphical representation the character) is drawn over any pixels previously occupying
the destination rectangle. Otherwise, each character cell is drawn in its entirety (both
foreground and background pixels).

Prototype:
int IFONT_DrawText

(
IFont *pIFont,
IBitmap *pDst,
int x,
int y,
const AECHAR *pcText,
int nChars,
NativeColor foreground,
NativeColor background,
const AEERect *prcClip,
uint32 dwFlags
)

Parameters:
pIFont [in] Pointer to the IFont Interface.
pDst [in]/[out] Pointer to the destination IBitmap
x [in] X coordinate of the text string.
y [in] Y coordinate of the text string.
pcText [in] Text string to be drawn.
nChars [in] Text string length. If this is -1, then the length is automatically

computed by this function
foreground [in] Color to draw text.
background [in] Color to draw background.
prcClip [in] Clipping rectangle in which the text string must be drawn.
dwFlags [in] Properties bitmap that dictates the appearance of the text

display.

268

IFont Interface

Return Value:
SUCCESS, if successful.
Error code, if otherwise

EUNSUPPORTED, if the underlying IBitmap does not support operations required
by the font.
Other implementation-specific error codes

Comments:
Negative x and y values are legal and indicate a starting position to the left of or above
the top of the bitmap. In such cases, any portion of the text that extends into the bitmap
(and into *prcClip) is drawn.
When the width or height of *prcClip is negative, nothing is drawn.
The foreground and background color values are NativeColor values and not RGBVAL
values.
These can be obtained by calling the destination bitmap's IBITMAP_RGBToNative()
member function.

See Also:
NativeColor
IBITMAP_RGBToNative()
IFONT_MeasureText()
Return to the List of functions

269

IFont Interface

IFONT_GetInfo()
Description:

This function fills the AEEFontInfo structure with information about the font. The ascent
and descent values are returned.
The size of the structure is passed for backward compatibility. The implementation
should only fill the structure up to the specified size. If the size is larger that than the
sizeof(AEEFontInfo), this function should return EUNSUPPORTED.

Prototype:
int IFONT_GetInfo(IFont * pIFont, AEEFontInfo * pinfo, int nSize)

Parameters:

Return Value:
SUCCESS, if font info is retrieved.
EUNSUPPORTED, if the version determined by the nSize is not supported.

Comments:
IFONT_GetInfo() should always succeed when a valid pinfo pointer is passed and
nSize is equal to sizeof(AEEFontInfo).

See Also:
AEEFontInfo
IFONT_MeasureText()
Return to the List of functions

pIFont [in] Pointer to the IFont Interface.
pinfo [out] Pointer to the AEEFontInfo structure to fill.
nSize [in] Size of structure to fill.

270

IFont Interface

IFONT_MeasureText()
Description:

This function measures the width of text. It calculates the number of characters that fit
in the given maximum width as well as the number of pixels that those characters take
up. All parameters to IFONT_MeasureText() must be valid. Invalid or special values are
not interpreted to have special meanings.

Prototype:
int IFONT_MeasureText

(
IFont *pIFont,
const AECHAR *pcText,
int nChars,
int nMaxWidth,
int *pnFits,
int *pnPixels
)

Parameters:

Return Value:
SUCCESS, if successful
Error Code, if unsuccessful

Comments:
None

See Also:
IFONT_GetInfo()
Return to the List of functions

pIFont [in] Pointer to the IFont Interface.
pcText [in] Text string to be measured in pixels.
nChars [in] The number of AECHAR characters to measure. Zero (0)

indicated an empty string (width 0 (zero))
Negative values may not be specified.

nMaxWidth [in] Maximum available screen width in pixels.
pnFits [out] Number of characters that can fit in the screen of the given

available width.
pnPixels [out] Total width of the text string in pixels that can fit in the available

space.

271

IFont Interface

IFONT_QueryInterface()
Description:

This function retrieves a pointer to an interface conforming to the definition of the
specified class ID. This can be used to query for extended functionality, like future
versions or proprietary extensions.
Upon a successful query, an instance of the interface is returned. The caller is
responsible for calling Release() at some point in the future. One exception is when the
pointer returned is not an interface pointer. In that case, the memory will share the
lifetime of the object being queried, and the returned pointer will not be used to free or
release the object.

Prototype:
int IFONT_QueryInterface(IFont * pIFont, AEECLSID id, void ** p)

Parameters:

Return Value:
SUCCESS, on success,
ECLASSNOTSUPPORT, if class ID not supported

Comments:
On failure, QueryInterface() must set *p to NULL.

See Also:
None
Return to the List of functions

pIFont [in] Pointer to the IFont Interface.
id [in] A globally unique ID to identify the entity (interface or data) that is

to be queried.
p [out] Pointer to the data or interface that is to be retrieved. If the value

passed back is NULL, the interface or data being queried is not
available.

272

IFont Interface

IFONT_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
IFONT_AddRef()
Return to the List of functions

273

IGSM1xControl Interface

IGSM1xControl interface enables GSM1x capability on the mobile. It contains interfaces that
are the building blocks for GSM1x Activation BREW Applet.

The interfaces support provisioning of GSM1x data from SIM or R-UIM to a specially
designated NAM in NV as well as switching between NAMs at run time.

Typically, GSM1x Activation BREW Applet will follow the following sequence of operations:

• Find out the current mode using IGSM1xControl_GetCurrentMode().

• Find out which modes are available using IGSM1xControl_GetAvailableModes().

• If no provisioning modes are available, go to "Emergency calls only" state using
IGSM1xControl_ActivateNonGSM1xMode() and exit.

• Choose the new provisioning mode either automatically or by interacting with the
user.

• If the new mode is CDMA1x, select it using
IGSM1xControl_ActivateNonGSM1xMode().

• If the new mode is GSM1x, do the following sequence (order is important) of
operations:

– Call IGSM1xControl_ProvisionGSM1xParameters() to provision IMSI,
ACCOLC and MSISDN.

– Form GSM1x PRL and set it using IGSM1xControl_SetGSM1xPRL().
– Set home and locked SID/NID pairs using

IGSM1xControl_SetGSM1xSIDNIDPairs()
– Call IGSM1xControl_EnableGSM1xMode().

GSM1x Activation BREW Applet can, optionally, provide interactive editing capability for
PLMN selector and forbidden PLMN information stored in SIM/R-UIM.

274

IGSM1xControl Interface

In addition to its core functionality, this class is used to signal GSM1x BREW Applets (other
than GSM1x Activation BREW Applet) whenever GSM1x mode is activated or de-activated.
IGSM1xControl sends event notification whenever GSM1x mode changes (enabled or
disabled). Whenever a new mode is activated on IGSM1xControl it sends out a
NMASK_GSM1xCONTROL_STATUS_CHANGE notification. AEEGSM1xControl_statusType
is sent as dwParam member of the EVT_NOTIFY event.

To send out notification, a helper class IGSM1xControlNotifier is used. Methods for
IGSM1xControlNotifier should not be called directly by BREW applets. Brew applet should
specify the class id for IGSM1xControlNotifier and the
NMASK=NMASK_GSM1xCONTROL_STATUS_CHANGE in its MIF file.

In general, all GSM1x applets should behave as follows:

On Init

• Register to receive NMASK_GSM1xCONTROL_STATUS_CHANGE.

• Call IGSM1xSig_GetStatus()to ensure that GSM1x capability is enabled.
If GSM1x capability is disabled, application can exit with an appropriate message or
wait until it receives a GSM1xSIG_STATUS_CHANGE event with
GSM1xSIG_ACTIVE.

Runtime

• If a GSM1xSIG_STATUS_CHANGE event is received, handle it appropriately.

The IGSM1xControl interface is obtained via the ISHELL_CreateInstance() mechanism.

List of Header files to be included

The following header file is required:

AEEGSM1xControl.h

275

IGSM1xControl Interface

List of functions

Functions in this interface include:

IGSM1xControl_ActivateNonGSM1xMode()
IGSM1xControl_EnableGSM1xMode()
IGSM1xControl_GetAvailableModes()
IGSM1xControl_GetCurrentMode()
IGSM1xControl_GetDFPresence()
IGSM1xControl_GetGSM1xPRL()
IGSM1xControl_GetGSM1xSIDNIDPairs()
IGSM1xControl_GetPLMN()
IGSM1xControl_GetSupportedProvisioningModes()
IGSM1xControl_GetUIMUniqueId()
IGSM1xControl_ProvisionGSM1xParameters()
IGSM1xControl_SetGSM1xPRL()
IGSM1xControl_SetGSM1xSIDNIDPairs()
IGSM1xControl_SetPLMN()
IGSM1xControl_ValidatePRL()

The remainder of this section provides details for each function.

See Also:
IGSM1xSig Interface
IQueryInterface
Return to the IGSM1xControl Interface

276

IGSM1xControl Interface

IGSM1xControl_ActivateNonGSM1xMode()
This function

This function activates the specified provisioning mode:
AEEGSM1XCONTROL_1X_NV_PROV_MASK
AEEGSM1XCONTROL_1X_RUIM_PROV_MASK
AEEGSM1XCONTROL_EMERGENCY_PROV_MASK

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_ActivateNonGSM1xMode

(
IGSM1xControl *instancePtr,
AEEGSM1xControl_DFPresenceBitMaskType mode
)

Parameters:

Return Value:
AEEGSM1xControl_statusType

Comments:
This function is usually called by the GSM1x Activation App when a user desires to
switch to CDMA 1x provisioning mode..

Side Effects:
NMASK_GSM1xSIG_STATUS_CHANGE notification sent to all registered apps.

See Also:
None
Return to the List of functions

instancePtr Pointer to the IGSM1xControl Interface object.
mode The desired provisioning mode.

277

IGSM1xControl Interface

IGSM1xControl_EnableGSM1xMode()
This function

This routine commands DMSS's Call Manager module to switch to the GSM1x NAM.
Call Manager will take the phone offline and then re-do the system determination.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_EnableGSM1xMode

(
IGSM1xControl *instancePtr
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
This routine is synchronious - it waits till the phone finishes system determination (that
can take significant amount of time.) This function is usually called by the GSM1x
Activation App as the final step in activating GSM1x mode.

Side Effects:
NMASK_GSM1xCONTROL_STATUS_CHANGE notification is sent to all registered
applications.

See Also:
None
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.

278

IGSM1xControl Interface

IGSM1xControl_GetAvailableModes()
Description:

This function returns (as a bit mask) which of the provisioning modes are currently
available for selection. This is determined by the software build and by the presence
and the type of the User Identity Module.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_GetAvailableModes

(
IGSM1xControl *instancePtr,
AEEGSM1xControl_modeBitMaskType *modeMask
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

See Also:
None
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
modeMask Pointer to a memory location to receive the bitmask which indicates the

supported modes.

279

IGSM1xControl Interface

IGSM1xControl_GetCurrentMode()
Description:

This function retrieves the current provisioning mode.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_GetCurrentMode

(
IGSM1xControl *instancePtr,
AEEGSM1xControl_modeBitMaskType *modeMask
)

Parameters:

Return Value:
AEEGSM1xControl_statusType- the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
Can be used by the GSM1x Activation App to display the current provisioning mode.

See Also:
None
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
modeMask Pointer to a memory location to receive the current provisioning mode.

280

IGSM1xControl Interface

IGSM1xControl_GetDFPresence()
Description:

This function returns the indication which directory files (DFs) are present on the
currently available user identity card (SIM or R-UIM.)

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_GetDFPresence

(
IGSM1xControl *instancePtr,
AEEGSM1xControl_DFPresenceBitMaskType *presenceMask
)

Parameters:

Currently, the following DFs are supported:
AEEGSM1XCONTROL_MF_PRESENT
AEEGSM1XCONTROL_CDMA_DF_PRESENT
AEEGSM1XCONTROL_GSM_DF_PRESENT

To be supported in a future release:
AEEGSM1XCONTROL_DCS1800_DF_PRESENT

The contents of this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
AEEGSM1XCONTROL_DCS1800_DF_PRESENT is currently not supported, its
mask will not be returned by this call.

See Also:
None
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
presenceMask Pointer to a memory location to receive the bitmask that indicates

which DFs are present.

281

IGSM1xControl Interface

IGSM1xControl_GetGSM1xPRL()
Description:

This function returns the packed PRL stored in the NAM assigned to GSM1x. Format
of the PRL depends on the software build IS683A or IS683C).

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_GetGSM1xPRL

(
IGSM1xControl *pIGSM1xControl,
uint16 maxPRLSizeBytes,
byte *packedPRL,
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned valuesare defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

See Also:
IGSM1xControl_SetGSM1xPRL()
Return to the List of functions

pIGSM1xControl Pointer to the IGSM1xControl object.
maxPRLSizeBytes specifies the maximum size of the buffer pointed by packedPRL.
packedPRL Pointer to a memory location to receive the PRL. The contents of

this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

282

IGSM1xControl Interface

IGSM1xControl_GetGSM1xSIDNIDPairs()
Description:

This function retrieve Home and Locked SID/NID pairs stored in NV.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_GetGSM1xSIDNIDPairs

(
IGSM1xControl *pInstance,
uint16 HomeSIDNIDMaxCnt,
AEEGSM1xControl_SIDNIDPairType *HomeSIDNIDPairs,
uint16 *ActualHomeSIDNIDCnt,
uint16 LockedSIDNIDMaxCnt,
AEEGSM1xControl_SIDNIDPairType *LockedSIDNIDPairs,
uint16 *ActualLockedSIDNIDCnt
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

pInstance Pointer to the IGSM1xControl object.
HomeSIDNIDMaxCnt Maximum number of SID/NID pairs that can be stored in

the memory location pointed by HomeSIDNIDPairs.
HomeSIDNIDPairs Pointer to a memory location to receive Home SID/NID

pairs. The contents of this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

ActualHomeSIDNIDCnt Pointer to a memory location to receive the actual count of
Home SID/NID pairs written to HomeSIDNIDPairs. The
contents of this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

LockedSIDNIDMaxCnt Maximum number of SID/NID pairs that can be stored in
the memory location pointed by LockedSIDNIDPairs.

LockedSIDNIDPairs Pointer to a memory location to receive Locked SID/NID
pairs. The contents of this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

ActualLockedSIDNIDCnt Pointer to a memory location to receive the actual count of
Home SID/NID pairs written to LockedSIDNIDPairs. The
contents of this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

283

IGSM1xControl Interface

See Also:
IGSM1xControl_SetGSM1xSIDNIDPairs()
Return to the List of functions

284

IGSM1xControl Interface

IGSM1xControl_GetPLMN()
Description:

This function reads from a SIM or R-UIM card and returns the PLMN entries for all
types specified by the provided bitmask.

A Home PLMN is retrieved from the EFimsi counting the EFad.
A PLMN Selector is retrieved from the EFplmnsel.
A Forbidden PLMN is retrieved from the EFfplmn.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_GetPLMN

(
IGSM1xControl *instancePtr,
AEEGSM1xControl_PLMNTypeBitMaskType types,
uint16 maxPLMNEntriesCnt,
AEEGSM1xControl_PLMNTripletType *PLMNBuf,
uint16 *actualPLMNEntriesCnt
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

instancePtr Pointer to the IGSM1xControl object. types specifies a
bitmask that specifies which types of PLMN information are
requested

AEEGSM1XCONTROL_HOME_PLMN
AEEGSM1XCONTROL_SEL_PLMN
AEEGSM1XCONTROL_FORBIDDEN_PLMN) .

maxPLMNEntriesCnt Maximum number of PLMN entries that can fit into the
location pointed by PLMNBuf.

PLMNBuf Pointer to a memory location to receive the array of PLMN
elements. The contents of this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

actualPLMNEntriesCnt Pointer to a memory location to receive the actual number
of entries copied into the location pointed by PLMNBuf. The
contents of the location pointed by actualPLMNEntriesCnt
are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

285

IGSM1xControl Interface

See Also:
IGSM1xControl_SetPLMN()
Return to the List of functions

286

IGSM1xControl Interface

IGSM1xControl_GetSupportedProvisioningModes()
Description:

This function returns the bit mask that indicates which of the possible provisioning
modes are supported by the software (OEM). Note, that this calls does not take into
account the presence and the type of a User Identity Module (smartcard.) Thus, even
if some mode are supported by the software, user might not be able to use them
because the user does not have a "right" UIM.

Prototype:
AEEGSM1xControl_statusType
IGSM1xControl_GetSupportedProvisioningModes

(
IGSM1xControl *instancePtr,
AEEGSM1xControl_DFPresenceBitMaskType *modeMask
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix
AEEGSM1XCONTROL_STATUS_

Comments:
Relies on the implementation provided by OEMs.

See Also:
None
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
modeMask Bit mask that contains zero or more values

AEEGSM1XCONTROL_GSM1X_PROV_MASK,
AEEGSM1XCONTROL_1X_NV_PROV_MASK,
AEEGSM1XCONTROL_1X_RUIM_PROV_MASK.

287

IGSM1xControl Interface

IGSM1xControl_GetUIMUniqueId()
Description:

This function returns the unique ICCId stored in EFiccid field on SIM or R-UIM. The
normal length is 10 bytes.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_GetUIMUniqueId

(
IGSM1xControl *pInstance,
uint16 maxBufLen,
byte *pId,
uint16 *actualLen
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None.

See Also:
None.
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
maxBufLen Maximum length of a memory buffer pointed by pId.
pId Pointer to a memory location to receive the ICCId. The contents of this

location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned. This location
should have at least 10 bytes available.

actualLen Pointer to a memory location to receive the actual length of ICCId. The
contents of this location are undefined unless
AEEGSM1XCONTROL_STATUS_SUCCESS is returned.

288

IGSM1xControl Interface

IGSM1xControl_ProvisionGSM1xParameters()
Description:

This routine reads GSM IMSI, ACCOLC, and MSISDN from the present UIM card if
any), converts it to CDMA IMSI, ACCOLC and MSISDN according to GSM1x
provisioning algorithm, and writes the results into in NV, associated with GSM1x NAM.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_ProvisionGSM1xParameters

(
IGSM1xControl *instancePtr
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

See Also:
None
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.

289

IGSM1xControl Interface

IGSM1xControl_SetGSM1xPRL()
Description:

Description:
This function validates supplied packed PRL and (if valid) writes it to the GSM1x NAM
in NV.
The supplied PRL must have the following format:

reserved (1 byte) will be filled by this function
prl_version (2 bytes)
size (2 bytes) PRL size in bits
valid (1 byte) boolean
roaming_list(variable length) packed IS683A format

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_SetGSM1xPRL

(
IGSM1xControl *instancePtr,
byte *packedPRL
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

See Also:
IGSM1xControl_GetGSM1xPRL()
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
packedPRL Pointer to a memory location that contains PRL to be written.

290

IGSM1xControl Interface

IGSM1xControl_SetGSM1xSIDNIDPairs()
Description:

This function sets the specified Home and Locked SID/NID pairs in NV.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_SetGSM1xSIDNIDPairs

(
IGSM1xControl *pInstance,
uint16 HomeSIDNIDCnt,
AEEGSM1xControl_SIDNIDPairType *HomeSIDNIDPairs,
uint16 LockedSIDNIDCnt,
AEEGSM1xControl_SIDNIDPairType *LockedSIDNIDPairs
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

See Also:
IGSM1xControl_GetGSM1xSIDNIDPairs()
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
HomeSIDNIDCnt Number of SID/NID pairs located in the buffer pointed by

HomeSIDNIDPairs.
HomeSIDNIDPairs Pointer to a memory location that contains home SID/NID

pairs.
LockedSIDNIDCnt Number of SID/NID pairs located in the buffer pointed by

LockedSIDNIDPairs.
LockedSIDNIDPairs Pointer to a memory location that contains locked SID/NID

pairs.

291

IGSM1xControl Interface

IGSM1xControl_SetPLMN()
Description:

This function writes the supplied PLMN information to EFplmnsel and/or EFfplmn fields
in DFgsm on the currently available SIM or R-UIM card.

The entries having type AEEGSM1XCONTROL_HOME_PLMN are ignored.
The entries having type AEEGSM1XCONTROL_SEL_PLMN are written to
EFplmnsel in the same order as they are present in the supplied array.

If there are more entries specified than can fit into EFplmnsel field,the extra entries are
ignored. The entries having typeAEEGSM1XCONTROL_FORBIDDEN_PLMN are
written to EFfplmn fieldin the same order as they are present in the supplied array.If
there are more entries specified than can fit into EFfplmn field,the extra entries are
ignored.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_SetPLMN

(
IGSM1xControl *instancePtr,
uint16 PLMNEntriesCnt,
AEEGSM1xControl_PLMNTripletType *PLMNBuf
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

See Also:
IGSM1xControl_GetPLMN()
Return to the List of functions

instancePtr Pointer to the IGSM1xControl object.
PLMNEntriesCnt Number of entries in the supplied array.
PLMNBuf Pointer to the array containing the PLMN entries to be written.

292

IGSM1xControl Interface

IGSM1xControl_ValidatePRL()
Description:

This function validates the supplied packed PRL. In order to validate, the supplied PRL
must have the same format IS683A or IS683C) as the phone software. The PRL format
does not allow specification of the standard used.

Prototype:
AEEGSM1xControl_statusType IGSM1xControl_ValidatePRL

(
IGSM1xControl *pInstance,
byte *packedPRL,
boolean *isValid
)

Parameters:

Return Value:
AEEGSM1xControl_statusType - the set of returned values are defined by constants
whose name starts with the prefix AEEGSM1XCONTROL_STATUS_

Comments:
None

See Also:
IGSM1xControl_SetGSM1xPRL()
Return to the List of functions

pInstance Pointer to the IGSM1xControl object.
packedPRL Pointer to a memory location that contains PRL to be validated.
isValid Pointer to a memory location to receive the information whether the

supplied PRL is valid or not. The contents of this location are
undefined unless AEEGSM1XCONTROL_STATUS_SUCCESS is
returned.

293

IGSM1xSig Interface

Description:
IGSM1xSig interface enables GSM1x capability on the mobile device. It provides an
interface to the GSM1x Signaling layer. It also provides a method to check the status
of the GSM1x capability.
It provides the following services:

Sending GSM1x Signaling Msg to network
Notification upon receiving GSM1x Signaling Msg from Network
Checking the status of GSM1x.

The IGSM1xSig interface is obtained via the ISHELL_CreateInstance mechanism.
To send event notifications, IGSM1xSig uses a helper class IGSM1xSigNotifier.
Methods for IGSM1xSigNotifier should not be called directly by BREW applets. Brew
applet should specify the class id for IGSM1xSigNotifier and the NMASK in its MIF file.
Only one type of event notification is provided:

NMASK_GSM1xSIG_PROTOCOL_TYPE
This event is send whenever a GSM1x signaling message is received. While
registering applet should specify the value indicating the protocol type applet is
interested in. An applet will only receive signaling messages for the protocol types
it has registered for.
A pointer to AEEGSM1xSig_SignalingMessageType struct is sent as dwParam
member of the EVT_NOTIFY event.
In general if an applet is interested in messages for protocol type “x”, it should
specify a NMASK of (NMASK_GSM1xSIG_PROTOCOL_TYPE | x).
Possible values for protocol type are specified in enum type
AEEGSM1xSig_ProtocolTypes.

List of Header files to be included

The following header file is required:

AEEGSM1xSig.h

294

IGSM1xSig Interface

List of functions

Functions in this interface include:

IGSM1xSig_GetStatus()
IGSM1xSig_SendSignalingMessage()
IGSM1xSig_SendSignalingReject()

The remainder of this section provides details for each function.

295

IGSM1xSig Interface

IGSM1xSig_GetStatus()
Description:

This method is used to retrieve the current GSM1x status on the phone. This method
lets the caller know if GSM1x capability is enabled or disabled on the mobile device.

Prototype:
AEEGSM1xSig_Status IGSM1xSig_GetStatus

(
IGSM1xSig * po
)

Parameters:
po: Pointer to the IGSM1xSig object

Return Value:
GSM1xSIG_ACTIVE - GSM1x capability enabled on the mobile device.
GSM1xSIG_INACTIVE - GSM1x capability disabled on the mobile device.

Comments:
None.

See Also:
IGSM1xControl Interface
Return to the List of functions

296

IGSM1xSig Interface

IGSM1xSig_SendSignalingMessage()
Description:

This method is used to send a GSM1x signaling message (except for GSM1x
Authentication Req/Rsp Message) to the network.

Prototype:
int IGSM1xSig_SendSignalingMessage

(
IGSM1xSig *po,
AEEGSM1xSig_SignalingMessageType *pMsg
)

Parameters:
po: Pointer to the IGSM1xSig object
pMsg: Pointer to the AEEGSM1xSig_SignalingMessageType struct containing the
GSM1x signaling msg details

Return Value:
SUCCESS - GSM1x Signaling Message queued up.
EBADPARM - Value in pMsg is invalid (ex. attempting to send Auth msg)
EFAILED - General Failure in sending out the signaling message
EITEMBUSY - No more buffers left for sending messages.
EGSM1x_INACTIVE - Phone is not in IGSM1x mode
EBADCLASS: - IPhone is not initialized.

Comments:
This method doesn't guarantee deilvery of the message to the network, it only ensures
that message was sent from the mobile device. It is up to the calling routines to use
other mechanism (ex. explicit ack) to detemine if the network entity received the
message

See Also:
AEEGSM1xSig_SignalingMessageType
Return to the List of functions

297

IGSM1xSig Interface

IGSM1xSig_SendSignalingReject()
Description:

This method is used to send a GSM1x signaling reject message to the network.

Prototype:
int IGSM1xSig_SendSignalingReject

(
IGSM1xSig *po,
AEEGSM1xSig_RejectMessageType *pMsg
)

Parameters:
po: Pointer to the IGSM1xSig object
pMsg: Pointer to the AEEGSM1xSig_RejectMessageType struct containing the
GSM1x signaling reject msg

Return Value:
SUCCESS - GSM1x Reject Message queued up.
EBADPARM - Value in pMsg is invalid (ex. attempting to send Auth msg)
EFAILED - General Failure in sending out the signaling message
EITEMBUSY - No more buffers left for sending messages.
EGSM1x_INACTIVE - Phone is not in IGSM1x mode
EBADCLASS: - IPhone is not initialized.

Comments:
This method doesn't guarantee deilvery of reject messages to the network.

See Also:
None
Return to the List of functions

298

IGSMSMS

Description:
IGSMSMS is a simple interface to the GSM1x support layer in the device.
It provides the following services:

Sending GSM1x SMS messages (SMS_SUBMIT)
Extracting SMS text and TL data from GSM1x SMS messages

The IGSMSMS interface is obtained via the ISHELL_CreateInstance mechanism.

List of Header files to be included

The following header file is required:

AEEGSMSMS.h

List of functions

Functions in this interface include:

IGSMSMS_CreateDefaultMessage()
IGSMSMS_DecodeMessage()
IGSMSMS_DecodeUserData()
IGSMSMS_DeleteAllMessages()
IGSMSMS_DeleteMessage()
IGSMSMS_EncodeUserData()
IGSMSMS_GetMessage()
IGSMSMS_GetMessageStatus()
IGSMSMS_GetMemoryCapExceededFlag()
IGSMSMS_GetSCAddress()
IGSMSMS_GetStatusReport()
IGSMSMS_GetStoreSize()
IGSMSMS_GetTPMR()
IGSMSMS_IsInit()
IGSMSMS_MoveMessage()
IGSMSMS_SendMoreMemoryAvailable()
IGSMSMS_SendSMSDeliverReport()
IGSMSMS_SendSMSSubmit()
IGSMSMS_SetSCAddress()
IGSMSMS_SetMemoryCapExceededFlag()
IGSMSMS_SetMessageStatus()
IGSMSMS_SetTPMR()

299

IGSMSMS

IGSMSMS_StoreMessage()
IGSMSMS_StoreStatusReport()

The remainder of this section provides details for each function.

300

IGSMSMS

IGSMSMS_CreateDefaultMessage()
Description:

This function initializes a Mobile Originated (MO) message structure to the default
values that are most commonly used.
The defaults for a GSMSMSSubmitType are:

SCAddr - Filled in with Default SC Address from SIM
RD - Reject Duplicates set to True
VP - Validity Period
SRR - Status Report Request set to True;
UDHI - User Data Header Indicator set to False
RP - Reply Path Parameter is not set (RP=False)
MR - Message Reference is 0 and is filled in when sent
DA - Destination Address is set to "0" and must be
overwritten by the application
PID - Protocol ID is SME to SME by default
DCS - Data coding Scheme is set to GSM-7bit, class None
UDL - User Data Length is set to 0
UD - User Data is initialized to all zeros

The defaults for a GSMSMSDeliverReportType:
SCAddr - Filled in with Default SC Address from SIM
UDHI - User Data Header Indicator set to False
FCS_present - Failure Cause present is set to False (indicating no failure)
FCS - Failure Cause is set to 0 (reserved)
PID_present - Protocol ID is not present (PID_present=False)
PID - Protocol ID is SME to SME by default
DCS_present - Data Coding Scheme is not present (DCS_present=False)
DCS - Data coding Scheme is set to GSM-7bit, class None
UDL_present - User Data Length is not present (DCS_present=False)
UDL - User Data Length is set to 0
UD - User Data is initialized to all zeros

Prototype:
int IGSMSMS_CreateDefaultMessage

(IGSMSMS *po,
GSMSMSMsgType type,
GSMSMSMsg *pGsmMsg);

Parameters:
po Pointer to the IGSMSMS object
type The type of message to create

301

IGSMSMS

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If the the paremeters were not valid: AEE_GSMSMS_EBADPARAM
If the message was not valid: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None

Return to the List of functions

pGsmMsg Pointer to the GSM SMS Msg structure to initialize.

302

IGSMSMS

IGSMSMS_DecodeMessage()
Description:

This function decodes a raw SMS message into an appropriate structure
representation.
The UserData (UD) will not be decoded and can be subsequently:
AECHAR wszText[GSMSMS_MAX_UD_CHAR];
GSMSMSMsg DecodedMsg;

// Decode Message
IGSMSMS_DecodeMessage(pMe, pNotifyMsg->rawMsg, sizeof(pNotifyMsg-
>rawMsg), &DecodedMsg);

// Decode UserData
IGSMSMS_DecodeUserData(pMe, DecodedMsg, &wszText[0],
sizeof(wszText));

Prototype:
int IGSMSMS_DecodeMessage

(
IGSMSMS * po,
const GSMSMSRawMsg *pRawMsg,
const GSMSMSMsg *pMsg
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If the store could not be decoded: AEE_GSMSMS_EFAILED
If pRawMsg or pMsg are NULL: AEE_GSMSMS_EBADPARAM

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
pRawMsg Pointer to the raw GSM SMS message to decode
pMsg Pointer to the GSMSMSMsg struct to fill with the decoded information

303

IGSMSMS

IGSMSMS_DecodeUserData()
Description:

This function is used decode the UserData into UNICODE for display. If the UserData
contains a user data header it will be skipped.
ONLY THE RAW TEXT IS RETURNED by this method. If the message is a
concatinated or EMS message, it must be decoded directly by an external library or by
the applet.
See the description of IGSMSMS_DecodeMessage for an example of how this is used.
If wstrlen is less than the decoded data length, the decoded data will be truncated and
NULL terminated.

Prototype:
IGSMSMS_DecodeUserData

(
IGSMSMS * po,
const GSMSMSMsg *pMsg,
AECHAR *pwzStr,
uint16 wstrlen
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If the data could not be decoded: AEE_GSMSMS_EFAILED
If pMsg or pwzStr are NULL: AEE_GSMSMS_EBADPARAM

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
pMsg Pointer to the decoded SMS message
pwzStr Pointer to the unicode string to fill with the decoded data
wstrlen Size in bytes of the wstr unicode string

304

IGSMSMS

IGSMSMS_DeleteAllMessages()
Description:

This function deletes all entries of a specified type from the store (SIM, NVRAM or
NVRAM Voivemail). It provides a way to delete only mobile originated (MO), mobile
terminated (MT), or all messages.

Prototype:
int IGSMSMS_DeleteAllMessages

(
IGSMSMS * po,
uint16 msgMask,
GSMSMSStorageType deleteFrom
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If deleteFrom is invalid: AEE_GSMSMS_EBADPARAM
If the messages could not be deleted: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
msgMask Indicates the type of messages to delete. Any combination of the

following
GSMSMS_SIM_MO
GSMSMS_SIM_MT
GSMSMS_SIM_ALL

deleteFrom Indicates whether to delete from the SIM or from NVRAM database.

305

IGSMSMS

IGSMSMS_DeleteMessage()
Description:

This function deletes an entry from a specified slot on the store (SIM, NVRAM or
NVRAM Voicemail).

Prototype:
void IGSMSMS_DeleteMessage

(
IGSMSMS * po,
uint16 index,
GSMSMSStorageType deleteFrom
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If deleteFrom is invalid: AEE_GSMSMS_EBADPARAM
If the message could not be deleted: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
index Slot index of message to delete
deleteFrom Indicates whether to delete from the SIM or from NVRAM database.

306

IGSMSMS

IGSMSMS_EncodeUserData()
Description:

This function is used to decode the UserData into UNICODE for display. If a UserData
Header is included then address of the offset user data should be passed to this
function. The udlen parameter must also be reduced accordingly. If the message will
not fit in the space provided it will be truncated.

Prototype:
IGSMSMS_EncodeUserData

(
IGSMSMS * po,
const AECHAR *pwszText,
byte *pDest,
byte destLen,
GSMEncodingType encoding,
byte *pEncodedLen
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If pUD is NULL, pwszText is NULL or encoding is invalid:
AEE_GSMSMS_EBADPARAM

Comments:
None

See Also:
None
Return to the List of functions

po [in] Pointer to the IGSMSMS object
pwszText [in] Pointer to the unicode string to encode
pDest [out] Pointer to the part of the UD field to encode the data
destLen [in] Size in bytes of the UD field left for the encoded string
encoding [in] Encoding to use for text
pEncodedLen [out] Length of the encoded text in bytes

307

IGSMSMS

IGSMSMS_GetMessage()
Description:

This function retrieves an SMS entry from a specified slot on the store (SIM or
NVRAM). The message is retrieved in raw format and can be decoded using
IGSMSMS_DecodeMessage and IGSMSMS_DecodeUserData.

Prototype:
int IGSMSMS_GetMessage

(
IGSMSMS * po,
uint16 index,
GSMSMSRawMsg *pMsg,
GSMSMSStorageType readFrom
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If pMsg is NULL, or readFrom is invalid: AEE_GSMSMS_EBADPARAM
If the messages could not be read: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
index Slot index of message to retrieve
pMsg Pointer to struct to be filled in with the retrieved message
readFrom Indicates whether to read from the SIM or from NVRAM database

308

IGSMSMS

IGSMSMS_GetMessageStatus()
Description:

This function reads the status of a message in the specified store. The status will
indicate whether the specified slot is free or if the message stored there is mobile
terminated or mobile originated. If the message is mobile terminated it will also indicate
whether the message has been read or not.
If the message is mobile originated, it will also indicate whether the message has been
sent or not and if sent, whether there is a pending or received status report for the
message.

Prototype:
int IGSMSMS_GetMesageStatus

(
IGSMSMS * po,
uint16 index,
GSMSMSStatusType *pStatus,
GSMSMSStorageType readFrom
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If readFrom is invalid: AEE_GSMSMS_EBADPARAM
If the entry could not be updated: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
index The index in the store to read from
pStatus Pointer to the status to read
readFrom Indicates whether to use the SIM or NVRAM database

309

IGSMSMS

IGSMSMS_GetMemoryCapExceededFlag()
Description:

This function retrieves the default Memory Capacity Exceeded Flag on the SIM. In
accordance with the GSM TS 11.11 spec, pFlag is set to 0 if the flag is set, and set to
1 if the flag is not set. All other values are reserved.

Prototype:
void IGSMSMS_GetMemoryCapExceededFlag(IGSMSMS * po, uint8 *pFlag)

Parameters:
po: Pointer to the IGSMSMS object
pFlag: Pointer to variable to set to the value of the flag

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If the flag could not be read: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

310

IGSMSMS

IGSMSMS_GetSCAddress()
Description:

This function retrieves the default GSM Service Center address from the SIM.

Prototype:
int IGSMSMS_GetSCAddress

(
IGSMSMS * po,
GSMSMSAddress const *address
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If the SC address could not be retrieved: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
address Pointer to the structure to fill in with the default SC address

311

IGSMSMS

IGSMSMS_GetStatusReport()
Description:

This function retrieves an SMS StatusReport entry that corresponds to a SMS_Submit
message in a specified slot on the store (SIM or NVRAM).

Prototype:
int IGSMSMS_GetStatusReport

(
IGSMSMS * po,
uint16 index,
GSMSMSRawMsg *pMsg,
GSMSMSStorageType readFrom
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If readFrom is invalid: AEE_GSMSMS_EBADPARAM
If the message could not be read: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
index Slot index of the SMS_Submit corresponds to the status report
pMsg Pointer to the GSM SMS Msg to write the status report to
readFrom Indicates whether to read from the SIM or from NVRAM database.

312

IGSMSMS

IGSMSMS_GetStoreSize()
Description:

This function returns the size of the store in slots.

Prototype:
int AEEGSMSMS_GetStoreSize

(
IGSMSMS * po,
GSMSMSStorageType readFrom,
uint16 *pCount
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
Otherwise: AEE_GSMSMS_EBADPARAM

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
readFrom Message store to query
pCount Pointer to the variable to set to the number of slots in the store

313

IGSMSMS

IGSMSMS_GetTPMR()
Description:

This function retrieves the last used TP-MR from EF-SMSS on the SIM.

Prototype:
int IGSMSMS_GetTPMR(IGSMSMS * po, uint8 *pTPMR)

Parameters:
po: Pointer to the IGSMSMS object
pTPMR: Pointer to variable to set to the value of the TP-MR

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If the flag could not be read: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

314

IGSMSMS

IGSMSMS_IsInit()
Description:

This function indicates to the user whether the IGSMSMS interface has finished
internal initialization. If the interface is not initialized, the applet can register for
NMASK_GSMSMS_INIT in IGSMSMSNotifier to be notified when the initialization is
complete.

Prototype:
boolean IGSMSMS_IsInit(IGSMSMS *po)

Parameters:
po: Pointer to the IGSMSMS object

Return Value:
TRUE if initialized, otherwise FALSE

Comments:
None

See Also:
None

See Also:
None
Return to the List of functions

315

IGSMSMS

IGSMSMS_MoveMessage()
Description:

This function moves a GSM SMS message from one store to another. It will also allow
the the user to move from one slot to another on the same store.

Prototype:
int IGSMSMS_MoveMessage

(
IGSMSMS *po,
GSMSMSStorageType moveFrom,
uint16 fromIndex,
GSMSMSStorageType moveTo,
uint16 *pToIndex
)

Parameters:

Return Value:
AEE_GSMSMS_SUCCESS,If successful.
AEE_GSMSMS_ESTORE_FULL, If the store was full.
AEE_GSMSMS_EFAILED, If the message could not be stored.
AEE_GSMSMS_ENOSERVICE, if the device is not in GSM1x mod.

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
moveFrom Store to move the message from
fromIndex Index of the message to move
moveTo Store to move the message to
pToIndex Pointer to the index of the stored message, if set to

GSMSMS_INDEX_ANY an empty slot will be selected and returned

316

IGSMSMS

IGSMSMS_SendMoreMemoryAvailable()
Description:

This function allows an application to send a GSM RP Layer SMMA message. This
function is called in accordance with the GSM 23.040 spec. If the message times out,
pReport->sendResult is set to AEE_GSMSMS_ETIMEDOUT. All other pReport fields
are invalid. If the message is successfully sent, pReport->sendResult is set to
AEE_GSMSMS_SUCCESS.

Prototype:
int IGSMSMS_MoreMemoryAvailable

(
IGSMSMS *po,
AEECallback *pCb,
GSMSMSSMMAReport *pReport
)

Parameters:
po: Pointer to the IGSMSMS object
pCb: Pointer to AEECallback to call upon response message arrival
pReport: Pointer to report structure to fill with response

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If the message could not be sent: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

317

IGSMSMS

IGSMSMS_SendSMSDeliverReport()
Description:

This function allows an application to send a GSM SMS_DELIVER_REPORT
message. This should be sent in response to receiving an SMS_DELIVER message.
The user would first fill out a GSMSMSDeliverReportType structure either manually or
by calling IGSMSMS_CreateDefaultMessage to fill in the structure and only modifying
the parameters that are different from the default. For a simple
SMS_DELIVER_REPORT message, this would typically be the
UserData (GSMSMSSubmitType->UD)

and the destination address
(GSMSMSSubmitType->DA).

Prototype:
int IGSMSMS_SendSMSDeliverReport

(
IGSMSMS *po,
const GSMSMSDeliverReportType *pDeliverReport
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If the the paremeters were not valid: AEE_GSMSMS_EBADPARAM
If the message was not valid: AEE_GSMSMS_EFAILED

Comments:
None
Return to the List of functions

po Pointer to the IGSMSMS object
pDeliverReport Pointer to the SMS Deliver Report message to send

318

IGSMSMS

IGSMSMS_SendSMSSubmit()
Description:

This function allows an application to send a GSM SMS_SUBMIT message. This can
be used to send a SMS/EMS message and is also used for SIM toolkit. The user would
first fill out a GSMSMSSubmitType structure either manually or by calling
IGSMSMS_CreateDefaultMessage to fill in the structure and only modifying the
parameters that are different from the default. For a simple SMS_SUBMIT message,
this would typically be the Destination Address (DA) and the UserData (UD,UDL).
When the SMS_SubmitReport message is received, the pCB function will be called
and the status can be retrieved from the GSMSMSSendReport structure. If a status
report message was requested, the SMS_StatusReport message will be delivered via
the callback specified in the OnMTMessage registration.

Prototype:
int IGSMSMS_SendSMSSubmit

(
IGSMSMS *po,
const GSMSMSSubmitType * pMsg,
AEECallback *pCb,
GSMSMSSendReport *pReport
)

Parameters:

Return Value:
AEE_GSMSMS_EBUSY if a transaction is pending
AEE_GSMSMS_EBADPARAM if pMsg is NULL or pCb is NULL
AEE_GSMSMS_EENCODE if the message could not be encoded
AEE_GSMSMS_SUCCESS if successful

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
pMsg Pointer to the SMS Submit message to send
pCb This callback will be invoked by AEE when the

SMS_SUBMIT_REPORT is received.
pReport Pointer to structure to be filled in reporting the submit status

319

IGSMSMS

IGSMSMS_SetSCAddress()
Description:

This function updates the default SC address on the SIM.

Prototype:
void IGSMSMS_SetSCAddress

(
IGSMSMS * po,
const GSMSMSAddress *pAddress
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If the SC address could not be set: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
pAddress Pointer to the structure to containing the new SC address

320

IGSMSMS

IGSMSMS_SetMemoryCapExceededFlag()
Description:

This function updates the Memory Capacity Exceeded Flag on the SIM. In accordance
with the GSM TS 11.11 spec, flag should be set to 0 if the MemCapExceded flag is set,
and set to 1 if the it is not set. All other values are reserved.

Prototype:
void IGSMSMS_SetMemoryCapExceededFlag(IGSMSMS * po, uint8 flag)

Parameters:
po: Pointer to the IGSMSMS object
pFlag: New setting for the MemCapExceded flag

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If flag is invaliid: AEE_GSMSMS_EBADPARAM
If the flag could not be set: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

321

IGSMSMS

IGSMSMS_SetMessageStatus()
Description:

This function updates the status for a message in the specified store.
It can be used to mark a :

MT message as read or unread
MO message as sent or not sent
MO message as having a pending status report
MO message as having a received status report
MO message as having a stored status report

Prototype:
int IGSMSMS_SetMesageStatus

(
IGSMSMS * po,
uint16 index,
GSMSMSStatusType status,
GSMSMSStorageType writeTo
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If writeTo is invalid: AEE_GSMSMS_EBADPARAM
If the entry could not be updated: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
index Slot index of message to mark
status The status to write
writeTo Indicates whether to use the SIM or NVRAM database

322

IGSMSMS

IGSMSMS_SetTPMR()
Description:

This function sets the last used TP-MR from EF-SMSS on the SIM.

Prototype:
int IGSMSMS_SetTPMR(IGSMSMS * po, uint8 TPMR)

Parameters:
po: Pointer to the IGSMSMS object
TPMR: New value for the TP-MR in EF-SMSS on the SIM

Return Value:
If successful: AEE_GSMSMS_SUCCESS
If the flag could not be read: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

323

IGSMSMS

IGSMSMS_StoreMessage()
Description:

This function stores a GSM SMS message on the specified store in the specified index.
If *pIndex is set to GSMSMS_STORE_SIM before the call, a free slot will be
selected and the value of *pIndex will be updated. Otherwise, the value of *pIndex
will be used.
If the storeTo parameter is set to GSMSMS_STORE_NVRAM the message will be
stored in the first free slot in the NVRAM mailbox.
If the storeTo parameter is set to storeTo GSMSMS_STORE_SIM, the message
will be stored in the first free slot in the SIM.
If the storeTo parameter is set to GSMSMS_STORE_NVRAM_VM, the currently
stored voicemail message is replaced with the specified voicemail message.

Prototype:
int IGSMSMS_StoreMessage

(
IGSMSMS *po,
const GSMSMSMsg * pMsg,
GSMSMSStorageType storeTo,
uint16 *pIndex
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If the store was full: AEE_GSMSMS_ESTORE_FULL
If the message could not be stored: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
pMsg Pointer to the GSM SMS Msg to store
storeTo Indicates whether to store to the SIM or to NVRAM database
pIndex Pointer to variable containing the index to to store the message at. If the

index is set to GSMSMS_INDEX_ANY an index will be selected and the
value of *pIndex will be updated.

324

IGSMSMS

IGSMSMS_StoreStatusReport()
Description:

This function stores a GSM SMS_StatusReport message that corresponds to a
SMS_Submit message stored at the specified slot on the SIM or in NVRAM.
In GSM, the SMSR directory on the SIM contains the StatusReport. This entry contains
an index into the SMS directory for the corresponding SMS Submit message. When
the entry in the SMS directory is deleted, the corresponding entry in the SMSR is no
longer valid. Therefore, the status report must be stored on the same store as the
SMS_Submit message. If the SMS_Submit message is ever moved to another store,
the SMS_StatusReport must be moved at the same time or it will be lost. If the status
report is stored in NVRAM only the portion of the message that would be saved to the
SMSR is preserved.

Prototype:
int IGSMSMS_StoreStatusReport

(
IGSMSMS *po,
uint16 index,
const GSMSMSMsg * pMsg,
GSMSMSStorageType storeTo
)

Parameters:

Return Value:
If successful: AEE_GSMSMS_SUCCESS.
If pMsg is NULL or storeTo is invalid: AEE_GSMSMS_EBADPARAM
If the message could not be stored: AEE_GSMSMS_EFAILED

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the IGSMSMS object
index Pointer to slot index of the corresponding SMS_Submit message
pMsg Pointer to the GSM SMS Msg to store
storeTo Indicates whether the SMS_Submit message is on the SIM or in

NVRAM database

325

ILogger Interface

BREW provides a standardized and extensible data logging interface, which allows a BREW
application developer to log data using a number of different transport mechanisms.

Below are the primary logging transport implementations. A BREW application developer
selects one by creating an ILogger instance with one of the following class IDs:

Each implementation is responsible for handling and writing to a specific transport but the data
being sent is transport independent.

The header file AEELoggerTypes.h provides definitions for the logging data types common to
both BREW's ILogger interface and the PC side log parser in a client/server type of
architecture.

The file implementation outputs data to the output file in the following BREW packet format:

The Windows implementation of the ILogger interface writes all outgoing logs to the BREW
output window using the following format:

bkt:xx typ:xx cID:xx iID:xx FILENAME LINENUMBER MESSAGE ARGS

in which

Class ID Description

AEECLSID_LOGGER_FILE Sends log items to a file.

AEECLSID_LOGGER_WIN Sends log items to the Emulator output window.

326

ILogger Interface

When compiling a release version of a BREW application, the constant AEE_LOG_DISABLE
may be defined, which, using the preprocessor, removes all OEMLogger interface logging
functions, except the instance creation and getting and setting parameters processes. This
constant must be defined before a new BREW application includes AEELogger.h.

The contents of log data is determined by the type element of the BREW Log header. Three
standard log types are predefined by BREW, but the BREW application developer can also
define as many custom log types as required. The three standard BREW-defined log types are
as follows:

bkt Log bucket

typ Log type

cID ClassID of the currently running BREW application

iID User-defined instance ID

FILENAME Optional file name where log was sent

LINENUMBER Optional line number where log was sent

MESSAGE User defined text message

ARGS Optional arguments using OEMLogger_PutMsg()

Type Description Data contains

AEE_LOG_TYPE_TEXT ASCII text message If you use this log type, the data contains
nSize bytes of ASCII text.

AEE_LOG_TYPE_BIN_MSG AEELogTypeBinMsg If you use this log type, the data contains one
AEE LogTypeBinMsg structure.

AEE_LOG_TYPE_BIN_BLK Block of arbitrary
binary data

If you use this log type, the data contains
nSize bytes of arbitrary binary data.

327

ILogger Interface

Log items are sent and filtered in one of 255 distinct, general purpose buckets. These log
buckets are filtered by the developer at run time using ILOGGER_SetParam() and
ILOGGER_GetParam() or on the PC side, using a post processor.

The structure AEELogTypeBinMsg contains the following elements:

List of Header files to be included
The following header files are required:
AEELogger.h
AEELoggerTypes.h

List of functions

Functions in this interface include:

ILOGGER_AddRef()
ILOGGER_GetParam()
ILOGGER_Printf()
ILOGGER_PutItem()
ILOGGER_PutMsg()
ILOGGER_Release()
ILOGGER_SetParam()
The remainder of this section provides details for each function.

Element Description

Header b7,b6 – bits reserved
b5,b4 – number of args
b3 bit – file name present
b2,b1,b0 – message level

Line Line number in application code where this log
item was sent

args[MAX_LOG_TYPE_BIN_MSG_ARGS] Contains zero or more 32 bit integer values

pszMsg[MAX_LOG_TYPE_BIN_MSG_TEXT_SIZE] pszMsg contains two consecutive NULL
terminated strings: the first is the file name
where the log message was sent and the
second is an ASCII text message

328

ILogger Interface

ILOGGER_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
ILOGGER_Release()
Return to the List of functions

329

ILogger Interface

ILOGGER_GetParam()
Description:

This function is called to get the configuration of the ILOGGER interface. Supported
Parameters depends on the current implementations support. See
AEELogParamType.

Prototype:
int ILOGGER_GetParam

(
ILogger *pILogger,
AEELogParamType pType,
void* pParam
)

Parameters:

Return Value:
SUCCESS Parameter handled successfully
EBADPARM NULL parameter pointer
EUNSUPPORTED Parameter type or option not supported
EFAILED General failure, option not handled successfully

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

pILogger Pointer to the ILogger Interface object
pType Parameter to modify
pParam Pointer to be filled with settings parameter

330

ILogger Interface

ILOGGER_Printf()
Description:

This function is called to send a formatted ASCII text message.
ILOGGER_Printf() is a MACRO that allows variable arguments. It must be called as
follows:

ILOGGER_Printf(pMe->m_pILogger,
(pMe->m_pILogger,
USER_BUCKET1,
__FILE__,
(uint16)__LINE__,
"msg",
args));

Notice that the second argument is actually multiple arguments in parentheses, and
args can be multiple comma separated values

Prototype:
int ILOGGER_Printf

(
ILogger *pILogger,
AEELogBucketType bucket,
const char *pszFileName,
uint16 nLineNum,
const char *pszFormat,
...);

Parameters:

Return Value:
SUCCESS Log sent successfully
EBADPARM Invalid pointer to pszFormat
EUNSUPPORTED Log item filtered
ENOMEMORY Unable to allocate required memory
EFAILED Log not sent
-- The following log codes only apply to file logging

EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

pILogger, Pointer to the ILOGGER object
bucket Bucket to place item
pszFileName Name of file calling this function
nLineNum Line number in file where it was called
pszFormat ASCII text string similar to a printf format string
... Format string arguments

331

ILogger Interface

Comments:
None

See Also:
AEELogBucketType
Return to the List of functions

332

ILogger Interface

ILOGGER_PutMsg()
Description:

This function is called to send a predefined binary message and allows fast logging due
to the limited formatting required and the fixed size of the outgoing log message. The
outgoing binary message's data is of type structure AEELogBinMsgType, which is
defined in AEELoggerTypes.h.

Prototype:
int ILOGGER_PutMsg

(
ILogger *pILogger,
AEELogBucketType bucket,
const char *pszFileName,
uint16 nLineNum,
const char *pszMsg,
uint8 nNumArgs,
uint32 args[MAX_LOG_TYPE_BIN_MSG_ARGS]
)

Parameters:

Return Value:
SUCCESS Log sent successfully
EBADPARM Invalid pointer to pszMsg or nNumArgs too large
EUNSUPPORTED Log item filtered
ENOMEMORY Unable to allocate required memory
EFAILED Log not sent
-- The following log codes only apply to file logging

EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

Comments:
None

See Also:
AEELogBinMsgType

pILogger, Pointer to the ILOGGER object
bucket Bucket to place item
pszFileName ASCII NULL terminated name of file calling this function
nLineNum Line number in file where it was called
pszMsg ASCII NULL terminated text message
nNumArgs length of the args array
args array containing uint32 arguments

333

ILogger Interface

AEELogBucketType
Return to the List of functions

334

ILogger Interface

ILOGGER_PutItem()
Description:

This function is called to send a prioritized user defined binary message. Here are the
steps to define a user log item type:

1. Choose a user item number and define a meaningful name to it.
Example:

#define MY_APPS_LOG_ITEM_TYPE AEE_LOG_TYPE_USER_1

2. Define a structure that corresponds to you're new type,
Example:

typedef struct{
uint8 foo1;
uint32 foo2;
uint8 fooString[STRING_SIZE];
} myAppsItem;

3. Enable the PC software that will be reading the logging output to recognize the log
item type AEE_LOG_TYPE_USER_1 (which in this case is
MY_APPS_LOT_ITEM_TYPE)
4. Call ILOGGER_PutItem() with MY_APPS_LOG_ITEM_TYPE, a pointer to an
instance of myAppsItem, and the size of myAppsItem.

Prototype:
int ILOGGER_PutItem

(
ILogger *pILogger,
AEELogBucketType bucket,
AEELogItemType type,
uint16 nSize,
uint8 *pItem
)

Parameters:

Return Value:
SUCCESS Log sent successfully
EBADPARM Invalid pointer to pItem or size equal to zero
EUNSUPPORTED Log item filtered
ENOMEMORY Unable to allocate required memory
EFAILED Log not sent

pILogger, Pointer to the ILOGGER object
bucket Bucket to place item
type User defined item type
nSize Size of type in bytes
pItem Pointer to instance of type

335

ILogger Interface

-- The following log codes only apply to file logging
EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

Comments:
None

See Also:
AEELogBucketType
AEELogItemType
Return to the List of functions

336

ILogger Interface

ILOGGER_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
ILOGGER_AddRef()
Return to the List of functions

337

ILogger Interface

ILOGGER_SetParam()
Description:

This function is called to configure the performance and behavior of the ILOGGER
interface. Supported parameters depend on the current implementation's support, see
AEELogParamType for more information.

Prototype:
int ILOGGER_SetParam

(
ILogger *pILogger,
AEELogParamType pType,
uint32 param,
void* pParam
)

Parameters:

Return Value:
SUCCESS Parameter handled successfully
EUNSUPPORTED Parameter type or option not supported
EFAILED General failure, option not handled successfully
EBADPARM NULL parameter pointer
-- The following log codes only apply to file logging

EFILENOEXISTS Output log file is closed
EFILEEXISTS Output log file is open

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

pILogger Pointer to the ILOGGER object
pType Parameter to modify
param New settings parameter
pParam Pointer to new settings parameter

338

IPosDet Interface

This interface provides services for position determination using sector information or GPS
information. In order to use the sector-based position determination methods such as
IPOSDET_GetSectorInfo(), the sector information privileges are required. Similarly, for GPS
based position determination methods such as IPOSDET_SetGPSConfig(),
IPOSDET_GetGPSConfig(), and IPOSDET_GetGPSInfo(), position determination privileges
are required.

IPOSDET_GetGPSInfo() is an asynchronous method which use AEECallback. Care must be
taken to ensure that the callbacks and information structures passed to these methods by
reference remain in scope till the callback returns. Also, if multiple requests for sector
information or GPS info. are made without waiting for the callbacks to return, the behavior of
the interface will be unpredictable.

BREW SDK users can set the GPS emulation in the Tools->GPS Emulation menu to use a
pre-recorded NMEA file as GPS input, or connect an NMEA-output capable GPS device. An
offline utility called NMEALogger.exe can be used to record an NMEA file from data coming
from a GPS device connected to the serial port of the desktop/laptop. This NMEA file can be
used later as GPS input. See SDK User's Guide and SDK Utilities Guide for details.

List of Header files to be included

The following header file is required:

AEEPosDet.h

List of functions
Functions in this interface include:
IPOSDET_AddRef()
IPOSDET_GetGPSConfig()
IPOSDET_GetGPSInfo()
IPOSDET_GetOrientation()
IPOSDET_GetSectorInfo()
IPOSDET_QueryInterface()
IPOSDET_Release()
IPOSDET_SetGPSConfig()

339

IPosDet Interface

The remainder of this section provides details for each function.

340

IPosDet Interface

IPOSDET_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
IPOSDET_Release()
Return to the List of functions

341

IPosDet Interface

IPOSDET_GetGPSConfig()
Description:

This function gets the current GPS configuration of the GPS engine.

Prototype:
int IPOSDET_GetGPSConfig(IPosDet *pIPosDet, AEEGPSConfig *pConfig);

Parameters:

Return Value:
SUCCESS, if the function succeeded
Error codes, if otherwise.

EPRIVLEVEL, if the caller does not have PL_POS_LOCATION privilege levels to
invoke this function
EBADPARM, if pConfig is NULL
EUNSUPPORTED, if this function is not supported.

Comments:
Unless this function is called, the GPS engine is configured with default settings on the
first call to IPOSDET_GetGPSInfo(). Only the position determination requests
following a call to IPOSDET_SetGPSConfig() will use the new configurations.
IPOSDET_GetGPSInfo() requests pending response callbacks may not be affected by
this method.

See Also:
AEEGPSConfig
IPOSDET_SetGPSConfig()
Return to the List of functions

pIPosDet [in] Pointer to the IPosDet Interface object.
pConfig [out] Pointer to GPS configuration. See AEEGPSConfig for

details.

342

IPosDet Interface

IPOSDET_GetGPSInfo()
Description:

This function returns information for GPS based position location. It returns latitude,
longitude, altitude information, as well as vector information such as horizontal and
vertical velocity, heading, and the uncertainty of the horizontal information. This is an
asynchronous call, and the callback specified by pcb is called on completion.

Prototype:
int IPOSDET_GetGPSInfo

(
IPosDet *pIPosDet,
AEEGPSReq req,
AEEGPSAccuracy accuracy,
AEEGPSInfo *pGPSInfo,
AEECallback *pcb,
)

Parameters:

Return Value:
SUCCESS, if the function succeeded
EPRIVLEVEL, if the caller does not have sufficient privilege levels
(PL_POS_LOCATION) to invoke this function
EBADPARM, if pGPSInfo or pcb is NULL
EUNSUPPORTED, if this function is not supported.
EFAILED, general failure

pIPosDet [in] Pointer to the IPosDet Interface object.
req [in] Request type:

AEEGPS_GETINFO_LOCATION,
AEEGPS_GETINFO_VELOCITY,
AEEGPS_GETINFO_ALTITUDE.

The flags can be combined to get more than one type of
information.

accuracy [in] Selected level of accuracy for this request.

pGPSInfo [out] On input, this must be a valid pointer to the AEEGPSInfo
structure. On callback, the members of this struct contain GPS
information. The caller must ensure that this structure is valid till
the callback specified by pcb gets called.

pcb [in] Callback function which gets called on completion of position
determination.

343

IPosDet Interface

Comments:
None

See Also:
AEEGPSInfo
Return to the List of functions

344

IPosDet Interface

IPOSDET_GetOrientation()
Description:

This function returns device's orientation in the horizontal plane. This is an
asynchronous call, and the callback specified by pcb is called on completion.

Prototype:
int IPOSDET_GetOrientation

(
IPosDet *pif,
AEEOrientationInfo *pOrInfo,
AEECallback *pcb,
);

Parameters:

Return Value:
SUCCESS: if the function succeeded
EPRIVLEVEL: if the caller does not have sufficient privilege levels
(PL_POS_LOCATION) to invoke this function
EBADPARM: if pGPSInfo or pcb is NULL
EUNSUPPORTED: if this function is not supported.
EFAILED: general failure

Comments:
None

See Also:
AEEOrientationInfo
Return to the List of functions

pif [in] The interface pointer.
pOrInfo [out] On input, this must be a valid ptr to the AEEOrientationInfo

structure with the member wSize indicating the space
available in bytes. On callback, the members of this struct
contain Orientation information. The caller must ensure that
this structure is valid till the callback specified by pcb gets
called.

pcb [in] Callback function which gets called on completion of
position determination.

345

IPosDet Interface

IPOSDET_GetSectorInfo()
Description:

This function returns information for sector-based position location, such as the
SystemID, NetworkID, BaseStationID, BaseStationClass, and best Pilot. To invoke this
function, the caller (application) must have the PL_SECTORINFO privilege level.
Without this privilege level, the function fails.

Prototype:
int IPOSDET_GetSectorInfo

(
IPosDet * pIPosDet,
AEESectorInfo * pSecInfo
)

Parameters:

Return Value:
AEE_SUCCESS, if the function succeeded.
Error codes, if otherwise.

EPRIVLEVEL, if the caller does not have sufficient privilege levels
(PL_SECTORINFO) to invoke this function.
EUNSUPPORTED, if this function is not supported.
EFAILED, general failure.

Comments:
None

See Also:
AEESectorInfo
Return to the List of functions

pIPosDet [in] Pointer to the IPosDet Interface pointer.
pSecInfo [out] This must be a value pointer to the AEESectorInfo structure.

On return, the members of this struct contain sector
information.

346

IPosDet Interface

IPOSDET_QueryInterface()
Description:

This function asks an object for another API contract from the object in question.

Prototype:
int IPOSDET_QueryInterface

(
IPosDet * pIPosDet,
AEECLSID idReq,
void * * ppo
)

Parameters:

Return Value:

SUCCESS, interface found.
Error codes, if otherwise.

ENOMEMORY, insufficient memory.
ECLASSNOTSUPPORT, requested interface is unsupported.

Comments:
The pointer in *ppo is set to the new interface (with refcount positive), or NULL if the
ClassID is not supported by the object.

See Also:
None
Return to the List of functions

pIPosDet [in] Pointer to the IPosDet Interface object.
idReq [in] Requested ClassID exposed by the object.
ppo [out] Returned object. Filled by this function.

347

IPosDet Interface

IPOSDET_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
IPOSDET_AddRef()
Return to the List of functions

348

IPosDet Interface

IPOSDET_SetGPSConfig()
Description:

This function sets the GPS configuration to be used by the GPS engine.

Prototype:
int IPOSDET_SetGPSConfig(IPosDet *pIPosDet, AEEGPSConfig *pConfig);

Parameters:

Return Value:
SUCCESS, if the function succeeded
Error codes, if otherwise.

EPRIVLEVEL, if the caller does not have sufficient privilege levels
(PL_POS_LOCATION) to invoke this function

EBADPARM, if pConfig is NULL
EUNSUPPORTED, if this function is not supported.

Comments:
Unless this function is called, the GPS engine is configured with default settings on the
first call to IPOSDET_GetGPSInfo(). Only the position determination requests
following a call to IPOSDET_SetGPSConfig() will use the new configurations.
IPOSDET_GetGPSInfo() requests pending response callbacks may not be affected by
this method.

See Also:
AEEGPSConfig
IPOSDET_GetGPSConfig()
Return to the List of functions

pIPosDet Pointer to the IPosDet Interface object.
pConfig Pointer to GPS configuration. See AEEGPSConfig for details.

349

IRingerMgr Interface

The IRingerMgr interface provides the BREW interface with the abilityto manage ringers on
the device. This interface is obtained by calling ISHELL_CreateInstance() with
AEECLSID_RINGER. The class allows the caller to:

• Create a ringer

• Obtain a list of created ringers

• Remove a ringer

• Play a ringer

• Obtain a list of supported ringer formats

• Obtain a list of ringer categories

• Set a category's ringer

List of Header files to be included

The following header file is required:

AEERinger.h

350

IRingerMgr Interface

List of functions

Functions in this interface include:

IRINGERMGR_AddRef()
IRINGERMGR_Create()
IRINGERMGR_EnumCategoryInit()
IRINGERMGR_EnumNextCategory()
IRINGERMGR_EnumNextRinger()
IRINGERMGR_EnumRingerInit()
IRINGERMGR_GetFormats()
IRINGERMGR_GetNumberFormats()
IRINGERMGR_GetRingerID()
IRINGERMGR_GetRingerInfo()
IRINGERMGR_RegisterNotify()
IRINGERMGR_Remove()
IRINGERMGR_SetRinger()
IRINGERMGR_Stop()
IRINGERMGR_Play()
IRINGERMGR_PlayEx()
IRINGERMGR_PlayFile()
IRINGERMGR_PlayStream()
IRINGERMGR_RegisterNotify()
IRINGERMGR_Release()
IRINGERMGR_Remove()
IRINGERMGR_SetRinger()
IRINGERMGR_Stop()

The remainder of this section provides details for each function.

351

IRingerMgr Interface

IRINGERMGR_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
IRINGERMGR_Release()
Return to the List of functions

352

IRingerMgr Interface

IRINGERMGR_Create()
Description:

This function creates a new ringer.

Prototype:
int IRINGERMGR_Create

(
IRingerMgr * pIRingerMgr,
const AECHAR * pszName,
AEESoundPlayerFile format,
IAStream * ps
)

Parameters:

Return Value:
SUCCESS, ringer is being created.
EFAILED, Unable to create ringer

Comments:
None

See Also:
AEESoundPlayerFile
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
pszName Name of the ringer.
format Ringer format.
ps Stream to ringer data.

353

IRingerMgr Interface

IRINGERMGR_EnumCategoryInit()
Description:

This function initializes the enumeration context for category enumeration.

Prototype:
int IRINGERMGR_EnumCategoryInit(IRingerMgr * pIRingerMgr)

Parameters:

Return Value:
SUCCESS, enumeration initialized.
EFAILED, Unable to initialize enumeration

Comments:
There is one iteration for this function. Always call this before calling
IRINGERMGR_EnumNextCategory().

See Also:
IRINGERMGR_EnumNextCategory()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.

354

IRingerMgr Interface

IRINGERMGR_EnumNextCategory()
Description:

This function enumerates the next ringer category.

Prototype:
boolean IRINGERMGR_EnumNextCategory

(
IRingerMgr * pIRingerMgr,
AEERingerCat * pi
)

Parameters:

Return Value:
TRUE, if successful.
FALSE, if function fails or there are no more categories to enumerate.

Comments:
Always call IRINGERMGR_EnumCategoryInit() before calling
IRINGERMGR_EnumNextCategory().

See Also:
AEERingerCat
IRINGERMGR_EnumCategoryInit()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
pi Pointer to the ringer category information to fill.

355

IRingerMgr Interface

IRINGERMGR_EnumNextRinger()
Description:

This function enumerates the next ringer.

Prototype:
boolean IRINGERMGR_EnumNextRinger

(
IRingerMgr * pIRingerMgr,
AEERingerInfo * pi
)

Parameters:

Return Value:
TRUE, if successful.
FALSE, Failed to enumerate next ringer

Comments:
Always call IRINGERMGR_EnumRingerInit() before calling this.

See Also:
AEERingerInfo
IRINGERMGR_EnumRingerInit()
Return to the List of functions

pIRingerMgr [in] Pointer to the IRingerMgr Interface object.
pi [out] Pointer to the ringer information to fill.

356

IRingerMgr Interface

IRINGERMGR_EnumRingerInit()
Description:

This function initializes enumeration of the list of ringers.

Prototype:
int IRINGERMGR_EnumRingerInit(IRingerMgr * pIRingerMgr)

Parameters:

Return Value:
SUCCESS, enumeration initialized.
EFAILED, Unable to initialize enumeration.
Other implementation-specific error codes

Comments:
There is one iteration for this function. Always call this before calling
IRINGERMGR_EnumNextRinger().

See Also:
IRINGERMGR_EnumNextRinger()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.

357

IRingerMgr Interface

IRINGERMGR_GetFormats()
Description:

This function fills a list of the supported ringer formats.

Prototype:
int IRINGERMGR_GetFormats

(
IRingerMgr * pIRingerMgr,
AEESoundPlayerFile * pwFormats,
int nCount
)

Parameters:
.

Return Value:
SUCCESS, buffer filled with ringer format entries.
Other error codes.

EFAILED, Size of return buffer is invalid.

Comments:
None

See Also:
AEESoundPlayerFile
IRINGERMGR_GetNumberFormats()
Return to the List of functions

pIRingerMgr [in] Pointer to the IRingerMgr Interface object.
pwFormats [out] Pointer to a list of formats of size nCount *

sizeof(AEESoundPlayerFile).
nCount [in] Number of format entries to fill.

358

IRingerMgr Interface

IRINGERMGR_GetNumberFormats()
Description:

This function retrieves the number of ringer formats supported on the device.

Prototype:
int IRINGERMGR_GetNumberFormats(IRingerMgr * pIRingerMgr)

Parameters:

Return Value:
Number of ringer formats supported.

Comments:
None

See Also:
IRINGERMGR_GetFormats()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.

359

IRingerMgr Interface

IRINGERMGR_GetRingerID()
Description:

This function returns the ringer ID for a ringer given the file name.

Prototype:
AEERingerID IRINGERMGR_GetRingerID

(
IRingerMgr * pIRingerMgr,
const char * pszFile
)

Parameters:

Return Value:
AEERingerID of the ringer specified.
AEE_RINGER_ID_NONE, if the function fails.

Comments:
None

See Also:
AEERingerID
AEERingerInfo
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
pszFile Root file name of ringer.

360

IRingerMgr Interface

IRINGERMGR_GetRingerInfo()
Description:

This function retrieves information about the specified ringer.

Prototype:
int IRINGERMGR_GetNumberFormats

(
IRingerMgr * pIRingerMgr,
AEERingerID id,
AEERingerInfo * pi
)

Parameters:

Return Value:
SUCCESS, ringer information valid.
Other error codes.

EFAILED, invalid ringer ID, or pi is NULL.

Comments:
None

See Also:
AEERingerID
AEERingerInfo
Return to the List of functions

pIRingerMgr [in] Pointer to the IRingerMgr Interface object.
id [in] Ringer ID.
pi [out] Pointer to the ringer info structure to fill.

361

IRingerMgr Interface

IRINGERMGR_Play()
Description:

This function plays an installed ringer.

Prototype:
int IRINGERMGR_Play

(
IRingerMgr * pIRingerMgr,
AEERingerID id,
uint32 dwPause
)

Parameters:

Return Value:
SUCCESS, ringer begins playing.
EFAILED, invalid ringer.
Other implementation-specific error codes.

Comments:
None

See Also:
AEERingerID
IRINGERMGR_Stop()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
id Ringer ID to play.
dwPause Time to pause between replays; 0 (zero) if single play.

362

IRingerMgr Interface

IRINGERMGR_PlayEx()
Description:

This function plays the specified ringer using the following items, in order, as the
source:

• An installed ringer ID

• An input file name

• An input IAStream object

The action allows the caller to test ringers before placing them in the ringer directory.

Prototype:
int IRINGERMGR_PlayEx

(
IRingerMgr * pIRingerMgr,
AEERingerID id,
const char * pszFile,
IAStream * pStream,
uint32 dwPause
)

Parameters:

Return Value:
SUCCESS, ringer begins playing.
EFAILED, Invalid ID, input file name, stream, or unable to play ringer.

Comments:
None

See Also:
AEERingerID
IRINGERMGR_Stop()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
id Ringer ID to play.
pszFile Input file name.
pStream Input stream.
dwPause Time to pause between replays; 0 (zero) if single play.

363

IRingerMgr Interface

IRINGERMGR_PlayFile()
Description:

This function plays a ringer when given an input file name. This action allows the caller
to test ringers before placing them in the ringer directory.

Prototype:
int IRINGERMGR_PlayFile

(
IRingerMgr * pIRingerMgr,
const char * pszFile,
uint32 dwPause
)

Parameters:

Return Value:
SUCCESS, ringer begins playing.
EFAILED, invalid input file name or unable to play ringer.
Other implementation-specific error codes.

Comments:
None

See Also:
IRINGERMGR_Stop()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
pszFile Input file name.
dwPause Time to pause between replays (0 if single play).

364

IRingerMgr Interface

IRINGERMGR_PlayStream()
Description:

This function plays the specified ringer using an input IAStream Interface object,
allowing the caller to test a ringer that may be located in a file (IFile Interface), in
memory (IMemAStream Interface), or through the network (ISocket Interface).

Prototype:
int IRINGERMGR_PlayStream

(
IRingerMgr * pIRingerMgr,
IAStream * pStream,
uint32 dwPause
)

Parameters:

Return Value:
SUCCESS, ringer begins playing.
EFAILED, invalid input stream or unable to play ringer.
Other implementation-specific error codes.

Comments:
This function only supports network stream from TCP socket but not UDP socket.

See Also:
None
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
pStream Input file name.
dwPause Time, in milliseconds, to pause between replays; 0 (zero) if single play.

365

IRingerMgr Interface

IRINGERMGR_RegisterNotify()
Description:

This function registers or deregisters a notification callback when playback or creation
events are complete.

Prototype:
void IRINGERMGR_RegisterNotify

(
IRingerMgr * pIRingerMgr,
PFNRINGEREVENT pfn,
void * pUser
)

Parameters:

Return Value:
None

Comments:
None

See Also:
PFNRINGEREVENT
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
pfn Pointer to the user callback (NULL to deregister).
pUser Pointer to user data for callback. It can be NULL if no identifying data is

required.

366

IRingerMgr Interface

IRINGERMGR_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
IRINGERMGR_AddRef()
Return to the List of functions

367

IRingerMgr Interface

IRINGERMGR_Remove()
Description:

This function removes the specified ringer.

Prototype:
int IRINGERMGR_Remove(IRingerMgr * pIRingerMgr, AEERingerID id)

Parameters:

Return Value:
SUCCESS, ringer removed.
EFAILED, invalid ringer ID or unable to remove ringer.
Other implementation-specific error codes.

Comments:
This function cannot be used to remove OEM installed ringers.

See Also:
AEERingerID
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
id Ringer ID.

368

IRingerMgr Interface

IRINGERMGR_SetRinger()
Description:

This function allows the caller to to set a ringer for the specified category.

Prototype:
int IRINGERMGR_SetRinger

(
IRingerMgr * pIRingerMgr,
AEERingerCatID idCat,
AEERingerID id
)

Parameters:

Return Value:
SUCCESS, ringer set.
Other error codes.

EFAILED, ringer not set.

Comments:
None

See Also:
AEERingerID
AEERingerCatID
IRINGERMGR_EnumNextCategory()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.
idCat Category for the ringer.
id ID of the ringer.

369

IRingerMgr Interface

IRINGERMGR_Stop()
Description:

This function terminates the playback of a ringer.

Prototype:
int IRINGERMGR_Stop(IRingerMgr * pIRingerMgr)

Parameters:

Return Value:
SUCCESS, ringer is stopping.
Other error codes.

EFAILED, no ringer is playing.

Comments:
None

See Also:
IRINGERMGR_Play()
Return to the List of functions

pIRingerMgr Pointer to the IRingerMgr Interface object.

370

IRUIM Interface

The Interface provides

List of Header files to be included

The following header file is required:

AEERUIM.h

List of functions

Functions in this interface include:

IRUIM_AddRef()
IRUIM_CHVDisable()
IRUIM_CHVEnable()
IRUIM_GetCHVStatus()
IRUIM_GetId()
IRUIM_GetPrefLang()
IRUIM_IsCardConnected
IRUIM_PINChange()
IRUIM_PINCheck()
IRUIM_QueryInterface()
IRUIM_Release()
IRUIM_UnblockCHV()
IRUIM_VirtualPINCheck()
OEMRUIMAddr_GetFuncs()

The remainder of this section provides details for each function.

371

IRUIM Interface

IRUIM_AddRef()
Description:

This function increments the reference count of the IRUIM Interface object, allowing
the object to be shared by multiple callers. The object is freed when the reference
count reaches 0 (zero).

Prototype:
uint32 IRUIM_AddRef(IRUIM *pIRUIM)

Parameters:
pIRUIM: [in]. Pointer to the IRUIM Interface object.

Return Value:
Incremented reference count for the object.

Comments:
A valid object returns a positive reference count. Otherwise, 0 (zero) is returned.

See Also:
IRUIM_Release()
Return to the List of functions

372

IRUIM Interface

IRUIM_CHVDisable()
Description:

This function will disable CHV1 if the last call to IRUIM_PINCheck() was successful.

Prototype:
int IRUIM_CHVDisable(IRUIM *pIRUIM)

Parameters:
pIRUIM: [in]. Pointer to the IRUIM Interface object.

Return Value:
AEE_SUCCESS if CHV1 was disabled,
EFAILED otherwise or other OEM specified error code

Comments:
The successful completion of this command allows unprotected access to all files
protected by CHV1. Ths function performs the DISABLE CHV functionality as
described in 3GPP TS 11.11.

See Also:
None
Return to the List of functions

373

IRUIM Interface

IRUIM_CHVEnable()
Description:

This function will enable CHV1 if the passed in PIN is correct.

Prototype:
boolean IRUIM_CHVEnable(IRUIM *pIRUIM, const char *pPin)

Parameters:

Return Value:
TRUE, if CHV1 was enabled,
FALSE, if otherwise

Comments:
If CHV1 has been disabled, you need to include the CHV1 as the argument to this
function since the 'ENABLE CHV1' command requires it. If CHV1 is enabled, the user
will have already entered CHV1 so you do not need to include it as an argument (pass
in NULL). This function performs the ENABLE CHV functionality as described in 3GPP
TS 11.11. If the operation returns TRUE, the PIN is stored and will be used for the next
call to IRUIM_VirtualPINCheck().

See Also:
IRUIM_PINCheck()
IRUIM_VirtualPINCheck()
Return to the List of functions

pIRUIM Pointer to the IRUIM Interface object.
pPin Pointer to an eight digit character string. If NULL, use the PIN

previously entered with IRUIM_PINCheck(). This does not need to be
NULL terminated.

374

IRUIM Interface

IRUIM_GetCHVStatus()
Description:

This function returns the current R-UIM status

Prototype:
int IRUIM_GetCHVStatus(IRUIM *pIRUIM, AEECHVStatus *pCHVStatus)

Parameters:
pIRUIM: [in]. Pointer to the IRUIM Interface object.
pCHVStatus: [out]. Pointer to the returned CHV status.

Return Value:
AEE_SUCCESS if operation succeeded
EFAILED otherwise or other OEM specified error code

Comments:
None.

See Also:
None
Return to the List of functions

375

IRUIM Interface

IRUIM_GetId()
Description:

This function returns the identification number of the R-UIM.

Prototype:
int IRUIM_GetId(IRUIM *pIRUIM, char *pId, int *pnLen)

Parameters:

Return Value:
AEE_SUCCESS if no problem occurred
ENOMEMORY - Insufficient memory
Or other OEM specified error code

Comments:
None.

See Also:
None
Return to the List of functions

pIRUIM [in] Pointer to the IRUIM Interface object.
pId [in/out] Card ID. If set to NULL when called, then pnLen will contain

the required size of the ID when the function returns.
pnLen [in/out] If pId is NULL when this function is called, pnLen will return

the number of bytes required to hold the entire Id.
Otherwise, pnLen should be set to the number of bytes
requested and will return the number of bytes actually
provided.

376

IRUIM Interface

IRUIM_GetPrefLang()
Description:

This function returns the highest priority preferred language on the R-UIM card.
There may be a second, third,...,nth preferred language on theR-UIM. This function will
only return the first preferred langauge.

Prototype:
int IRUIM_GetPrefLang(IRUIM *pIRUIM, int *pLang, int *pEncoding)

Parameters:
pIRUIM: [in]. Pointer to the IRUIM Interface object.
pLang: [out]. Most preferred langauge returned from the R-UIM.
pEncoding: [out]. Encoding of the most preferred language.

Return Value:
None

Comments:
AEE_SUCCESS if no problems occurred,
EBADPARM - Parameters invalid
ENOMEMORY - Insufficient memory
Or other OEM specified error code

See Also:
None
Return to the List of functions

377

IRUIM Interface

IRUIM_IsCardConnected
Description:

This function checks to see if the R-UIM card is present.

Prototype:
boolean IRUIM_IsCardConnected(IRUIM *pIRUIM)

Parameters:

Return Value:
TRUE if a R-UIM card was found,
otherwise FALSE.

Comments:
FALSE will be returned if the card is not initialized, is powered down, or is faulty.

See Also:
None
Return to the List of functions

pIRUIM Pointer to the IRUIM Interface object.

378

IRUIM Interface

IRUIM_PINChange()
Description:

This function will change the designated CHV on the R-UIM to the PIN passed in.
IRUIM_PINCheck() or another command that sets the virtual pin must be called before
this command.

Prototype:
int IRUIM_PINChange

(
IRUIM *pIRUIM,
AEECHVType chv,
const char *pPin
)

Parameters:

Return Value:
AEE_SUCCESS if the PIN was changed,
EFAILED Or other OEM specified error code

Comments:
The appropriate CHV must be enabled and not blocked when this function is called.
This function performs the CHANGE CHV functionality as described in 3GPP TS 11.11.
If the operation returns AEE_SUCCESS, the new PIN will be stored and used for the
next call to IRUIM_VirtualPINCheck().

See Also:
IRUIM_PINCheck()
IRUIM_VirtualPINCheck()
Return to the List of functions

pIRUIM Pointer to the IRUIM Interface object.
chv PIN to be checked.
pPin Pointer to an eight digit character string to be used as the new PIN. This

does not need to be NULL terminated.

379

IRUIM Interface

IRUIM_PINCheck()
Description:

This function will compare the designated CHV on the R-UIM with the PIN passed in.

Prototype:
boolean IRUIM_PINCheck(IRUIM *pIRUIM, AEECHVType chv, const char
*pPin)

Parameters:

Return Value:
TRUE if the user input matches the CHV on the R-UIM, otherwise FALSE.
FALSE will be returned if is NULL.
FALSE will also be returned if the RIUM is not connected as defined above in the
description of IRUIM_IsCardConnected().

Comments:
The appropriate CHV must be enabled and not blocked when this function is called.
This function performs the VERIFY CHV functionality as described in 3GPP TS 11.11.
If the operation returns TRUE, the PIN is stored and will be used for the next call to
IRUIM_VirtualPINCheck().

See Also:
IRUIM_VirtualPINCheck()
Return to the List of functions

pIRUIM Pointer to the IRUIM Interface object.
chv PIN to be checked.
pPin Pointer to an eight digit character string.

380

IRUIM Interface

IRUIM_QueryInterface()
Description:

This function retrieves a pointer to an interface conforming to the specified class ID.
This can be used to query for extended functionality, like future versions or proprietary
extensions. Upon a successful query, the interface is returned after the AddRef
methodis called. The caller is responsible for call the Release method at some point in
the future.

Prototype:
int IRUIM_QueryInterface

(IRUIM *pIRUIM,
AEECLSID idReq,
void **ppo)

Parameters:

Return Value:
AEE_SUCCESS - Interface found
ENOMEMORY - Insufficient memory
ECLASSNOTSUPPORT - Requested interface is unsupported
EFAILED - Any general failure.
Or other OEM specified error code

Comments:
The pointer in *ppo is set to the new interface (with refcount positive), or NULL if the
ClassID is not supported by the object. This function can be called with idReq =
AEECLSID_ADDRBOOK to return an address book object. However, CHV1 must
have been previously disabled or verified before this function is called.
The ppo MUST not be NULL.

See Also:
IRUIM_CHVDisable()
IRUIM_PINCheck()
IAddrBook Interface
Return to the List of functions

pIRUIM [in] Pointer to the IRUIM Interface object.
idReq [in] Requested class ID exposed by the object
ppo [out] Returned object. Filled by this method

381

IRUIM Interface

IRUIM_Release()
Description:

This function decrements the reference count of the IRUIM Interface object. The object
is freed from memory and is no longer valid when the reference count reaches 0 (zero).

Prototype:
uint32 IRUIM_Release(IRUIM *pIRUIM)

Parameters:
pIRUIM: [in]. Pointer to the IRUIM Interface object.

Return Value:
Decremented reference count for the object.
0 (zero), If the object has been freed and is no longer valid.

Comments:
None

See Also:
IRUIM_AddRef()
Return to the List of functions

382

IRUIM Interface

IRUIM_UnblockCHV()
Description:

This function will unblock a CHV which has been previously blocked using the passed
in unblock CHV and PIN. An application must have PL_SYSTEM privilege complete
this function.

Prototype:
int IRUIM_UnblockCHV(IRUIM *pIRUIM,

AEECHVType chv,
char *pUnblockPin,
char *pPin)

Parameters:

Return Value:
AEE_SUCCESS if the user input was valid.
EPRIVLEVEL if the calling application. does not have PL_SYSTEM privilege.
EFAILED for other errors

Comments:
CHV1 will be restored to a the pPin value. This function performs the UNBLOCK CHV
functionality as described in 3GPP TS 11.11. If the operation returns AEE_SUCCESS,
the PIN is stored and will be used for the next call to IRUIM_VirtualPINCheck().

See Also:
None
Return to the List of functions

pIRUIM Pointer to the IRUIM Interface object.
chv PIN to be unblocked.
pUnblockPin Pointer to an eight digit character unblock string.This does not need to

be NULL terminated.
pPin Pointer to an eight digit character string. This does not need to be NULL

terminated.

383

IRUIM Interface

IRUIM_VirtualPINCheck()
Description:

If IRUIM_PINCheck() has been previously called, this function can be used to re-verify
the CHV1 PIN without accessing the R-UIM. It compares the input PIN with the
previous PIN value.

Prototype:
boolean IRUIM_VirtualPINCheck

(IRUIM *pIRUIM,
AEECHVType chv,
const char *pPin
)

Parameters:
pIRUIM: [in]. Pointer to the IRUIM Interface object.
chv: [in]. PIN to be checked.
pPin: [in]. Pointer to the eight digit character string.

Return Value:
TRUE if the user input matches the previously read value of CHV1 on the R-UIM,
otherwise FALSE.
FALSE FALSE will be returned if is NULL.
FALSE will also be returned if the R-UIM is not connected as defined above in the
description of IRUIM_IsCardConnected().

Comments:
This function should only be called after IRUIM_PINCheck() has been called
successfully.

See Also:
IRUIM_PINCheck()
Return to the List of functions

384

IRUIM Interface

OEMRUIMAddr_GetFuncs()
Description:

This function is called when the BREW AddressBook interface is created with a class
ID of AEECLSID_RUIM. This function returns the OEM RUIM functions that are
needed by the IAddrBook interface to access the R-UIM phonebook.

Prototype:
 VTBL(IOEMAddrBook) *OEMAddrBook_Init(void);

Parameters:
 None

Return Value:
Returns the table of OEMRUIM functions needed by the IAddrBook interface to access
the R-UIM phonebook.

Comments:
 None

See Also:
IRUIM_QueryInterface()
Return to the List of functions

385

ITAPI Interface

TAPI is a simple interface to the telephony layer in the device. It provides the following
services:

- Retrieving Telephony status
- Placing voice calls
- Extracting SMS text from SMS messages
- Obtaining caller ID on incoming/in-progress calls
- Registering for SMS Messages

The ITAPI interface is obtained via the ISHELL_CreateInstance mechanism.

Notifications Sent by this Class:
The TAPI class allows applications to register for the following Notifications:

a. NMASK_TAPI_STATUS
b. NMASK_TAPI_SMS_TEXT
c. NMASK_TAPI_SMS_TS

Receiving SMS Messages:
BREW Applications can register to be notified when a SMS message comes to the system.
This registration can be done in the MIF. When the message comes into the system,
applications that have registered to be notified receive the EVT_NOTIFY event. The dwParam
of this event contains detailed information about the message.

The following masks can be used to register for SMS Notifications through BREW:

386

ITAPI Interface

1. NMASK_TAPI_SMS_TEXT: This allows applications to register for all Text Messages
(messages with TeleServce ID: SMS_TELESERVICE_CMT_95). When a text message
arrives, the application is notified through the EVT_NOTIFY event. The dwParam of this event
is of type AEENotify. The pData member in this AEENotify Structure will be of type
AEESMSTextMsg and contains the actual text message.

2. NMASK_TAPI_SMS_TS: This allows applications to register for SMS message of a specific
TeleService ID. To construct the actual 32-bit mask to be used in the MIF for the registration,
the upper 16 bits of the mask must contain the TeleService ID value and the lower 16 bits must
contain the value 0x0004 (which corresponds to NMASK_TAPI_SMS_TS).

Example:

To register for a message with TS ID: 0x1002, the 32-mask should be: 0x10020004

Applications can register for multiple messages by creating the 32-mask for each message.

Example:

To register for messages with TS IS: 1002 and 1003, the application must register two
separate masks: 0x10020004 and 0x10030004.

When the SMS message of this TS ID is received by the system, the application is notified
through the EVT_NOTIFY event. The dwParam of this event is of type AEENotify. The pData
member in the AEENotify Structure is of type AEESMSMsg. This structure contains detailed
information about the message.

Registering for Device Status Change:
NMASK_TAPI_STATUS: Applications can use the TAPI class to be notified whenver there is
a change in the telephony status of the device. To register for this notification, applications
must use the mask NMASK_TAPI_STATUS.

Whenever there is a status-change, applications receive the EVT_NOTIFY event. The
dwParam of this event is of type AEENotify.

The pData member inside this AEENotify structure is of type TAPIStatus and contains detailed
information about the current telephony status of the device.

387

ITAPI Interface

List of Header files to be included

The following header file is required for ITAPI

AEETAPI.h

List of functions

Functions in this interface include:

ITAPI_AddRef()
ITAPI_ExtractSMSText()
ITAPI_GetCallerID()
ITAPI_GetStatus()
ITAPI_IsDataSupported()
ITAPI_IsVoiceCall()
ITAPI_MakeVoiceCall()
ITAPI_OnCallStatus()
ITAPI_OnCallEnd()
ITAPI_Release()
ITAPI_SendSMS()

The remainder of this section provides details for each function.

388

ITAPI Interface

ITAPI_AddRef()
Description:

This function is inherited from IBASE_AddRef()

See Also:
ITAPI_Release()
Return to the List of functions

389

ITAPI Interface

ITAPI_ExtractSMSText()
Description:

This function extracts the formatted text from a raw SMS message. The format of the
input parameter is an AEESMSMsg.
The typical means to use this function:

• When applications register for a text message by using the notification mask
NMASK_TAPI_SMS_TS and by specifying the TeleService ID as
SMS_TELESERVICE_CMT_95, the application gets notified using the
EVT_NOTIFY mechanism.

• The dwParam to this event is of type AEENotify. The pData inside the AEENotify
structure is of type AEESMSMsg.

• For text messages, this function ITAPI_ExtractSMSText() can be invoked using
this AEESMSMsg so as to extract the actual text portion of the message.

• A recommended way for applications to register for text messages is using the
notification mask: NMASK_TAPI_SMS_TEXT.

• When this mask is used, the pData inside the AEENotify structure received
during the notification is already of type AEESMSTextMsg and contains the
actual text of the message.

Prototype:
AEESMSTextMsg * ITAPI_ExtractSMSText

(
ITAPI * pITAPI,
const AEESMSMsg * pMsg
)

Parameters:

Return Value:
NULL, if this function fails.
If successful, this function returns a pointer to AEESMSTextMsg containing the actual
text. This buffer is valid until the next call to ITAPI_ExtractSMSText() or until the
interface is released.

Comments:
None

See Also:
AEESMSMsg
AEESMSTextMsg
Return to the List of functions

pITAPI Pointer to the ITAPI Interface object.
pMsg Pointer to the input AEESMSMsg.

390

ITAPI Interface

ITAPI_GetCallerID()
Description:

This function retrieves the ID, in digits, of an incoming or outgoing voice call.

Prototype:
boolean ITAPI_GetCallerID(ITAPI * pITAPI, AECHAR * pDest, int nSize)

Parameters:

Return Value:
TRUE, if call in progress and buffer filled.
FALSE, if no call in progress or invalid buffer.

Comments:
None

See Also:
None
Return to the List of functions

pITAPI Pointer to the ITAPI Interface object.
pDest Destination pointer.
nSize Size in bytes of the destination buffer.

391

ITAPI Interface

ITAPI_GetStatus()
Description:

This function obtains the current status of the telephony device, including service and
call status. Applications can also register to receive updated TAPIStatus information on
any changes through the ISHELL_RegisterNotify() function.

Prototype:
int ITAPI_GetStatus(ITPAI * pITAPI, TAPIStatus * ps)

Parameters:

Return Value:
SUCCESS, if valid status information.
EBADPARM, if bad parameter.

Comments:
None

See Also:
TAPIStatus
ISHELL_RegisterNotify()
Return to the List of functions

pITAPI Pointer to the ITAPI Interface object.
ps Pointer to the status information to be filled.

392

ITAPI Interface

ITAPI_IsDataSupported()
Description:

This method can be used to determine whether the handset supports data service.

Prototype:
boolean ITAPI_IsDataSupported(ITapi *pITAPI)

Parameters:

Return Value:
e:

TRUE, if the handset supports data service
FALSE, if the handset does not support data service

Comments:
None

See Also:
None
Return to the List of functions

pITAPI Pointer to the ITAPI object

393

ITAPI Interface

ITAPI_IsVoiceCall()
Description:

This method can be used to determine whether the current call in the system is a voice
call.

Prototype:
boolean ITAPI_IsVoiceCall(ITapi *pITAPI)

Parameters:

Return Value:
TRUE, if the current call is a voice call
FALSE, if the current call is NOT a voice call

Comments:
None

See Also:
ITAPI_MakeVoiceCall()
Return to the List of functions

pITAPI Pointer to the ITAPI object

394

ITAPI Interface

ITAPI_MakeVoiceCall()
Description:

This method is called to place a voice call. The number dialed is specified in the digits
string. No call is placed if the input string is empty or NULL. Only the following digits
are allowed: 0-9, #, *. All other digits are ignored. If a voice call is in progress
EALREADY is returned. If a data call is in progress and no network activity is in-
progress (TCP), the data call is ended and the call is placed.
This function enforces the privacy policies established by the carrier. This may include
intermediate prompts to the user using dialogs.
Typically, when this function is invoked, a dialog is displayed to the user requesting
whether it is OK to place a call. When the user clicks “YES”, the call is placed.

The event flow to the application when this function is invoked:

1. A dialog is displayed to the user.

2. When that dialog is dismissed, the event EVT_DIALOG_END is sent to the
application.

3. At this point, the application must re-draw the screen.

4. If user accepted to place the call, the event EVT_APP_SUSPEND is sent to the
application.

5. When the call finishes, the event EVT_APP_RESUME is sent to the application.

6. The application must re-draw the screen.

Prototype:
int ITAPI_MakeVoiceCall

(
ITAPI * pITAPI,
const char * pszNumber,
AEECLSID clsReturn
)

Parameters:

Return Value:
SUCCESS, if the function is in progress.
EBADPARM, if the number is invalid.
EALREADY, if there is a voice call already in progress.

pITAPI Pointer to the ITAPI Interface object
pszNumber Pointer to number to dial
clsReturn Classid of the applet to be run when the call is completed

395

ITAPI Interface

Comments:
If clsReturn is 0, the current application will be resumed.
When ITAPI_MakeVoiceCall is invoked. After the privacy dialog is selected by user -
EVT_DIALOG_END is sent to the application with dwParam indicating the response.
The dwParam has 1 for a "Yes" response and 2 for "No" response from user

See Also:
AEECLSID
Return to the List of functions

396

ITAPI Interface

ITAPI_OnCallEnd()
Description:

This method is identical to ITAPI_OnCallStatus().

Prototype:
int ITAPI_OnCallEnd

(
ITAPI * pITAPI,
PFNNOTIFY pfn,
void * pUser,
uint32 dwDelay,
uint16 wFlags
)

Parameters:
See ITAPI_OnCallStatus()

Return Value:
See ITAPI_OnCallStatus()

Comments:
None

See Also:
See ITAPI_OnCallStatus()
Return to the List of functions

397

ITAPI Interface

ITAPI_OnCallStatus()
Description:

This method can be used to register a Callback function that will be invoked by BREW
when there is a change in the call-status. It supports flags that can be used to specify
what type of call-states the application cares about.

Prototype:
int ITAPI_OnCallStatus

(
ITAPI * pITAPI,
PFNNOTIFY pfn,
void * pUser,
uint32 dwDelay,
uint16 wFlags
)

Parameters:
pITAPI Pointer to the ITAPI object
pfn Notification function to be called when any call-status changes
pUser User Data to be passed to the notification function when it is invoked.
dwDelay The time period in milliseconds BREW waits after the call-state has

changed and before notifying the application
wFlags :The following flags are supported:

OCS_CANCEL Cancel a previously registered Callback
Function

OCS_UNIQUE_PFN When this flag is set, any previous
registrations of the same callback function
with different data pointers are cancelled.

OCS_ONE_SHOT Informs BREW that this CB function is to be
registered for just one notification. Once a
single call-status change occurs, this
notification is invoked and the CB function is
removed from the internal list. This CB will
not longer be invoked.

OCS_INCOMING Register for notifications when there is an
incoming call

OCS_ORIG Register for notifications when call-
originations happen

OCS_CONVERSATION Register for notifications when call enters the
conversation state (i.e. Two way state)

OCS_IDLE Register for notifications when the call is
ended

OCS_OFFLINE Register for notifications when the device
loses coverage

398

ITAPI Interface

Return Value:
SUCCESS, if successfully registered
ENOMEMORY, if failed

Comments:
None

See Also:
None
Return to the List of functions

OCS_ALL Register for all call-state transitions
(incoming, orig, conversation, idle)

399

ITAPI Interface

ITAPI_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
ITAPI_AddRef()
Return to the List of functions

400

ITAPI Interface

ITAPI_SendSMS()
Description:

This method is used to send SMS messages from the handset.This function can be
used to send text messages to either a specific BREW application on another handset
or a general text message to the handset. It sends messages to a destination mobile
number or an email ID. When this function is called, it is likely that it will result in a
SUSPEND/RESUME sequence to the BREW application. This is initiated by the
handset when it sends the SMS message out.

 The sequential flow of control is as follows:

1. The application invokes ITAPI_SendSMS()

2. The handset begins the process of sending the SMS message out

3. The notification function specified by pfn is invoked with the status of the message
delivery

Associated with this process, the application may receive EVT_APP_SUSPEND and
EVT_APP_RESUME events sometime after step 1.

Prototype:
 int ITAPI_SendSMS

(
ITAPI *pITapi,
const char * pszDst,
const char * pszMsg,
AEECLSID clsDst,
PFNSMSSTATUS pfn,
void *pUser
)

Parameters:
pITapi Pointer to the ITAPI Interface object
pszDst Number or email ID of the destination where message must be sent to.

If this is set to NULL and if clsDst is non-zero, this function sends the
EVT_APP_MESSAGE event to the application (clsDst) on the local
handset and the dwParam of that event shall contain pszMsg. In this
case, the return value of the function is the same as the return value of
ISHELL_SendEvent(). The notification function will not be called since
this is a local delivery of the message.

pszMsg Text message to be sent to the destination mobile. If this is set to NULL,
the function returns EBADPARM

clsID If non-zero, it specifies the class ID of the BREW applicaiton on the
destination mobile to which this message must be sent

401

ITAPI Interface

Return Value:
SUCCESS, if successful. After the message is sent to the other handset, the
notification function is invoked with the status. The status passed to the notification
function can be SUCCESS or EFAILED.
EITEMBUSY, if the device is busy and cannot send this SMS. Generally, a SMS
message cannot be sent if the notification function has not yet been called for a
previously sent SMS message.
EBADPARM, if pszMsg is NULL or pszDst and clsDst are both set to NULL.
EBADCLASS, if TAPI is not enabled on this handset.
EFAILED, if there is a general failure in sending the SMS.
Examples:

ITAPI_SendSMS(pITapi, "8581112222", "Hello World", 0,
MyMOSMSNotify, pMe);

ITAPI_SendSMS(pITapi, "foo@sample.com", "Hello
World",0,MyMOSMSNotify,pMe);

Comments:
None

See Also:
None
Return to the List of functions

pfn Notification function that is invoked to inform the status of the SMS
message sent

pUser User data to be sent to the notification function
Examples:

ITAPI_SendSMS (pITapi, "8581112222", "Hello World",
0, MyMOSMSNotify, pMe);

ITAPI_SendSMS (pITapi, "foo@sample.com", "Hello
World", 0, MyMOSMSNotify, pMe);

402

ITextCtl Interface

A text control enables the device user to enter a string of text using the keys on the device.
The text control consists of an optional title and a rectangular window containing one or more
lines in which the entered text is displayed to the device user. The text control handles the
translation of device user key presses into characters. Your application only needs to pass
keypress events to the text control while it is active and retrieve the text from the control when
device user text entry has completed. The translation process depends on the text entry
modes the device supports (for example, the standard multi-tap mode in which the device user
selects from the characters mapped to each key, and Tegic's T9 predictive text input mode). If
more than one text entry mode is supported, your application makes it possible for the device
user to select the specified mode while the text control is active. The text control allows you to
specify a Soft Key menu that is used for this purpose. While the text control is active, your
application must send all keypress events to it by calling ITEXTCTL_HandleEvent().

Text controls support the following properties, that can be set with ITEXTCTL_SetProperties()
(the property names are the names of the bit-mask constants used to set and test the property
values):

• TP_MULTILINE allows multiple lines of text to appear in the text entry window (by
default, only a single line appears).

• TP_FRAME draws a frame around the text control.

• TP_FIXSETRECT, if set, the actual height more closely represents requested
height.

Text controls provide several functions in addition to those in the IControl Interface.
ITEXTCTL_SetTitle() and ITEXTCTL_SetText() specify values for the control's title and for the
text string that appears in the text entry window (the latter function can be used to provide an
initial value for the window's contents that the device user can edit). ITEXTCTL_GetText()
retrieves the current value of the control's text string and copies it into a buffer.
ITEXTCTL_GetTextPtr() is similar, except that it returns a pointer to the character string in the
text control that is used to store the text, without making a copy of it. ITEXTCTL_SetMaxSize()
determines the maximum number of characters that can be entered into the text control.

403

ITextCtl Interface

ITEXTCTL_SetSoftKeyMenu() associates a Soft Key menu control with the text control. This
is typically a Soft Key menu that you have created and that appears on the screen while the
text control is displayed. ITEXTCTL_SetSoftKeyMenu() adds an item to the Soft Key menu
that allows the device user to change the text entry mode (the text string for this item indicates
the currently selected mode). When it receives this command, the text control displays a menu
allowing the device user to select the new text entry mode. After the device user selects the
new mode, the text control is reactivated and the device user continues entering text. While
entering text, the device user can press the SELECT key to leave text-edit mode and activate
the Soft Key menu. While the Soft Key menu is active, the device user can press the UP key
to return to edit mode without making a menu selection.

To use a text control in your application

1. Call ISHELL_CreateInstance() to create an instance of the text control.

2. Call ITEXTCTL_SetRect() to specify the screen rectangle that contains the text
control.

3. If specified, call ITEXTCTL_SetTitle() or ITEXTCTL_SetText() to specify the
control's title and the initial value of its text string.

4. Call ITEXTCTL_SetProperties() to set any text control properties.

5. Call ITEXTCTL_SetSoftKeyMenu() to specify the Soft Key menu that is associated
with the text control, if any.

6. Call ITEXTCTL_SetActive() to activate the text control and draw its contents on the
screen.

7. While the text control is active, call ITEXTCTL_HandleEvent() to pass it any key
events generated by the user.

8. When the device user has completed entering text, call ITEXTCTL_GetText() or
ITEXTCTL_GetTextPtr() to retrieve the text the device user has entered. (If you are
using a Soft Key menu, the device user may signal the completion of text entry with
a “Done” item in the menu, or by pressing the SELECT or other key if no Soft Key
menu is present).

9. Call ITEXTCTL_Release() to free the text control when you no longer need it.

List of Header files to be included

The following header file is required for ITextCtl

AEEText.h

404

ITextCtl Interface

List of functions

Functions in this interface include:

ITEXTCTL_AddRef()
ITEXTCTL_EnumModeInit()
ITEXTCTL_EnumNextMode()
ITEXTCTL_GetCursorPos()
ITEXTCTL_GetInputMode()
ITEXTCTL_GetProperties()
ITEXTCTL_GetRect()
ITEXTCTL_GetText()
ITEXTCTL_GetTextPtr()
ITEXTCTL_HandleEvent()
ITEXTCTL_IsActive()
ITEXTCTL_Redraw()
ITEXTCTL_Release()
ITEXTCTL_Reset()
ITEXTCTL_SetActive()
ITEXTCTL_SetCursorPos()
ITEXTCTL_SetInputMode()
ITEXTCTL_SetMaxSize()
ITEXTCTL_SetProperties()
ITEXTCTL_SetRect()
ITEXTCTL_SetSoftKeyMenu()
ITEXTCTL_SetText()
ITEXTCTL_SetTitle()

The remainder of this section provides details for each function.

405

ITextCtl Interface

ITEXTCTL_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
ITEXTCTL_Release()
Return to the List of functions

406

ITextCtl Interface

ITEXTCTL_EnumModeInit()
Description:

This function initializes the mode enumeration mechanism for the test control. Any time
you want to enumerate the text control, this function must be called first.

Prototype:
void ITEXTCTL_EnumModeInit(ITextCtl * pITextCtl)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

407

ITextCtl Interface

ITEXTCTL_EnumNextMode()
Description:

This function is called to enumerate the text control modes.

Prototype:
AEETextInputMode ITEXTCTL_EnumNextMode

(
ITextCtl * pITextCtl,
AEETextInputModeInfo * pmInfo
)

Parameters:

Return Value:
An enum of type AEETextInputMode to indicate the next input mode.
If the enumeration is complete AEE_TM_NONE will be returned.

Comments:
None

See Also:
AEETextInputMode
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object
pmInfo Optional pointer to receive Text Mode Information. If you do not wish to

receive this information, call this function with a NULL value as the
second parameter.

408

ITextCtl Interface

ITEXTCTL_GetCursorPos()
Description:

This function gets the position of a cursor in a text control object.

Prototype:
int32 ITEXTCTL_GetCursorPos(ITextCtl * pITextCtl)

Parameters:

Return Value:
Absolute position of cursor in text control

Comments:
None

See Also:
ITEXTCTL_SetCursorPos()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object

409

ITextCtl Interface

ITEXTCTL_GetInputMode()
Description:

This function allows the caller to get the selected text input mode and the string
associated with it.

Prototype:
AEETextInputMode ITEXTCTL_GetInputMode

(
ITextCtl *pITextCtl,
AEETextInputModeInfo * pmInfo
)

Parameters:

Return Value:
An enum of type AEETextInputModeInfo to indicate the input mode set.

Comments:
If a AEETextInputModeInfo pointer is given the tmMode field, it will match the return
value of this function. The pmInfo field is not required if the callee is just checking the
AEETextInputModeInfo and does not need the string associated with it.

See Also:
AEETextInputModeInfo
Return to the List of functions

pITextCtl [in] Pointer to the ITextCtl Interface object
pmInfo [in/out] Input: a pointer to a AEETextInputModeInfo Info structure to

be filled OR can be NULL, so as to not fill a structure and
return current mode.
Output: If a valid pointer is given it is filled with the current
mode and the string associated with that mode.

410

ITextCtl Interface

ITEXTCTL_GetProperties()
Description:

This function returns the text control-specific properties or flags.

Prototype:
uint32 ITEXTCTL_GetProperties(ITextCtl * pITextCtl)

Parameters:

Return Value:
32-bit properties for the text control.
Following properties are returned by the text control object:

TP_MULTILINE, if set, text control object is multiple line control.
TP_FRAME, if set, text control object has a frame.
TP_T9_MODE, if set, text control object is in T9 mode.
TP_FIXSETRECT, if set, the actual height more closely represents requested
height.

Comments:
None

See Also:
ITEXTCTL_SetProperties()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.

411

ITextCtl Interface

ITEXTCTL_GetRect()
Description:

This function fills given pointer to AEERect with the coordinates of the current bounding
rectangle size only for text, not title. This is particularly useful after a control is created
to determine its optimal/default size and position.
NOTE:

If the property TP_FIXSETRECT is set, this function fills the AEERect with the
actual bounding rectangle of the control, which is not necessarily the rectangle
passed in ITEXTCTL_SetRect().
If the property TP_FIXSETRECT is NOT set, this function returns the rectangle that
was passed in to ITEXTCTL_SetRect().

Prototype:
void ITEXTCTL_GetRect(ITextCtl * pITextCtl, AEERect * prc)

Parameters:

Return Value:
None

Comments:
None

See Also:
AEERect
ITEXTCTL_SetRect()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
prc Rectangle to be filled with the coordinates of the text control object.

412

ITextCtl Interface

ITEXTCTL_GetText()
Description:

This function is used to read text associated with the ITextCtl Interface object in the
given buffer subject to the maximum of nMaxChars.

Prototype:
boolean ITEXTCTL_GetText

(
ITextCtl * pITextCtl,
AECHAR * pBuffer,
unsigned int nMaxChars
)

Parameters:

Return Value:
TRUE, if successful.
FALSE, if unsuccessful.

Comments:
None

See Also:
ITEXTCTL_GetTextPtr()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
pBuffer Placeholder for the text.
nMaxChars Maximum number of characters to be read.

413

ITextCtl Interface

ITEXTCTL_GetTextPtr()
Description:

It returns the pointer to the text maintained by the ITextCtl object. The difference
between this function and GetText is that latter copies the content to a destination
buffer, and the former just returns the pointer to the text inside the ITextCtl object.

Prototype:
AECHAR * ITEXTCTL_GetTextPtr(ITextCtl * pITextCtl)

Parameters:

Return Value:
Pointer to the text buffer of the test control object

Comments:
None

See Also:
ITEXTCTL_GetText()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.

414

ITextCtl Interface

ITEXTCTL_HandleEvent()
Description:

This function is used to handle the events received by text control object. If the text
control object is in non edit mode, it processes only set title, set text, and the pressing
the UP and DOWN key events. In text edit mode, it processes various events like key
up, key down, key held, set title, set text, command event from the soft key menu.

Prototype:
boolean ITEXTCTL_HandleEvent

(
ITextCtl * pITextCtl,
AEEEvent evt,
uint16 wp,
uint32 dwp
)

Parameters:

Return Value:
TRUE, if the event was processed by the text control.
FALSE, if otherwise.

Comments:
None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
evt Event code.
wp 16-bit event data.
dwp 32-bit event data.

415

ITextCtl Interface

ITEXTCTL_IsActive()
Description:

This function returns the active state of the text control object.

Prototype:
boolean ITEXTCTL_IsActive(ITextCtl * pITextCtl)

Parameters:

Return Value:
TRUE, if the text control is active.
FALSE, if otherwise.

Comments:
None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.

416

ITextCtl Interface

ITEXTCTL_Redraw()
Description:

This function instructs the text control object to redraw its contents. The ITextCtl
Interface object does not redraw its contents every time the underlying data behind the
text control changes. This allows several data updates to occur while minimizing
screen flashes. For example, several changes can be made to the contents of the text
control object with no visible effect until ITEXTCTL_Redraw() function is called.

Prototype:
boolean ITEXTCTL_Redraw(ITextCtl * pITextCtl)

Parameters:

Return Value:
TRUE, if the text control was redrawn.
FALSE, if otherwise.

Comments:
None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.

417

ITextCtl Interface

ITEXTCTL_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
ITEXTCTL_AddRef()
Return to the List of functions

418

ITextCtl Interface

ITEXTCTL_Reset()
Description:

This function instructs the text control to reset (free/delete) its contents and to
immediately leave active/focus mode.

Prototype:
void ITEXTCTL_Reset(ITextCtl * pITextCtl)

Parameters:

Return Value:
None

Comments:
None

See Also:
ITEXTCTL_SetActive()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.

419

ITextCtl Interface

ITEXTCTL_SetActive()
Description:

This function is used to make a text control object active. Only an active text control
object handles the event sent to it. Inactive text control object just ignores the events.
Also an inactive text control object does not draw its frame.

Prototype:
void ITEXTCTL_SetActive(ITextCtl * pITextCtl, boolean bActive)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
bActive Boolean flag that specifies:

TRUE: to activate the text control object.
FALSE: to deactivate the text control object.

420

ITextCtl Interface

ITEXTCTL_SetCursorPos()
Description:

This function is used to set the position of a cursor in a text control object. You can use
the following defines for nOffset to place the text at the start or end.

Prototype:
void ITEXTCTL_SetCursorPos(ITextCtl * pITextCtl, int32 nOffset)

Parameters:

Return Value:
None

Comments:
If nOffset is < 0 the cursor is placed at the beginning of the text.
If nOffset is > the Length of the text, the cursor is placed at the end of the text

See Also:
ITEXTCTL_GetCursorPos()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object
nOffset Placement of the text object

TC_CURSOREND - Place the cursor at the end of the text.
TC_CURSORSTART - Place the cursor at the beginning of the text.

421

ITextCtl Interface

ITEXTCTL_SetInputMode()
Description:

This function allows the caller to set the selected text input mode.

Prototype:
AEETextInputMode ITEXTCTL_SetInputMode

(
ITextCtl * pITextCtl,
AEETextInputMode wMode
)

Parameters:

Return Value:
An enum of type AEETextInputMode to indicate the input mode set.

Comments:
None

See Also:
AEETextInputMode
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
wMode Text input mode.

422

ITextCtl Interface

ITEXTCTL_SetMaxSize()
Description:

This function is used to set the maximum text size supported by the text control object.
If the size being set is more than the size already set, this leads to the freeing up of the
memory associated with the previous size and allocation of the memory per the new
size.

Prototype:
void ITEXTCTL_SetMaxSize (ITextCtl * pITextCtl, uint16 nMaxSize)

Parameters:

Return Value:
None

Comments:
The implementation of this function may vary between devices. Some devices may
allow text to be entered beyond the maximum size set by this function.

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
nMaxSize Maximum text size in AECHAR characters excluding NULL and if 0

(zero) then no effect.

423

ITextCtl Interface

ITEXTCTL_SetProperties()
Description:

This function sets text control-specific properties or flags.

Prototype:
void ITEXTCTL_SetProperties(ITextCtl * pITextCtl, uint32 dwProps)

Parameters:

Following properties are used for text control object:
TP_MULTILINE, if set, text control object is multiple line control.
TP_FRAME, if set, text control object has a frame.
TP_T9_MODE, if set, text control object is in T9 mode.
TP_FIXSETRECT, if set, the actual height more closely represents requested
height.

Return Value:
None

Comments:
None

Side Effects:
It deactivates the text control.

See Also:
ITEXTCTL_GetProperties()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
dwProps 32-bit set of flags/properties.

424

ITextCtl Interface

ITEXTCTL_SetRect()
Description:

This function fills the AEERect data structure with the coordinates of the current
bounding rectangle to determining the size of the text, not the title. This is particularly
useful after a control is created to determine its optimal/default size and position.
NOTE:
If the property TP_FIXSETRECT is set, this function fills the AEERect data structure
with the actual bounding rectangle of the control, which may not be the rectangle set
using ITEXTCTL_SetRect().
If the property TP_FIXSETRECT is NOT set, this function returns the AEERect data
structure which contains the coordinates of rectangle set using ITEXTCTL_SetRect().

Prototype:
void ITEXTCTL_SetRect(ITextCtl * pITextCtl, const AEERect * prc)

Parameters:

Return Value:
None

Comments:
By default, the control rectangle of the text control object has a device screen width as
width and (device screen height - text height) as height starting from the upper left
corner.

See Also:
AEERect
ITEXTCTL_GetRect()
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
prc Bounding rectangle for the text control object.

425

ITextCtl Interface

ITEXTCTL_SetSoftKeyMenu()
Description:

This function replaces the existing Soft Key menu of the text control object with the
specified menu control object.

Prototype:
void ITEXTCTL_SetSoftKeyMenu(ITextCtl * pITextCtl, IMenuCtl * pm)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
IMenuCtl’s reference count is bumped up and a new menu item is added to the menu
if an entry mode string is maintained by the text manager.

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
pm New menu control object for the soft key menu.

426

ITextCtl Interface

ITEXTCTL_SetText()
Description:

This function is used to assign given string as text of the text control object.

Prototype:
boolean ITEXTCTL_SetText

(
ITextCtl * pITextCtl,
const AECHAR * psz,
int cch
)

Parameters:

Return Value
None

Comments:
None

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
psz Text string to be set.
cch Number of AECHAR characters to be assigned from the string to the text

of the text control object. If cch is negative or greater than the length of
psz string, then the length of string is used.

427

ITextCtl Interface

ITEXTCTL_SetTitle()
Description:

This function is used to set title of a text control object. If pText is not NULL, it sets the
string specified by pText as the title of the text control object. If pText is NULL, it reads
title string corresponding to the given resource identifier from resource file and sets it
as the title of the text control object.

Prototype:
boolean ITEXTCTL_SetTitle

(
ITextCtl * pITextCtl,
const char * pszResFile,
uint16 wResID,
AECHAR * pText
)

Parameters:

Return Value:
TRUE, if successful.
FALSE, if otherwise.

Comments:
None

Side Effects:
If pText is NULL and pszResFile, WResID are valid, this function assigns the text
control object title string to pText.

See Also:
None
Return to the List of functions

pITextCtl Pointer to the ITextCtl Interface object.
pszResFile File containing resource string.
wResID Resource identifier.
pText NULL-terminated title string.

428

ITransform Interface

ITransform, like IBitmap, provides functions for accessing a bitmap. This interface provides
functions for doing blits with transformations. It supports two kinds of transformation simple
(with ITRANSFORM_TransformBltSimple()) and arbitrary Affine Transforms (with
ITRANSFORM_TransformBltComplex()).

Unlike many BREW interfaces, ITransform cannot be obtained through
ISHELL_CreateInstance(). Instead, it may be obtained through the QueryInterface method of
a bitmap object that supports it. For instance, if you had an IBitmap Interface to a bitmap
object, you would call IBITMAP_QueryInterface() with the class ID AEECLSID_TRANSFORM.

Not all bitmap implementations support ITransform.

List of Header files to be included

The following header file is required:

AEETransform.h

List of functions

Functions in this interface include:

ITRANSFORM_AddRef()
ITRANSFORM_QueryInterface()
ITRANSFORM_Release()
ITRANSFORM_TransformBltComplex()
ITRANSFORM_TransformBltSimple()

The remainder of this section provides details for each function.

429

ITransform Interface

ITRANSFORM_AddRef()
Description:

This function is inherited from IBASE_AddRef().

See Also:
ITRANSFORM_Release()
Return to the List of functions

430

ITransform Interface

ITRANSFORM_QueryInterface()
Description:

This function retrieves a pointer to an interface conforming to the definition of the
specified class ID. This can be used to query for extended functionality, like future
versions or proprietary features. Upon a successful query, the interface is returned with
an incremented instance. The caller is responsible for calling Release() at some point
in the future. One exception is when the pointer returned is not an interface pointer. In
that case, the memory will share the lifetime of the object being queried, and the
returned pointer will not be used to free or release the object.

Prototype:
int ITRANSFORM_QueryInterface(ITransform *pITransform, AEECLSID id, void **p);

Parameters:

Return Value:
SUCCESS, if successful.
Error code, if otherwise.

Comments:
On failure, *p should be set to NULL, but it is good form to explicitly set *p to NULL
before calling QueryInterface().

See Also:
ITransform Properties
Return to the List of functions

pITransform [in] Pointer to ITransform interface.

id [in] A globally unique id to identify the entity (interface or data) that we
are trying to query.

p [out] Pointer to the data or interface that we want to retrieve. If the value
passed back is NULL, the interface or data that we query are not
available.

431

ITransform Interface

ITRANSFORM_Release()
Description:

This function is inherited from IBASE_Release().

See Also:
ITRANSFORM_AddRef()
Return to the List of functions

432

ITransform Interface

ITRANSFORM_TransformBltComplex()
Description:

This function blits a one bitmap to another, applying a set of arbitrary Affine
transformations.

Prototype:
int ITRANSFORM_TransformBltComplex

(
ITransform *pITransform,
int xDst,
int yDst,
IBitmap *pSrc,
int xSrc,
int ySrc,
unsigned dxSrc,
unsigned dySrc,
const AEETransformMatrix *pMatrixTransform,
uint8 unComposite
)

Parameters:

Return Value:
SUCCESS, if successful.
EUNSUPPORTED, if blit is not supported.

Comments:
None

See Also:
ITRANSFORM_TransformBltSimple()

pITransform Pointer to the ITransform interface of the destination bitmap
xDst, yDst Coordinate in destination where upper left corner of source will be

drawn. This assumes that no transform is being applied. The
location is specified by the center of the source area, which is
drawn at (xDst + dxSrc / 2, yDst + dySrc / 2).

pSrc Source bitmap. The bitmap types supported for pSrc vary from
implementation to implementation, but when pSrc is of the same
type as the destination bitmap, support is guaranteed.

xSrc, ySrc Upper left corner of source bitmap to be blitted to destination.
dxSrc, dySrc Width and height of source bitmap area to be blitted.
pMatrixTransform Pointer to AEETransformMatrix structure that specifies the

transformation to be used.
unComposite See ITransform Properties.

433

ITransform Interface

AEETransformMatrix
ITransform Properties
Return to the List of functions

434

ITransform Interface

ITRANSFORM_TransformBltSimple()
Description:

This function blits a one bitmap to another, applying a set of simple, predefined
transformations.

Prototype:
int ITRANSFORM_TransformBltSimple

(
ITransform *pITransform,
int xDst,
int yDst,
IBitmap *pSrc,
int xSrc,
int ySrc,
unsigned dxSrc,
unsigned dySrc,
uint16 unTransform,
uint8 unComposite)

Parameters:

Return Value:
SUCCESS, if successful.
EUNSUPPORTED, if blit is not supported.

Comments:
None

See Also:
ITRANSFORM_TransformBltComplex()

pITransform Pointer to the ITransform interface of the destination bitmap
xDst, yDst Coordinate in destination where upper left corner of source will

be drawn. This assumes that no transform is being applied. The
location is specified by the center of the source area, which is
drawn at
(xDst + dxSrc / 2, yDst + dySrc / 2).

pSrc Source bitmap. The bitmap types supported for pSrc vary from
implementation to implementation, but when pSrc is of the same
type as the destination bitmap, support is guaranteed.

xSrc, ySrc Upper left corner of source bitmap to be blitted to destination.
dxSrc, dySrc Width and height of source bitmap area to be blitted.
unTransform Set of flags that specify transformation to perform. See

ITransform Properties.
unComposite See ITransform Properties.

435

ITransform Interface

ITransform Properties
Return to the List of functions

436

OEM AEE Interface

This section describes the Application Execution Environment (AEE) functions that must be
called by the OEM layer, and the required/preferred call sequences.

List of functions

Functions in this interface include:

AEE_Active()
AEE_AutoInstall()
AEE_BuildPath()
AEE_CheckPtr()
AEE_CheckStack()
AEE_CreateControl()
AEE_Dispatch()
AEE_EnumRegHandlers()
AEE_Event()
AEE_Exception()
AEE_Exit()
AEE_FreeMemory()
AEE_GetAppContext()
AEE_GetClassInfo()
AEE_GetShell()
AEE_Init()
AEE_IsInitialized()
AEE_IsTestDevice()
AEE_Key()
AEE_KeyHeld()
AEE_KeyPress()
AEE_KeyRelease()
AEE_LinkSysObject()
AEE_NetEventOccurred()
AEE_RegisterForDataService()
AEE_RegisterForValidTime()
AEE_Resume()
AEE_ResumeEx()
AEE_SetAppContext()
AEE_SetEventHandler()
AEE_SetSysTimer()
AEE_SocketEventOccurred()
AEE_Suspend()
AEE_TimerExpired()

437

OEM AEE Interface

The remainder of this section provides details for each function.

438

OEM AEE Interface

AEE_Active()
Description:

This function can be called by the OEM layer to determine the ClassID of the active
applet or control in the AEE. It returns 0 (zero) if there is no active applet. The function
is provided primarily for key handling so that the OEM layer can determine whether
keypad events must be passed to the AEE or handled by the existing user interface
(UI).

Prototype:
AEECLSID AEE_Active(void)

Parameters:
None

Return Value:
AEECLSID of the active applet or control.
0 (zero) if there is no active applet.

Comments:
None

See Also:
None
Return to the List of functions

439

OEM AEE Interface

AEE_AutoInstall()
Description:

This function allows the OEM to automatically install an item on the device. The
function performs the following tasks:

• Scans the device to see if the specified item is already installed.
• If the specified item is not installed, displays a “Configuring Appls...” pop-up

window.
• Queries the ADS for information about the item and downloads it.
• Runs the first application listed for the item.

Prototype:
int AEE_AutoInstall(DLITEMID id, DLPRICEID idPrice)

Parameters:

Return Value:
EALREADYLOADED if the specified application is already installed.
SUCCESS if the application has been run to download the selected item.

Comments:
None

See Also:
None
Return to the List of functions

id ADS/BDS item identifier.
idPrice ADS/BDS price handle. If 0 (zero), uses the subscription or purchase handle.

440

OEM AEE Interface

AEE_BuildPath()
Description:

This function constructs a fully qualified file path based on the substring passed to the
function. It also determines whether the path is in the AEE shared directory.

Prototype:
const char * AEE_BuildPath

(
IShell * po,
const char * pszSub,
char * pszDest,
uint16 * pwDirType
)

Parameters:

Return Value:
Final output path string.
NULL if the input path is NULL or the length exceeds MAX_FILE_NAME.

Comments:
None

See Also:
None
Return to the List of functions

po Pointer to the ISHELL interface.
pszSub Input path substring.
pszDest Final output path string.
pwDirType Flag that notes whether the path is in the AEE shared directory.

441

OEM AEE Interface

AEE_CheckPtr()
Description:

This function validates a chunk of memory. It checks for one of the following conditions:
• Memory is non-NULL.
• Memory is in valid range.
• Memory is not in heap.
• Memory update will not overwrite/overread a heap node.

Prototype:
boolean AEE_CheckPtr

(
const char * pszFunc,
void * pMem,
uint32 nSize,
boolean bWrite
)

Parameters:

Return Value:
TRUE if it is a valid pointer.
FALSE otherwise.

Comments:
If the pointer is in RAM but not in the heap, this function returns TRUE.
Sends the following exceptions:

AEE_EXCEPTION_MEMPTR, if the pointer is bad.
AEE_EXCEPTION_HEAP, if the pointer is in the heap, but would overread or
overwrite a heap node

See Also:
None
Return to the List of functions

pszFunc Pointer to string detailing the exception if an exception occurs.
pMem Memory buffer.
dwSize Size in bytes.
bWrite Pointer is writeable memory or not.

442

OEM AEE Interface

AEE_CheckStack()
Description:

This function checks whether a stack overflow has occurred.

Prototype:
void AEE_CheckStack(const char * pszFunc)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pszFunc Pointer to the string detailing the exception if an exception occurs.

443

OEM AEE Interface

AEE_CreateControl()
Description:

This function allows the OEM layer to create user interface controls for use by the
existing user interface (UI), if one is provided.

Prototype:
int AEE_CreateControl(OEMCONTEXT pdc, AEECLSID iid, void ** po)

Parameters:

Return Value:
0 (zero) if successful.

Comments:
None

See Also:
ISHELL_CreateInstance() (See the BREW API Reference Guide.)
Return to the List of functions

pdc Pointer to OEMCONTEXT for the display.
iid Class of the control.
po Destination pointer to be filled.

444

OEM AEE Interface

AEE_Dispatch()
Description:

This function must be called by the OEM layer whenever the AEE signal has been
detected within the thread where the AEE_Init() call was made. The function performs
the following tasks:

• Checks the status of any pending BREW Resume function and calls it.
• Checks to see if any BREW-related timers have expired.

Prototype:
uint32 AEE_Dispatch(void)

Parameters:
None

Return Value:
AEE_DISPATCH_TIMERS_PENDING, if BREW has active short-term timers pending
AEE_DISPATCH_CALLBACKS_PENDING, if BREW has active callbacks pending
AEE_DISPATCH_THROTTLING if BREW, if is consuming too much time - throttling
0(zero), if BREW has no high-priority callbacks or timers pending.

Comments:
None

See Also:
AEE_Init()
AEE_Exit()
Return to the List of functions

445

OEM AEE Interface

AEE_EnumRegHandlers()
Description:

This helper function provides OEMs with the ability to:
- Enumerate handlers for a specified type/mime type;
- Enumerate all handlers for a specified handler type;
- Enumerate all handlers for all types;

Example:
static void EnumTest(Me * pMe)

{
AEEClassInfo ci;
AECHAR szName[32];
MEMSET(&ci,0,sizeof(AEEHandlerInfo));
ci.pszAppName = szName;
ci.nNameSize = sizeof(szName);
AEE_EnumRegHandlers(pMe,AEECLSID_APP, "application/foo",

EnumCB, pMe,&ci);
}

static boolean EnumCB(void * pcxt,AEECLSID clsType,const char *
pszMime, AEECLSID cls, AEEClassInfo * pci)

{
Me * pMe = (void *)pcxt;
AddToMyMenu(pMe,pci);
return(TRUE);
}

Prototype:
int AEE_EnumRegHandlers

(
AEECLSID clsType,
const char * pszMimeType,
PFNREGCB pfn
,void * pUser,
AEEClassInfo * pci
)

Parameters:

Return Value:
0 on SUCCESS

clsType Type of handlers (example: AEECLSID_APP, AEECLSID_VIEW, etc.)
pszMimeType Mime type or extension
pfn Pointer to callback for each entry
pUser User data pointer for callback
pci Pointer to AEEClassInfo structure to fill for each entry

446

OEM AEE Interface

Comments:
Enumeration will stop if handler returns FALSE

See Also:
None
Return to the List of functions

447

OEM AEE Interface

AEE_Event()
Description:

This function sends an event to the active BREW application. It is equivalent to calling
ISHELL_SendEvent(), and reduces the complexity of the OEM layers.

Prototype:
boolean AEE_Event(AEEEvent evt, uint16 wParam, uint32 dwParam)

Parameters:

Return Value:
TRUE if the event is handled.
FALSE if the event is ignored.

Comments:
None

See Also:
AEE_KeyPress()
AEE_KeyRelease()
AEE_Key()
AEE_KeyHeld()
Return to the List of functions

evt AEE Event code.
wParam Extra parameter (16 bits).
dwParam Extra parameter (32 bits).

448

OEM AEE Interface

AEE_Exception()
Description:

This function allows the OEM to send exceptions under special conditions. This causes
the following to occur:

• An immediate jump from the current context back to the root of the dispatcher (or
message pump).

• A report of the error in a modal form (timer-based pause).
• Termination of the offending BREW application.

Prototype:
void AEE_Exception(const char * pszFunc, AEEExceptionType e)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pszFunc Pointer to string detailing the exception.
e Exception type.

449

OEM AEE Interface

AEE_Exit()
Description:

This function closes the AEE. It must be called to effectively close the BREW layers.
The function performs the following tasks:

• Unloads any active applications or modules.
• Frees any memory used by the AEE.
• Releases any open files used by the AEE.
• Releases the SMS layer if the AEE had opened it.

This function must be called by the OEM layer to close the AEE.

Prototype:
void AEE_Exit(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
AEE_Init()
Return to the List of functions

450

OEM AEE Interface

AEE_FreeMemory()
Description:

This function can be called by the OEM layer when RAM resources reach a critical low
level. In this case, the AEE attempts to free any unused RAM.

Prototype:
void AEE_FreeMemory(uint32 nNeeded)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

nNeeded Required RAM.

451

OEM AEE Interface

AEE_GetAppContext()
Description:

This function gets the current application context.

Prototype:
void * AEE_GetAppContext(void)

Parameters:
None

Return Value:
Pointer to the current application context.

Comments:
None

See Also:
AEE_SetAppContext()
Return to the List of functions

452

OEM AEE Interface

AEE_GetClassInfo()
Description:

This helper function is provided for OEMs to gain easy access to extended information
regarding BREW classes. Although the data can be obtained through the use of other
interfaces (ISHELL_QueryClass and IDOWNLOAD), this function is provided for more
ready access to these parameters.

Prototype:
int AEE_GetClassInfo(AEECLSID cls, AEEClassInfo * phi)

Parameters:
None??

Return Value:
0 on SUCCESS

Comments:
None

See Also:
None
Return to the List of functions

453

OEM AEE Interface

AEE_GetShell()
Description:

This function returns the IShell interface pointer to the active AEE shell. This pointer
can then be used by the OEM layer to invoke any other ISHELL interface function.

Prototype:
IShell * AEE_GetShell(void)

Parameters:
None

Return Value:
Pointer to the shell interface.

Comments:
None

See Also:
None
Return to the List of functions

454

OEM AEE Interface

AEE_Init()
Description:

This function initializes the AEE. During initialization, the AEE performs the following
tasks:

• Builds the list of loaded modules (static and dynamic).
• Initializes a timer if an alarm has been set.
• Initializes any pending notification objects.
• Initializes the SMS layer if available.

The AEE passes the operating system signal to the AEE_Init() function when
AEE_Dispatch() must be called. The OEM layer must call AEE_Dispatch() during user
interface (UI) initialization before making any other AEE calls.

Prototype:
IShell * AEE_Init(uint32 dwAEESig)

Parameters:

Return Value:
Pointer to the AEE shell object.

Comments:
None

See Also:
AEE_Exit()
Return to the List of functions

dwAEESig Operating system signal that is reserved for use by the AEE.

455

OEM AEE Interface

AEE_IsInitialized()
Description:

This function checks whether BREW has been initialized.

Prototype:
boolean AEE_IsInitialized(void)

Parameters:
None

Return Value:
TRUE if initialized.
FALSE otherwise.

Comments:
None

See Also:
None
Return to the List of functions

456

OEM AEE Interface

AEE_IsTestDevice()
Description:

This function checks whether the device is a test device.

Prototype:
boolean AEE_IsTestDevice(void)

Parameters:
None

Return Value:
TRUE if it is a test device.
FALSE otherwise.

Comments:
None

See Also:
None
Return to the List of functions

457

OEM AEE Interface

AEE_Key()
Description:

This function sends a key event to the AEE. It is important as most BREW applications
only process EVT_KEY events generated by this call.

Prototype:
boolean AEE_Key(AVKType key)

Parameters:

Return Value:
TRUE if the event is handled.
FALSE if the event is ignored.

Comments:
None

See Also:
AEE_KeyPress()
AEE_KeyRelease()
AEE_KeyHeld()
Return to the List of functions

key BREW keycode (AEEVCodes.h).

458

OEM AEE Interface

AEE_KeyHeld()
Description:

This function sends a key held event to the AEE. It is up to the OEM layer to determine
when a key is held.

Prototype:
boolean AEE_KeyHeld(AVKType key)

Parameters:

Return Value:
TRUE if the event is handled.
FALSE if the event is ignored.

Comments:
None

See Also:
AEE_KeyPress()
AEE_KeyRelease()
AEE_Key()
Return to the List of functions

key BREW keycode (AEEVCodes.h).

459

OEM AEE Interface

AEE_KeyPress()
Description:

This function sends a key press event to the AEE.

Prototype:
boolean AEE_KeyPress(AVKType key)

Parameters:

Return Value:
TRUE if the key press is handled.
FALSE if the key press is ignored.

Comments:
Most BREW applications ignore this event. It is provided for games and other
complicated applications.

See Also:
AEE_KeyRelease()
AEE_Key()
AEE_KeyHeld()
Return to the List of functions

key BREW keycode (AEEVCodes.h).

460

OEM AEE Interface

AEE_KeyRelease()
Description:

This function sends a key release event to the AEE.

Prototype:
boolean AEE_KeyRelease(AVKType key)

Parameters:

Return Value:
TRUE if the event is handled.
FALSE if the event is ignored.

Comments:
Most BREW applications ignore this event. It is provided for games and other
complicated applications.

See Also:
AEE_KeyPress()
AEE_Key()
AEE_KeyHeld()
Return to the List of functions

key BREW keycode (AEEVCodes.h).

461

OEM AEE Interface

AEE_LinkSysObject()
Description:

This function associates an AEESysObject with the currently running application, if
any. It's designed to help clean up "system" resources when an application exits. It's
intended use is for the AEESysObject to be embedded in the implementing interface
object.

Prototype:
int AEE_LinkSysObject(AEESysObject *pso)

Parameters:

Return Value:
SUCCESS, if the operaion was successful.
EALREADY, if pso->pac is already set, and pac is a valid application, call
AEE_UnlinkSysObject first

Comments:
None

Side Effects:
pso->pac is updated to the application with which the object is associated

See Also:
AEESysObject
Return to the List of functions

 pso the object to be associated with the application

462

OEM AEE Interface

AEE_NetEventOccurred()
Description:

This function is the network and socket callback function. it is called when there is any
activity with the network/sockets. This is the callback function invoked by the
OEMSocket layer. The address is passed to it during the initialization of the network
layer.

Prototype:
void AEE_NetEventOccurred(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

463

OEM AEE Interface

AEE_RegisterForDataService()
Description:

This function allows the OEM layer to take advantage of the BREW notification
capability to monitor the system for data service.

Prototype:
void AEE_RegisterForDataService

(
PFNNOTIFY pfn,
void * pData,
boolean bActive
)

Parameters:

Return Value:
None

Comments:
None

See Also:
PFNNOTIFY
Return to the List of functions

pfn Function to call when the data service is determined.
pData Callback argument for the data service.
bActive Callback is only to be called when there is data service and the first BREW

application has started.

464

OEM AEE Interface

AEE_RegisterForValidTime()
Description:

This function allows the OEM layer to take advantage of the BREW notification
capability to monitor the system for valid time.

Prototype:
void AEE_RegisterForValidTime

(
PFNNOTIFY pfn,
void * pUser,
boolean bActive
)

Parameters:

Return Value:
None

Comments:
None

See Also:
PFNNOTIFY
Return to the List of functions

pfn Function to call when the valid time is determined.
pUser Callback argument for the valid time.
bActive Callback is only to be called when the time is valid and the first BREW

application has started.

465

OEM AEE Interface

AEE_Resume()
Description:

This function allows the OEM layer to restart the BREW application that was
suspended using AEE_Suspend(). This is equivalent to calling
ISHELL_SendEvent(EVT_APP_RESUME), which restarts the suspended application.
This function simplifies the reactivation of any BREW application that was suspended
by the user interface (UI).

Prototype:
boolean AEE_Resume(void)

Parameters:
None

Return Value:
TRUE if the event is successfully processed.
FALSE if the event is not processed.

Comments:
None

See Also:
AEE_ResumeEx()
AEE_Suspend()
Return to the List of functions

466

OEM AEE Interface

AEE_ResumeEx()
Description:

This function is provided for the OEM to use when developing custom objects that
require inter-thread notifications. It posts the AEECallback in the BREW system
resume queue.
This is the same mechanism used by the BREW standard SoundPlayer interface. In
that case, a callback is issued from another thread, the resume callback is posted, and
the API is then called back in the UI thread’s context.

Prototype:
void AEE_ResumeEx(AEECallback * pcb, uint16 wFlags, void * pa)

Parameters:

Return Value:
None

Comments:
None

See Also:
AEE_Resume()
Return to the List of functions

pcb Pointer to the callback
wFlags Flags for the callback:

AEE_RESUME_CB_SYS: This flag tells the BREW layer to associate
the callback with the system rather than the currently active application.
This is done to support callbacks that may need to be called when
applications are not running or across applications.
AEE_RESUME_CB_PRIO: This flag instructs BREW to place this
callback ahead of other callbacks.

pa Pointer to the application context.

467

OEM AEE Interface

AEE_SetAppContext()
Description:

This function sets the application context.

Prototype:
void * AEE_SetAppContext(void * pc)

Parameters:

Return Value:
Pointer to the previous application context.

Comments:
None

See Also:
AEE_GetAppContext()
Return to the List of functions

pc Pointer to the new application context.

468

OEM AEE Interface

AEE_SetEventHandler()
Description:

This function allows an OEM layer to create and use AEE controls from outside AEE
applets. The callback is called whenever the control or AEE issues an event.

Prototype:
void AEE_SetEventHandler(void * pData, AEEHANDLER pfn)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pData Private data that is passed as the first parameter to the callback.
pfn Private callback function that is to be called by the AEE.

469

OEM AEE Interface

AEE_SetSysTimer()
Description:

This function allows the OEM layer to set a short-term timer. Upon expiration, the
specified callback function is called, passing it the specified user data pointer as its first
argument. Note the following:

• The timer will expire at Current Time + <Milliseconds specified>.
• Any normal processing can be done in the callback. This includes drawing to the

screen, writing to files, and so on.
• Timers do not repeat. The OEMs must reset the timer if they want a repeating

timer.
• Specifying the same callback/data pointers automatically overrides a pending

timer with the same callback/data pointers.

Prototype:
int AEE_SetSysTimer(int32 nMSecs, PFNNOTIFY pfn, void * pUser)

Parameters:

Return Value:
EBADPARM if an invalid time or callback is specified.
ENOMEMORY if memory allocation fails.
0 (zero) if successful.

Comments:
None

See Also:
PFNNOTIFY
Return to the List of functions

nMSecs Timer expiration in milliseconds. The expiration will occur at Current Time
+ dwMSecs.

pfn The callback that will be called when the timer expires.
pUser The data pointer that will be passed as the only parameter to the callback.

470

OEM AEE Interface

AEE_SocketEventOccurred()
Description:

This function is the network and socket callback function. It is called when there is any
activity with the network and sockets. This callback function is invoked by the
processor’s network layer. The address is passed to it during the initialization of the
network layer.

Prototype:
void AEE_SocketEventOccurred(void)

Parameters:
None

Return Value:
None

Comments:
None
Return to the List of functions

471

OEM AEE Interface

AEE_Suspend()
Description:

This function allows the OEM layer to suspend the active BREW application. It is
equivalent to calling ISHELL_SendEvent(EVT_APP_SUSPEND). The application can
be restarted by calling AEE_Resume().
This function simplifies the suspension of any AEE activity during times when the user
interface (UI) is active.

Prototype:
void AEE_Suspend(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
AEE_Resume()
Return to the List of functions

472

OEM AEE Interface

AEE_TimerExpired()
Description:

This function adds an event to the event queue that will cause AEE_DISPATCH to be
called.

Prototype:
void AEE_TimerExpired(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

473

OEM AEE Interface

AEE_UnlinkSysObject()
Description:

This function de-associates an AEESysObject with an application.

Prototype:
int AEE_UnlinkSysObject(AEESysObject *pso)

Parameters:

Return Value:
SUCCESS, if the operaion was successful.
EALREADY, if pso->pac is NULL, i.e. not associated with an app

Comments:
None

Side Effects:
pso->pac is set to NULL.

See Also:
AEESysObject
Return to the List of functions

 pso the object to be associated with the application

474

OEM Address Book Interface

This section describes the Address Book Interface functions that the AEE uses to implement
the Address Book functionality. Prior to 2.0 release these were independent function. They
have been converted into an interface

List of functions

Functions in this interface include:

OEMAddr_EnumNextRec()
OEMAddr_EnumRecInit()
OEMAddr_GetCatCount()
OEMAddr_GetCatList()
OEMAddr_GetFieldInfo()
OEMAddr_GetFieldInfoCount()
OEMAddr_GetNumRecs()
OEMAddr_RecordAdd()
OEMAddr_RecordDelete()
OEMAddr_RecordGetByID()
OEMAddr_RecordUpdate()
OEMAddr_RemoveAllRecs()
OEMAddrBook_CommonExit()
OEMAddrBook_CommonInit()
OEMAddrBook_Exit()
OEMAddrBook_Init()

The remainder of this section provides details for each function.

475

OEM Address Book Interface

OEMAddr_EnumNextRec()
Description:

This function returns the information about the next record based on the search criteria
specified in most recent call to OEMAddr_EnumRecInit().

Prototype:
uint16 OEMAddr_EnumNextRec

(
AEEAddrCat * cat,
AEEAddrField ** ppItems,
int * nItemCount,
int * pErr
)

Parameters:

Return Value:
The recordID if the next record is successfully found. This function also fills up the
incoming parameters with the contents of the newly found record.
AEE_ADDR_RECID_NULL if the end of the enumeration has been reached or no
more records are found. This value must be returned.

Comments:
When the end of the enumeration has been reached, the index must not be reset to
point to the beginning of the enumeration. All subsequent calls to this function must
continue to return AEE_ADDR_RECID_NULL. The caller must call
OEMAddr_EnumRecInit() to re-initialize the search criteria.

See Also:
OEMAddr_EnumRecInit()
Return to the List of functions

cat On return, if the next record was found, contains the address category
of that next record.

ppItems On return, if the next record was found, contains the list of address fields
found in that next record.

nItemCount On return, if the next record was found, contains the number of address
fields found in that next record.

*pErr On return, contains the error code if an error occurred.

476

OEM Address Book Interface

OEMAddr_EnumRecInit()
Description:

This function searches the address book for specific records, and also sequentially
retrieves all of the records in the database. The function initializes the enumeration of
records in the address book based on a specific search criteria. When enumeration
has been initialized, the function OEMAddr_EnumNextRec() is used to iterate through
the records that match this search criteria.

Prototype:
int OEMAddr_EnumRecInit

(
AEEAddrCat wCategory,
AEEAddrFieldID wFieldID,
void * pData,
uint16 wDataSize
)

Parameters:

Return Value:
AEE_SUCCESS if enumeration is successfully initialized.
EFAILED if fails.

Comments:
This function can also be used to enumerate all records in the database by specifying
AEE_ADDR_CAT_NONE for the category parameter and AEE_ADDRFIELD_NONE
for the field parameter.

See Also:
OEMAddr_EnumNextRec()
Return to the List of functions

wCategory Category type to be matched. If set to AEE_ADDR_CAT_NONE, it is
ignored.

wFieldID AEEAddrFieldID to be matched. If set to AEE_ADDRFIELD_NONE, it
is ignored. Typically, OEMs do not allow searching for records on this
field ID (for example, searching for records based on EMAIL may not be
allowed). In this case, return EFAILED and
IADDRBOOK_EnumNextFieldsInfo().

pData If non-null, the actual data that must be matched. If NULL, it is ignored.
For example, if wFieldID is set to AEE_ADDRFIELD_NAME, pData
contains the actual name to be matched.

wDataSize Size of pData.

477

OEM Address Book Interface

OEMAddr_GetCatCount()
Description:

This function returns the number of address categories supported by the address
book. Examples of address categories are PERSONAL and BUSINESS. Each record
in the address book can belong to a specific address category. If the concept of
categories are not supported in the address book, this function must return 0 (zero).

Prototype:
int OEMAddr_GetCatCount(void)

Parameters:
None

Return Value:
Number of categories supported.

Comments:
It is valid to return 0 (zero) from this function if the address book does not support the
concept of categories for each record.

See Also:
None
Return to the List of functions

478

OEM Address Book Interface

OEMAddr_GetCatList()
Description:

This function returns information about all of the address categories supported by the
address book in the device. The function is called only if OEMAddr_GetCatCount()
returned a value other than 0 (zero).

Prototype:
int OEMAddr_GetCatList(AEEAddrCat *p, int nSize)

Parameters:

Return Value:
AEE_SUCCESS if successful. Even if nSize is less than the total number of categories
supported, this function must return AEE_SUCCESS as long as nSize is greater than
0 (zero).
EFAILED if fails.

Comments:
The categories must be converted from the OEM list to the AEE values before
returning. A list of pre-defined AEEAddressCategories is in AEEAddrBook.h. You can
also add your own categories.

See Also:
None
Return to the List of functions

p Pointer allocated by the caller that can hold information about the address
categories.

nSize Number of AEEAddrCat elements that can fit into the array pointed to by p.

479

OEM Address Book Interface

OEMAddr_GetFieldInfo()
Description:

This function returns detailed information about each field type supported for the given
category. This function is typically called after the OEMAddr_GetFieldInfoCount()
function.

Prototype:
int OEMAddr_GetGetFieldInfo

(
AEEAddrCat c,
AEEAddrFieldInfo * pf,
int nSize
)

Parameters:

Return Value:
AEE_SUCCESS if successful. Even if nSize is less than the total number of categories
supported, this function must return AEE_SUCCESS as long as nSize is greater than
0 (zero).
EFAILED if fails.

Comments:
The AEEAddrFieldInfo structure contains detailed information about the fields, such as
FieldID, and the maximum number of fields of this ID supported in each record.
Detailed information about this structure is in AEEAddrBook.h and the BREW API
Reference Guide.

See Also:
None
Return to the List of functions

c Address category for which the field information is to be returned.
pf Pointer to an array of AEEAddrFieldInfo structures (allocated by the caller)

where information is to be returned by this function.
nSize Number of AEEAddrFieldInfo elements that can fit into the array pointed to

by pf.

480

OEM Address Book Interface

OEMAddr_GetFieldInfoCount()
Description:

This function returns the number of types of fields supported for the given category. If
the concept of categories is not supported, the function may return the total number of
types of fields supported for each record in the address book. Examples of fields are
NAME, WORK_NUM, FAX_NUM, URL, and ADDRESS.

Prototype:
int OEMAddr_GetFieldInfoCount(AEEAddrCat c)

Parameters:

Return Value:
Number of types of fields supported for the given address category,
0 (zero) if category is not supported.

Comments:
None

See Also:
OEMAddr_GetFieldInfo()
Return to the List of functions

c Address category whose number of supported field types is to be returned.

481

OEM Address Book Interface

OEMAddr_GetNumRecs()
Description:

This function returns the total number of records found in the address book.

Prototype:
uint16 OEMAddr_GetNumRecs(void)

Parameters:
None

Return Value:
Count of the total number of records currently found in the address book.

Comments:
None

See Also:
None
Return to the List of functions

482

OEM Address Book Interface

OEMAddr_RecordAdd()
Description:

This function adds a new record to the address book. The fields to be added to this
record are passed as parameters to this function.

Prototype:
uint16 OEMAddr_RecordAdd

(
AEEAddrCat cat,
AEEAddrField * pItems,
int nItemCount,
int * pErr
)

Parameters:

Return Value:
The recordID if successful. This function must return the record ID of the newly added
record.
AEE_ADDR_RECID_NULL if fails. The parameter *pErr must contain the error code.
A list of error codes is in AEEError.h. This value must be returned.

Comments:
None

See Also:
None
Return to the List of functions

cat Address category to which this record belongs. If the concept categories
is not supported, this parameter can be ignored.

pItems Pointer to an array of items that must be added to the record. Each item
contains information such as FieldID, DataType, Data, and DataLength.
NOTE: For detailed information about this structure, see the
AEEAddrBook.h or BREW API Reference Guide.

nItemCount Number of fields in this record. It also indicates that the array pItems
contains this number of fields.

pErr If an error occurs, the error code must be placed in this pointer before
returning from this function. You must check for this parameter being
NULL before storing the error value in it.

483

OEM Address Book Interface

OEMAddr_RecordDelete()
Description:

This function deletes a specified record from the address book.

Prototype:
int OEMAddr_RecordDelete(uint16 recID)

Parameters:

Return Value:
AEE_SUCCESS if record is successfuly deleted.
EFAILED if fails.

Comments:
When deleting a record while enumerating through the list of addressbook records,
care should be taken that the next enumeration returns the correct record.

See Also:
None
Return to the List of functions

recID ID of the record to be deleted from the address book.

484

OEM Address Book Interface

OEMAddr_RecordGetByID()
Description:

This function retrieves the information about a specified record, and returns
information about all of the fields in this record. This function does not delete the record
from the address book.

Prototype:
int OEMAddr_RecordGetByID

(
uint16 recID,
AEEAddrCat * cat,
AEEAddrField ** ppItems,
int * nItemCount,
int * pErr
)

Parameters:

Return Value:
AEE_SUCCESS if the record information is successfully retrieved.
EFAILED if fails. The parameter *pErr must contain the exact error code.

Comments:
Memory for *ppItems must be allocated by the implementer of this function. This
memory is released by the caller.

See Also:
None
Return to the List of functions

recID ID of the record whose fields are to be retrieved and returned
cat On input, this is a valid pointer to AEEAddrCat. On return, this pointer

points to the address category to which the record belongs.
ppItems Pointer for passing info about the fields. While implementing this

function, the OEMs must allocate memory for *ppItems using the
function MALLOC(). This memory is freed by the caller (BREW).

nItemCount On input, this is a valid pointer to an integer. On return, this pointer
contains the count of the number of fields present in this record, and
indicates that the array *ppItems contains this number of fields on
return.

pErr If any error occurs, the error code must be placed into this pointer
before returning from this function. You must check for this parameter
being NULL before storing the error value in it.

485

OEM Address Book Interface

OEMAddr_RecordUpdate()
Description:

This function updates all of the fields in the specified record. It replaces all existing
fields in that record with the fields being passed to this function.

Prototype:
int OEMAddr_RecordUpdate

(
uint16 recID,
AEEAddrCat cat,
AEEAddrField * pItems,
int nItemCount,
int * pErr
)

Parameters:

Return Value:
AEE_SUCCESS if the record is successfully deleted.
EFAILED if fails.

Comments:
This function is similar to OEMAddr_RecordAdd(); the main difference is that this
function updates all of the fields in an existing record, while OEMAddr_RecordAdd()
adds a new record to the address book.

See Also:
OEMAddr_RecordAdd()
Return to the List of functions

recID ID of the record whose fields are to be updated.
cat Address category to which this record belongs. If the concept of

categories is not supported, this parameter can be ignored.
pItems Pointer to an array of items that are to be added to the record. Each item

contains information such as FieldID, DataType, Data, and DataLength.
NOTE: For detailed information about this structure, see the
AEEAddrBook.h or BREW API Reference Guide.

nItemCount Number of fields in this record. It also indicates that the array pItems
contains this number of fields.

pErr If an error occurs, the error code must be placed in this pointer before
returning from this function. You must check for this parameter being
NULL before storing the error value in it.

486

OEM Address Book Interface

OEMAddr_RemoveAllRecs()
Description:

This function deletes all records from the address book.

Prototype:
int OEMAddr_RemoveAllRecs(void)

Parameters:
None

Return Value:
AEE_SUCCESS if all the records are successfully deleted.
EFAILED if fails.
EUNSUPPORTED if this function is not supported.

Comments:
Since this is a sensitive operation, you can decide not to support it. If this function is
not supported, the value EUNSUPPORTED must be returned from this function.

See Also:
None
Return to the List of functions

487

OEM Address Book Interface

OEMAddrBook_CommonExit()
Description:

This function is called when the BREW AddressBook interface is deleted, allowing
OEMs to free the OEM layer object.

Prototype:
IOEMAddrBook *OEMAddrBook_CommonExit

(
AEECLSID ClsId, IOEMAddrBook *pme
)

Parameters:

Return Value:
This function returns NULL.

Comments:
If any memory was allocated during the call to OEMAddrBook_CommonInit() this
function should be used to free it. This function can also be used for any media/device
cleanup that needs to occur when the object is released.

See Also:
OEMAddrBook_CommonInit()
Return to the List of functions

ClsId Used to designate the OEM layer media used for address book
storage.

pme pointer to the IOEMAddrBook object to be deleted.

488

OEM Address Book Interface

OEMAddrBook_CommonInit()
Description:

This function is called when the BREW AddressBook interface is created. It allocates
memory for the OEM address book object and populates the object with the
appropriate OEM functions depending on the input class ID.
This allows OEMs to customize the AddressBook OEM layer for specific storage
media.

Prototype:
IOEMAddrBook *OEMAddrBook_CommonInit(AEECLSID ClsId);

Parameters:

Return Value:
Returns a pointer to the IOEMAddrBook object for any valid class ID.
Otherwise, returns NULL.

Comments:
OEMs can add support for new media/devices and class IDs by adding the new class
ID to the switch statement in this function, allocating memory for the object, and
initializing the object with the appropriate OEM functions.

See Also:
None
Return to the List of functions

ClsId Used to designate the OEM layer media used for address
book storage.

489

OEM Address Book Interface

OEMAddrBook_Exit()
Description:

This function is called when the BREW AddressBook interface is deleted, allowing the
address book to be cleaned up.

Prototype:
void OEMAddrBook_Exit(void)

Parameters:
None

Return Value:
None

Comments:
If any memory has been allocated during the address book operation, this is the time
to free it.

See Also:
None
Return to the List of functions

490

OEM Address Book Interface

OEMAddrBook_Init()
Description:

This function is called when the BREW AddressBook interface is created, allowing the
address book to be initialized.

Prototype:
boolean OEMAddrBook_Init(void)

Parameters:
None

Return Value:
TRUE if initialization is successful.
FALSE if initialization fails.

Comments:
If this function returns FALSE, BREW does not allow the IAddrBook interface to be
created, and therefore does not allow access to the OEM Address Book.

See Also:
None
Return to the List of functions

491

OEM Application Interface

This section describes the Application Interface functions that are required by the AEE.
Reference implementations of some of the functions are provided. See the OEM Porting Guide
for details on reference implementations.

List of functions

Functions in this interface include:

OEM_AuthorizeDownload()
OEM_CheckPrivacy()
OEM_GetItemStyle()
OEM_LockMem()
OEM_Notify()
OEM_SimpleBeep()
OEM_UnlockMem()

The remainder of this section provides details for each function.

492

OEM Application Interface

OEM_AuthorizeDownload()
Description:

This function is called before each download. A callback must be sent before the
IDOWNLOAD_Acquire() operation is completed. The IDownload class instance and
the item/price IDs are used to query information about the item. The IDownload pointer
is used to set the HTTP headers sent to the ADS. This is performed with the
CSetHeaders method, which uses the following parameters:

• pUser: User data to be passed to the callback.
• iID: Item ID.
• iPrice: Item Price Handle.
• pItem: Pointer to information structure for the item.
• nErr: Error code. If non-zero, the download aborts and this error is reported.

Prototype:
void OEM_AuthorizeDownload

(
IDownload * pd,
DLITEMID iID,
DLPRICEID iPrice,
DLItem * pItem,
PFNCHECKDLCB pfn,
void * pUser
)

Parameter(s):

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pd Pointer to the IDownload instance.
iID Item ID.
iPrice Item price ID.
pItem Pointer to the information structure for the item.
pfn Callback function.
pUser User data to be passed to the callback.

493

OEM Application Interface

OEM_CheckPrivacy()
Description:

This function allows the OEM/Carrier to specify the correct action for various outbound
requests. The OEM/Carrier can modify this function to conform to the requirements for
the Carrier, allowing the OEM to display a message or prompt to the user, such as
“Contact the network.”

Prototype:
void OEM_CheckPrivacy

(
OEMPrivacyReqType t,
AEECallback *pCB,
int *pStatus;
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

t Privacy request type (PRT_POSITION or PRT_DIAL_VOICE).
pCB Pointer to AEECallback structure. Refer to AEECallback structure
pStatus Return value

 0 (zero) if successful
 EFAILED if invalid request type

494

OEM Application Interface

OEM_GetItemStyle()
This function retrieves information regarding the drawing style for stock objects. BREW
can use a default set of values if none are provided by this function. To use the default
values, return FALSE to this function.
The default values used by BREW are:
 bBigX = di.cxScreen >= 120;
 bBigY = di.cyScreen >= 120;

 switch (nColorDepth) {
 case 1:
 pNormal->ft = AEE_FT_NONE;
 pSel->ft = AEE_FT_NONE;

 pNormal->roImage = AEE_RO_COPY;
 pSel->roImage = AEE_RO_NOT;
 break;

 case 2:
 pNormal->ft = AEE_FT_EMPTY;
 pSel->ft = AEE_FT_BOX;

 pNormal->roImage = AEE_RO_COPY;
 pSel->roImage = AEE_RO_COPY;
 break;

 default:
 if (bBigX && bBigY) {
 pNormal->ft = AEE_FT_3D_EMPTY;
 pSel->ft = AEE_FT_RAISED;
 } else {
 pNormal->ft = AEE_FT_EMPTY;
 pSel->ft = AEE_FT_BOX;
 }
 pNormal->roImage = AEE_RO_MASK;
 pSel->roImage = AEE_RO_MASK;
 break;
 }

 pSel->xOffset = pNormal->xOffset = bBigX ? 3 : 1;
 pSel->yOffset = pNormal->yOffset = bBigY ? 3 : 1;

Prototype:
boolean OEM_GetItemStyle

(
AEEItemType t,
AEEItemStyle * pNormal,
AEEItemStyle * pSel
)

Parameters:
t Item type.

495

OEM Application Interface

Return Value:
None

Comments:
Return FALSE for BREW to pick the default values.

See Also:
None
Return to the List of functions

pNormal Normal style
pSel Selected style

496

OEM Application Interface

OEM_LockMem()
Description:

NOTE: This function should not be used without clearly understanding all rules
associated with handled-based memory.
By default, all memory allocated via the BREW heap is locked and cannot be relocated.
This function provides a means for the caller to specify that a recently allocated and
unlocked block is now locked and cannot be moved.
Initial Allocation:

pme->m_ptr = OEM_Malloc(100);
OEM_UnlockMem(&pme->m_ptr);

Use:
OEM_LockMem(&pme->m_ptr);

Perform Work...
OEM_UnlockMem(&pme->m_ptr);

As indicated, this function accepts a pointer to a handle of allocated memory. The
function will then mark the block as unavailable to be moved in memory. This function
also increments a "lock count" on the memory block. This allows the caller to pair
OEM_LockMem and OEM_UnlockMem inside sub-routines that may be called while
the memory is locked. In such cases, the memory will not actually be "unlocked" until
the reference count reaches 0.

Prototype:
int OEM_LockMem(void ** ppHandle);

Parameters:
None.

Return Value:
0 - Incremented lock count of the memory
0 - Invalid ppHandle

Comments:
None

See Also:
OEM_UnlockMem()
Return to the List of functions

497

OEM Application Interface

OEM_Notify()
Description:

This function is called by BREW to notify the OEM about critical system functions.
These situations include the following:

OEMNTF_APP_START
A query to determine if the specified application can be started. The class ID of the
application is specified in the dwParam. The OEM should not refuse to start apps unless
they are in very critical conditions on the device (i.e. incoming call, etc.). In such cases,
there is no automatic way to start this app at a later time.

OEMNTF_ACTIVATE
Notification to the OEM that the BREW layer is activating an application. Subsequent
application start notifications that occur while a previous BREW application is running will
not be preceded by this notification.

OEMNTF_IDLE
Notification to the OEM that the BREW layer is closing the last active application in the
stack of currently active BREW applications. This situation does not mean that all BREW
applications are closed, but rather that control is returning to the native UI.

OEMNTF_RESET
A request by BREW to reset the device.

OEMNTF_CLOSE_FILE
BREW is requesting that a file be closed.

OEMNTF_SHOW_CALL_DIALOGS
Indicates whether the OEM should show call dialogs. If dwParam is TRUE, the OEM
should show these dialogs. If it is FALSE, the OEM should not show them. This call is
typically made only by the network layer to inhibit/re-enable the display of call status dialogs
during PPP sessions.

OEMNTF_GET_CONTEXT
This call is made by BREW when the OEM starts a BREW app. This notification is required
because in these cases OEMNTF_ACTIVATE is not called. The dwParam is of type
OEMAppState.

OEMNTF_APP_EVENT
This notification is sent to the OEM layer for any app event <= EVT_APP_LAST_EVENT.
This can be used by OEMs to track when an app is being started, suspended, resumed or
stopped. The passed structure contains all of the elements of the event passed to the app.

NOTE: No OEM modification of the parameters is supported. The OEM should NOT alter the
parameters. The app context of the target app has been asserted when this notification is
made. Any calls to BREW will appear to come from the app. Moreover, access to system
functions, etc. will be limited based upon the rights of the app. The dwParam is of type
OEMAppEvent. This structure is as follows:

498

OEM Application Interface

typedef struct _OEMAppEvent
{
 AEECLSID cls: ClassID of the app to which the event is being
sent.
 AEEEvent evt: Event Code of the event being sent to the app
 uint16 wp: wParam of the event being sent to the app
 uint32 dwp: dwParam of the event being sent to the app.
} OEMAppEvent;

Prototype:
int OEM_Notify(OEMNotifyEvent evt, uint32 dwParam)

Parameters:

Return Value:
0 (zero) if successful.

Comments:
None

See Also:
None
Return to the List of functions

evt The event code.
dwParam Context sensitive data.

499

OEM Application Interface

OEM_SimpleBeep()
Description:

This function plays a standard OEM beep tone and vibration given the duration, and
returns TRUE if successful.

Prototype:
boolean OEM_SimpleBeep(BeepType nBeepType, boolean bLoud)

Parameters:

Return Value:
TRUE if successfuly played or stopped the tone or vibration.
FALSE otherwise.

Comments:
None

See Also:
None
Return to the List of functions

nBeepType Beep type that can be one of the following:
BEEP_OFF: stop playback of the current beep or vibration
BEEP_ALERT: alert beep tone
BEEP_REMINDER: reminder beep tone
BEEP_MSG: message beep tone
BEEP_ERROR: error beep tone
BEEP_VIBRATE_ALERT: alert vibration
BEEP_VIBRATE_REMIND: reminder vibration

bLoud Boolean flag that sets the playback volume high or low.

500

OEM Application Interface

OEM_UnlockMem()
Description:

NOTE: This function should not be used without clearly understanding all rules
associated with handled-based memory.
By default, all memory allocated via the BREW heap is locked and cannot be relocated.
This function provides a means for the caller to specify that a recently allocated
memory block can be moved. It is called as follows:
Initial Allocation:

pme->m_ptr = OEM_Malloc(100);
OEM_UnlockMem(&pme->m_ptr);

Use:
OEM_LockMem(&pme->m_ptr);

Perform Work...
OEM_UnlockMem(&pme->m_ptr);

As indicated, this function accepts a pointer to a handle of allocated memory. The
function will then mark the block as available to be moved in memory. This function
monitors a "lock count" on the memory block. This allows the caller to pair
OEM_LockMem and OEM_UnlockMem inside sub-routines that may be called while
the memory is locked. In such cases, the memory will not actually be "unlocked" until
the reference count reaches 0.

Prototype:
int OEM_UnlockMem(void ** ppHandle);

Parameters:
None.

Return Value:
0 - Decremented lock count of the memory
Negative Values:

EALREADY - Memory is already unlocked and associated with another sentinal.
EMEMPTR - Invalid ppHandle
EFAILED - Association is invalid. Breakpoint thrown on SDK simulator.

Comments:
None

See Also:
OEM_LockMem()
Return to the List of functions

501

OEMBTSDP Interface

This module specifies the functions required for BT SDP support in BREW. There are no
requirements for supporting calls from other DMSS tasks. It is assumed that only BREW will
be making calls to this interface.

List of functions

Functions in this interface include:

OEMBTSDP_CancelDiscovery()
OEMBTSDP_CloseLib()
OEMBTSDP_DiscoverDevices()
OEMBTSDP_GetDeviceName()
OEMBTSDP_GetServerChannel()
OEMBTSDP_Init()
OEMBTSDP_OpenLib()
OEMBTSDP_Shutdown()

The remainder of this section provides details for each function.

502

OEMBTSDP Interface

OEMBTSDP_CancelDiscovery()
Description:

This function cancels the outstanding discovery request. The OEM layer should not
generate any more events related to device discovery.

Prototype:
void OEMBTSDP_CancelDiscovery(int32 libhandle)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

libhandle Library handle for the BT SDP instance.

503

OEMBTSDP Interface

OEMBTSDP_CloseLib()
Description:

This function can be called by BREW at some point after OEMBTSDP_OpenLib() to
close a BT SDP library instance

Prototype:
extern void OEMBTSDP_CloseLib(int32 libhandle)

Parameters:

Return Value:
None

Comments:
The OEM should not send any events after the close to the Using the Notification
function for this instance.

See Also:
OEMBTSDP_OpenLib()
Return to the List of functions

libhandle Valid library handle greater than 0 (zero).

504

OEMBTSDP Interface

OEMBTSDP_DiscoverDevices()
Description:

This functions tells the OEM layer to start the discovery process. It should generate
events on getting the response from the neighboring devices.

Prototype:
int32 OEMBTSDP_DiscoverDevices

(
int32 libhandle,
OEMBT_service_class_enum_type svcclass,
int32 maxResps
)

Parameters:

Return Value:
OEMBTSDP_DISCOVERY_INPROGRESS if discovery is already in progress.
0 if successful.

Comments:
None

See Also:
None
Return to the List of functions

libhandle Library Handle for the BT SDP Instance.
svcclass Service class of the BT device.
maxResps Max number of responses accepted.

505

OEMBTSDP Interface

OEMBTSDP_GetDeviceName()
Description:

This function requests the OEM layer to send the device name request to the specified
device.

Prototype:
extern int32 OEMBTSDP_GetDeviceName

(
int32 libhandle,
OEMBT_Addr * bdaddr
)

Parameters:

Return Value:
OEMBTSDP_DISCOVERY_INPROGRESS if a discovery is already in progress.
0 if successful.
-1 if fails.

Comments:
None

See Also:
None
Return to the List of functions

libhandle Library handle for the BT SDP instance.
bdaddr BT device address.

506

OEMBTSDP Interface

OEMBTSDP_GetServerChannel()
Description:

This function requests the OEM layer to send server channel request to the specified
device and service class

Prototype:
int32 OEMBTSDP_GetServerChannel

(
int32 libhandle,
OEMBT_service_class_enum_type service_class
)

Parameters:

Return Value:
OEMBTSDP_DISCOVERY_INPROGRESS if a discovery is already in progress.
0 if successful.
-1 if fails.

Comments:
None

See Also:
None
Return to the List of functions

libhandle Library handle for the BT SDP instance.
bdaddr BT device address.
service_class Service class of the device.

507

OEMBTSDP Interface

OEMBTSDP_Init()
Description:

This function is called by BREW to indicate that it is ready to accept notifications, and
to specify the function to be called to deliver notifications. It should return 1. Non-
functional stubs for this API return 0 to indicate that BT I/O is unsupported.
The OEM BT layer uses the function pointer passed by BREW to notify BREW of
events. When this notification function is called, BREW is responsible for taking care
of thread safety issues.

Prototype:
int16 OEMSDP_Init(PFNBTSDPNOTIFY pfnNotify)

Parameters:

Return Value:
1 if successful (BT SDP is supported).
0 if fails (BT SDP unsupported).

Comments:
None

See Also:
OEMBTSDP_Shutdown()
Return to the List of functions

pfnNotify Function to call with notifications.

508

OEMBTSDP Interface

OEMBTSDP_OpenLib()
Description:

This function can be called by BREW at some point after OEMBTSDP_Init() to open a
BT SDP Library Instance.

Prototype:
extern int32 OEMBTSDP_OpenLib()

Parameters:
None

Return Value:
Valid library handle greater than 0 (zero).
<0 in case of error.

Comments:
None

See Also:
OEMBTSDP_CloseLib()
Return to the List of functions

509

OEMBTSDP Interface

OEMBTSDP_Shutdown()
Description:

This function can be called by BREW at some point after OEMBTSIO_Init() to indicate
that the previously-registered notify callback should not be called anymore.

Prototype:
void OEMBTSDP_Shutdown(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
OEMBTSDP_Init()
Return to the List of functions

510

OEMBTSIO Interface

This section describes the functions required for BT IO support in BREW. There are no
requirements for supporting calls from other DMSS tasks. It is assumed that only BREW will
be making calls to this interface.

This interface currently describes one mode of interaction with one type of device: applet
Initiated.

List of functions

Functions in this interface include:

OEMBTSIO_Close()
OEMBTSIO_DataAvailable()
OEMBTSIO_Init()
OEMBTSIO_Open()
OEMBTSIO_ProcessEvents()
OEMBTSIO_Read()
OEMBTSIO_Write()

The remainder of this section provides details for each function.

511

OEMBTSIO Interface

OEMBTSIO_Close()
Description:

This function can be called by BREW at some point after OEMBTSIO_Open() to close
the specified port.

Prototype:
int32 OEMBTSIO_Close(int32 portHandle)

Parameters:

Return Value:
0(zero) if successful.
OEMBTSIO_INVALID_HANDLE if it is an invalid handle.

Comments:
None

See Also:
OEMBTSIO_Open()
Return to the List of functions

portHandle Returned by OEMBTSIO_Open().

512

OEMBTSIO Interface

OEMBTSIO_DataAvailable()
Description:

This function determines if there is data available to be read from the BT port.

Prototype:
int32 OEMBTSIO_DataAvailable(uint32 portHandle)

Parameters:

Return Value:
1 if data is available
0 (zero) if no data is available.

Comments:
None

See Also:
OEMBTSIO_Open()
Return to the List of functions

portHandle Returned by OEMBTSIO_Open().

513

OEMBTSIO Interface

OEMBTSIO_Init()
Description:

This function is called by BREW to indicate that it is ready to accept notifications, and
to specify the function to be called to deliver notifications. It should return 1. Non-
functional stubs for this API return 0 to indicate that BT IO is unsupported.
The function pointer passed by BREW should be used by the OEM BT layer to notify
BREW of events. When this notification function is called, BREW is responsible for
taking care of thread safety issues.

Prototype:
int32 OEMBTSIO_Init(PFNBTSIONOTIFY pfnNotify)

Parameters:

Return Value:
1 if successful (BT IO is supported).
0 (zero) if fails (BT IO is unsupported).

Comments:
None

See Also:
OEMBTSIO_Close()
Return to the List of functions

pfnNotify Function to call with notifications.

514

OEMBTSIO Interface

OEMBTSIO_Open()
Description:

This function can be called by BREW at some point after OEMBTSIO_Init() to open a
BT Port This will not otherwise affect the state of the BT driver or the receive and
transmit buffers.

Prototype:
int32 OEMBTSIO_Open(OEMBTConnectionInfo * pCntInfo)

Parameters:

Return Value:
Porthandle identified by an integer.
OEMBTSIO_INVALID_HANDLE if fails.

Comments:
None

See Also:
OEMBTSIO_Close()
Return to the List of functions

pCntInfo Pointer to the connection information.

515

OEMBTSIO Interface

OEMBTSIO_ProcessEvents()
Description:

This function processes the events related to Bluetooth Stack.

Prototype:
void OEMBTSIO_ProcessEvents()

Parameters:
None

Return Value:
None

Comments:
This function should be called in response to the Wakeup Callback

See Also:
OEMBTSIO_Init()
Return to the List of functions

516

OEMBTSIO Interface

OEMBTSIO_Read()
Description:

This function copies data from the receive buffer to the pcBuf[] buffer supplied by the
caller. As much data as is available should be copied, never exceeding nLen bytes and
never exceeding the number of bytes available in the receive buffer. Data copied to
pcBuf[] should be removed from the receive buffer.

Prototype:
int32 OEMBTSIO_Read(char * pcBuf, int32 nLen, uint32 nPort)

Parameters:

Return Value:
The number of bytes removed from the receive buffer.
If the receive buffer is empty, no bytes should be copied and this function should return
0 (zero).
If the port is in error, -1 should be returned.

Comments:
None

See Also:
None
Return to the List of functions

pcBuf Pointer to the character buffer.
nLen Length of the buffer in bytes.
nPort Port handle returned by OEMBTSIO_Open().

517

OEMBTSIO Interface

OEMBTSIO_Write()
Description:

This function should append nLen bytes from the specified buffer (pcBuf) to the end
of the transmit buffer. If the buffer cannot accomodate nLen bytes, as many bytes as
can fit should be appended.

Prototype:
int32 OEMBTSIO_Write(const char * pcBuf, int32 nLen, uint32 nPort)

Parameters:

Return Value:
The number of bytes appended to the transmit buffer.
If the receive buffer is full, no bytes should be copied and this function should return 0
(zero).
If the port is error, -1 should be returned.

Comments:
None

See Also:
None
Return to the List of functions

pcBuf Pointer to the character buffer.
nLen Length of the buffer in bytes.
nPort Port handle returned by OEMBTSIO_Open().

518

OEM Configuration Interface

This section describes the Configuration Interface functions that are required by the AEE.

List of functions

Functions in this interface include:

OEM_GetAddrBookPath()
OEM_GetAppPath()
OEM_GetConfig()
OEM_GetDeviceInfo()
OEM_GetDeviceInfoEx()
OEM_GetLogoPath()
OEM_GetMIFPath()
OEM_GetPath()
OEM_GetRingerPath()
OEM_GetSharedPath()
OEM_SetConfig()

The remainder of this section provides details for each function.

519

OEM Configuration Interface

OEM_GetAddrBookPath()
Description:

This function is called by the AEE to determine the path for the address book
application and files. The path must not have a trailing directory separation character.

Prototype:
const char * OEM_GetAddrBookPath(void)

Parameters:
None

Return Value:
The const char pointer to the path.

Comments:
None

See Also:
OEM_GetPath()
Return to the List of functions

520

OEM Configuration Interface

OEM_GetAppPath()
Description:

This function is called by the AEE to determine the path for the applet directories. The
path is the directory in which the AppManager looks for the applets. The path must not
have a trailing directory separation character.

Prototype:
const char * OEM_GetAppPath(void)

Parameters:
None

Return Value:
The const char * pointer to the path.

Comments:
None

See Also:
OEM_GetPath()
Return to the List of functions

521

OEM Configuration Interface

OEM_GetConfig()
Description:

This function retrieves the device configuration information related to the download
services.

Prototype:
int OEM_GetConfig(AEEConfigItem i, void * pBuff, int nSize)

Parameters:

See the Configuation Parameters list for the values of the i parameter:

Return Value:
0 (zero) if successful.
EBADPARM if size or parameter is not valid
EUNSUPPORTED if the config item is not supported
Other implementation-specific error codes

Comments:
None

See Also:
OEM_SetConfig()
Configuation Parameters
Return to the List of functions

i Item that needs to be retrieved. It can be one of the Configuation
Parameters

pBuff Buffer in which the new values are stored.
nSize Size of the buffer.

522

OEM Configuration Interface

OEM_GetDeviceInfo()
Description:

This function retrieves the current device’s physical and hardware characteristics.

Prototype:
void OEM_GetDeviceInfo(AEEDeviceInfo * pi)

Parameters:

Return Value:
None

Comments:
None

See Also:
AEEDeviceInfo
Return to the List of functions

pi Retrieved buffer where AEEDeviceInfo is stored. See the BREW API Reference
Guide.

523

OEM Configuration Interface

OEM_GetDeviceInfoEx()
Description:

This method is used to get specific information about the device. This function takes
an ID that specifies what information is needed. The buffer contains the corresponding
information on return.

Prototype:
int OEM_GetDeviceInfoEx

(
AEEDeviceItem nItem,
void *pBuff,
int *pnSize
);

Parameters:

Return Value:
SUCCESS, if successful
EBADPARM, if bad parameters are passed in
EUNSUPPORTED, if this item is not supported

Comments:
None

See Also:
AEEDeviceItem
Return to the List of functions

nItem Specifies the Item whose info is needed. Please see documentation of
AEEDeviceItem for the supported Device Items.

pBuff Contains the corresponding information on return

pnSize Contains the size of pBuff. On return, it contains the size filled. This parameter
maybe NULL for certain device Items.

524

OEM Configuration Interface

OEM_GetLogoPath()
Description:

This function is called by the AEE to determine the path for the LOGO files. The path
must not have a trailing directory separation character.

Prototype:
const char * OEM_GetLogoPath(void)

Parameters:
None

Return Value:
The const char pointer to the path.

Comments:
None

See Also:
OEM_GetPath()
Return to the List of functions

525

OEM Configuration Interface

OEM_GetMIFPath()
Description:

This function is called by the AEE to determine the path for the MIFs (Module
Information Files). The path is the directory in which the AppManager looks for MIFs.
The path must not have a trailing directory separation character.

Prototype:
const char * OEM_GetMIFPath(void)

Parameters:
None

Return Value:
Returns const char pointer to path

Comments:
None

See Also:
OEM_GetPath()
Return to the List of functions

526

OEM Configuration Interface

OEM_GetPath()
Description:

This function is called by the AEE to determine the path for the directory names used
by BREW. Following are the directories:

• APPS: the directory where all the MIF files and applet directories are stored.
• SHARED: the directory where all the shared files are stored.
• RINGER: the directory where all the ringer files are stored.
• ADDRBOOK: the directory where all of the address book files are stored.
• MIF: the directory where all of the MIF files are stored.
• LOGO: the directory where all of the LOGO files are stored.

The path must not have a trailing directory separation character.

Prototype:
const char * OEM_GetPath(uint16 wType)

Parameters:

Return Value:
The const char * pointer to the path.

Comments:
None

See Also:
OEM_GetAddrBookPath()
OEM_GetAppPath()
OEM_GetLogoPath()
OEM_GetMIFPath()
OEM_GetRingerPath()
OEM_GetSharedPath()
Return to the List of functions

wType Any of the six directories used by the AEE: APPS, ADDRBOOK, MIF,
RINGER, SHARED, or LOGO.

527

OEM Configuration Interface

OEM_GetRingerPath()
Description:

This function is called by the AEE to determine the path for the ringer files. The path
must not have a trailing directory separation character.

Prototype:
const char * OEM_GetRingerPath(void)

Parameters:
None

Return Value:
The const char * pointer to the path.

Comments:
None

See Also:
None
Return to the List of functions

528

OEM Configuration Interface

OEM_GetSharedPath()
Description:

This function is called by the AEE to determine the path for the shared directory, which
all applets with the shared directory access privilege share. The path must not have a
trailing directory separation character.

Prototype:
const char * OEM_GetSharedPath(void)

Parameters:
None

Return Value:
The const char * pointer to the path.

Comments:
None

See Also:
None
Return to the List of functions

529

OEM Configuration Interface

OEM_SetConfig()
Description:

It sets new handset configuration information related to the download services.

Prototype:
int OEM_SetConfig(AEEConfigItem i, void * pBuff, int nSize);

Parameters:

See the Configuation Parameters list for the values of the i parameter:

Return Value:
0 (zero) if successful.

Comments:
None

See Also:
OEM_GetConfig()
Configuation Parameters
Return to the List of functions

i Item that needs to be retrieved. It can be one of the Configuation
Parameters

pBuff Buffer in which the new values are stored.
nSize Size of the buffer.

530

OEM Cyclic Redundancy
Check Interface

This section describes the function for the Cyclic Redundancy Check (CRC) Interface.

List of functions

Functions in this interface include:

OEMCRC_16_step()

The remainder of this section provides details for each function.

531

OEM Cyclic Redundancy Check Interface

OEMCRC_16_step()
Description:

This function calculates a step-by-step 16-bit CRC over the specified disjunct data.
This is more commonly referred to as CCITT-16. Use it to produce a CRC and check
a CRC. The CRC value passed in is used to continue the CRC calculation from a
previous call, allowing this routine to be used to CRC discontinuous data.

Prototype:
uint16 OEMCRC_16_step(uint16 seed, uint8 * buf_ptr, uint16 num_bytes)

Parameters:

Return Value:
The calculated CCITT-16 CRC.

Comments:
None

See Also:
None
Return to the List of functions

seed Initial state of the accumulation register.
buf_ptr Pointer to the buffer containing the bytes to the CRC.
num_bytes Number of bytes in the buffer to calculate the CRC over.

532

OEM Database Interface

This section describes the Database Interface functions that the AEE database interface uses.
OEMs may use the reference implementation provided, or modify and reimplement this
module. The modified/reimplemented functions must comply with this interface specification.

List of functions

Functions in this interface include:

OEM_DBClose()
OEM_DBCreate()
OEM_DBDelete()
OEM_DBFree()
OEM_DBInit()
OEM_DBMakeReadOnly()
OEM_DBOpen()
OEM_DBRecordAdd()
OEM_DBRecordCount()
OEM_DBRecordDelete()
OEM_DBRecordGet()
OEM_DBRecordNext()
OEM_DBRecordUpdate()

The remainder of this section provides details for each function.

533

OEM Database Interface

OEM_DBClose()
Description:

This function closes the database specified by pDBContext. As part of closing, the
memory associated with this database is freed.

Prototype:
void OEM_DBClose(OEMCONTEXT pDBContext, AEE_DBError * pDBErr)

Parameters:

Return Value:
None

Comments:
None

See Also:
OEM_DBOpen()
Return to the List of functions

pDBContext Handle of the database to be closed.
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

534

OEM Database Interface

OEM_DBCreate()
Description:

This function creates a new database and returns a handle to the created database. If
wMinRecCount and wMinRecSize are specified, the function also reserves memory
for this database.

Prototype:
OEMCONTEXT OEM_DBCreate

(
const char * szDBName,
word wMinRecCount,
word wMinRecSize,
AEE_DBError * pDBErr
)

Parameters:

Return Value:
OEMCONTEXT if successful, this is used as a handle to the newly created database.
NULL if fails. If pDBErr is non-null, it contains the actual error code on return.

Comments:
If szDBName is NULL or an empty string, set the error code to
AEE_DB_ERR_NOT_EXIST and return NULL.

See Also:
OEM_DBOpen()
OEM_DBDelete()
Return to the List of functions

szDBName Name of the database to be created.
wMinRecCount Minimum number of records that this database must support. It is

used in conjunction with wMinRecSize to determine the total
memory to be reserved for the database. If this parameter is 0
(zero), it is ignored.

wMinRecSize Minimum size of the record. This is used in conjunction with the
wminRecCount to determine the total memory to be reserved for
the database. If this parameter is 0 (zero), it is ignored.

pDBErr Place holder to contain error code information on return. If NULL, no
error code is returned.

535

OEM Database Interface

OEM_DBDelete()
Description:

This function deletes the database specified by szDBName.

Prototype:
void OEM_DBdelete(const char * szDBName, AEE_DBError * pDBErr)

Parameters:

Return Value:
None

Comments:
If szDBName is NULL or an empty string, set the error code to
AEE_DB_ERR_NOT_EXIST and return NULL.

See Also:
OEM_DBCreate()
Return to the List of functions

szDBName Name of the database to be deleted
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

536

OEM Database Interface

OEM_DBFree()
Description:

This function frees the memory allocated for the buffer returned by
OEM_DBRecordGet.

Prototype:
void OEM_DBFree

(
OEMCONTEXT pDBContext,
byte * pbyRecBuf,
AEE_DBError * pDBErr
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pDBContext Handle of the database.
pbyRecBuf Pointer to the previously allocated record buffer that is to be freed.
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

537

OEM Database Interface

OEM_DBInit()
Description:

This function initializes the database subsystem.

Prototype:
int OEM_DBInit(void)

Parameter(s):
None

Return Value:
If initialization was successfully completed, returns zero.
In all other cases, returns any non-zero value.

Comments:
Routine currently does nothing, but is called by OEM_Init

See Also:
None
Return to the List of functions

538

OEM Database Interface

OEM_DBMakeReadOnly()
Description:

This function makes the specified database file read only. The contents of the index file
are appended to the end of the database, and the database is marked as read only. No
add, update, or delete operations are subsequently allowed on the database.

Prototype:
void OEM_DBMakeReadOnly(const char * szDBName, AEE_DBError * pDBErr)

Parameters:

Return Value:
None

Comments:
If szDBName is NULL or an empty string, set the error code to
AEE_DB_ERR_NOT_EXIST and return NULL.

See Also:
None
Return to the List of functions

szDBName Name of the database to be made read only.
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

539

OEM Database Interface

OEM_DBOpen()
Description:

This function opens a database and returns a handle to the opened database. If the
database does not exist, the function returns NULL. It does not create the database.

Prototype:
OEMCONTEXT OEM_DBOpen(const char * szDBName, AEE_DBError * pDBErr)

Parameters:

Return Value:
OEMCONTEXT if successful, this is used as the handle to the opened database.
NULL if fails. If pDBErr is non-null, the actual error code is placed inside pDBErr.

Comments:
The database szDBName must exist. Use OEM_DBCreate() to create a database and
open it.
If szDBName is NULL or an empty string, set the error code to
AEE_DB_ERR_NOT_EXIST and return NULL.

See Also:
OEM_DBCreate()
OEM_DBClose()
Return to the List of functions

szDBName Name of the database to be opened
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

540

OEM Database Interface

OEM_DBRecordAdd()
Description:

This function adds a new record to the specified database. It returns the ID of the newly
added record.

Prototype:
int OEM_DBRecordAdd

(
OEMCONTEXT pdb,
const byte * pbBuf,
word wBufSize,
AEE_DBError * pDBErr
)

Parameters:

Return Value:
ID of the newly added record, if successful.
OEM_REC_ID_NULL if fails.

Comments:
None

See Also:
None
Return to the List of functions

pdb Database handle.
pbBuf Pointer to the buffer containing data to be stored in the new record.
wBufSize Size of the buffer pointed to by pbBuf.
pDBErr Place holder to contain error code information on return. If NULL, no error

code is returned.

541

OEM Database Interface

OEM_DBRecordCount()
Description:

This function returns the number of records in the database specified by pDBContext.

Prototype:
word OEM_DBRecordCount(OEMCONTEXT pDBContext, AEE_DBError * pDBErr)

Parameters:

Return Value:
Number of records in the database, if successful.
0 (zero) if fails.

Comments:
None

See Also:
None
Return to the List of functions

pDBContext Handle of the database whose record count is required.
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

542

OEM Database Interface

OEM_DBRecordDelete()
Description:

This function deletes the specified record from the database.

Prototype:
void OEM_DBRecordDelete

(
OEMCONTEXT pDBContext,
word wRecId,
AEE_DBError * pDBErr
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pDBContext Handle of the database.
wRecId ID of the record.
pDBErr Place holder to contain error code information on return. If NULL no

error code is returned.

543

OEM Database Interface

OEM_DBRecordGet()
Description:

This function retrieves a specified record from the database. For the given record ID
(wRecId), the function retrieves the record information and the data associated with
that record. The record information is returned by the parameter pRecInfo passed to
this function. The data associated with that record is returned as a byte*. The memory
for the byte* is allocated from the heap. It is the caller’s responsibility to free the
memory later.
The function does not remove the record from the database. It returns a copy of the
information stored in that record.

Prototype:
byte* OEM_DBRecordGet

(
OEMCONTEXT pDBContext,
word wRecId,
AEE_DBRecInfo * pRecInfo,
AEE_DBError * pDBErr
)

Parameters:

Return Value:
A pointer to the data stored in the specified record, if successful.
NULL if fails.

Comments:
The record returned is a copy of the actual data stored. The memory for this copy is
allocated from the heap. A subsequent get call frees this memory and reallocates the
requisite amount from the heap for that operation. Therefore, after each get call, the
caller must copy the contents of the buffer returned to their own buffer and call
OEM_DBFree().

See Also:
None
Return to the List of functions

pDBContext Handle of the database whose record is to be retrieved.
wRecId ID of the record to be retrieved from the database.
pRecInfo Information about the retrieved record is returned to the caller using the

AEE_DBRecInfo structure.
pDBErr Place holder to contain error code information on return. If NULL no

error code is returned.

544

OEM Database Interface

OEM_DBRecordNext()
Description:

This function retrieves the ID of the record next to the given record ID. If the given
record ID is OEM_DB_RECID_NULL, the function returns the ID of the first record in
the given database. It returns OEM_DB_RECID_NULL if wCurRecId is the maximum
record ID in the database.

Prototype:
word OEM_DBRecordNext

(
OEMCONTEXT pDBContext,
word wCurRecid,
AEE_DBError * pDBErr
)

Parameters:

Return Value:
ID of the record next to the given record ID, if successful.
OEM_DB_RECID_NULL if fails.

Comments:
None

See Also:
None
Return to the List of functions

pDBContext Handle of the database
wCurRecId Specifies the ID of the current record. The record next to this record is

retrieved from the database.
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

545

OEM Database Interface

OEM_DBRecordUpdate()
Description:

This function updates the contents of the given record ID.

Prototype:
void OEM_DBRecordUpdate

(
OEMCONTEXT pdb,
word wRecId,
const byte * pbBuf,
word wBufSize,
AEE_DBError * pDBErr
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pdb Database handle.
wRecId ID of the record whose contents are to be updated.
pbBuf Pointer to the buffer containing updated data to be stored in the given

record.
wBufSize Size of the buffer pointed to by pbBuf.
pDBErr Place holder to contain error code information on return. If NULL, no

error code is returned.

546

OEM Debug Interface

This section describes the functions in the Debug Interface.

List of functions

Functions in this interface include:

OEMDebug_Printf()
OEMDebug_VPrintf()

The remainder of this section provides details for each function.

547

OEM Debug Interface

OEMDebug_Printf()
Description:

This function prints text through a debug mechanism. It is very similar to printf(), but
returns nothing.

Prototype:
void OEMDebug_Printf(const char * pszFormat, ...)

Parameter(s):

Return Value:
None

Comments:
This function uses MSG_FATAL macros to interface with DMSS debug messages.
Unfortunately, the MSG macros do not copy the data and do not give an indication
when they are done with it.
The function keeps DBG_NUM_STORES data buffers. If messages are dropped,
garbled, or mixed together, increase the number of buffers.

Side Effects:
Sends messages through msg_put.

See Also:
OEMDebug_VPrintf()
Return to the List of functions

pszFormat A printf-like format string.
... Arguments for printf.

548

OEM Debug Interface

OEMDebug_VPrintf()
Description:

This function prints text through a debug mechanism. It is very similar to printf(), but
returns nothing.

Prototype:
void OEMDebug_VPrintf(const char * pszFormat, va_list ap)

Parameter(s):

Return Value:
None

Comments:
This function uses OEMDebug_Printf() to print a string. If the string is too long, memory
corruption will occur.

See Also:
OEMDebug_Printf()
Return to the List of functions

pszFormat A printf-like format string.
ap List of arguments.

549

OEM Display Interface

NOTE: This module provides all the basic display routines that AEE files use. OEMs must
either implement or replace the implementation of these functions.

This section describes the basic Display Interface functions that the AEE files use.

List of functions

Functions in this interface include:

IOEMDISP_Backlight()
IOEMDISP_GetDefaultColor()
IOEMDISP_GetDeviceBitmap()
IOEMDISP_GetPaletteEntry()
IOEMDISP_GetSymbol()
IOEMDISP_GetSystemFont()
IOEMDISP_MapPalette()
OEMDisp_New()
IOEMDISP_SetAnnunciators()
IOEMDISP_SetPaletteEntry()
IOEMDISP_Update()

The remainder of this section provides details for each function.

550

OEM Display Interface

IOEMDISP_Backlight()
Description:

The function turns the device backlight on or off.

Prototype:
int IOEMDISP_Backlight(IOEMDisp *pMe, boolean bOn)

Parameters:

Return Value:
SUCCESS is returned if the function performed correctly.
EUNSUPPORTED if the operation is not supported
Other implementation-specific error codes

Comments:
None

See Also:
None
Return to the List of functions

pMe Pointer to the OEM Display InterfaceI.
bOn Flag that determines whether to turn the backlight on or off.

551

OEM Display Interface

IOEMDISP_GetDefaultColor()
Description:

This function is used to query the default system colors.

Prototype:
int IOEMDISP_GetDefaultColor

(
IOEMDisp *pMe,
AEEClrItem clr,
RGBVAL *pRGB
)

Parameters:

Return Value:
SUCCESS is returned if the function performed correctly.
Other implementation-specific error codes

Comments:
None

See Also:
None
Return to the List of functions

pMe [in] Pointer to the OEM Display Interface.
clr [in] Item for which to obtain color.
pRGB [out] RGB value of the corresponding color.

552

OEM Display Interface

IOEMDISP_GetDeviceBitmap()
Description:

This function retrieves an interface to the device (screen) bitmap.

Prototype:
int IOEMDISP_GetDeviceBitmap(IOEMDisp * pMe, IBitmap ** ppIBitmap)

Parameters:

Return Value:
SUCCESS if the function performed correctly.
ENOMEMORY if there was not enough memory for the operation.

Comments:
None

See Also:
None
Return to the List of functions

pMe [in] Pointer to the OEM Display Interface.
ppIBitmap [out] Pointer to the interface of device bitmap.

553

OEM Display Interface

IOEMDISP_GetPaletteEntry()
Description:

This function gets an entry in the device's palette table. If the device does not support
a dynamic palette, the function returns EUNSUPPORTED.

Prototype:
int IOEMDisp_GetPaletteEntry

(
IOEMDisp *pMe,
RGBVAL *pRGB,
unsigned int index
)

Parameters:

Return Value:
SUCCESS if the function performed correctly.
EUNSUPPORTED if the device does not have a dynamic palette.

Comments:
None

See Also:
IOEMDISP_SetPaletteEntry()
IOEMDISP_MapPalette()
Return to the List of functions

pMe [in] Pointer to the OEM Display Interface.
pRGB [out] Value of the palette entry.
index [in] Index of palette entry to retrieve.

554

OEM Display Interface

IOEMDISP_GetSymbol()
Description:

This function returns the AECHAR value corresponding to the specified symbol value.
NOTE: This function is deprecated in BREW 2.1 and should return EUNSUPPORTED.

Prototype:
int OEMDISP_GetSymbol

(
IOEMDisp *pMe,
AECHAR *pChar,
AEESymbol sym,
AEEFont font
)

Parameters:

Return Value:
SUCCESS is returned if the function performed correctly.
EFAILED if AECHAR pointer is NULL
EUNSUPPORTED is returned if function is not implemented.

Comments:
None

See Also:
None
Return to the List of functions

pMe [in] Pointer to the OEM Display Interface.
pChar [out] Character value associated with the specified symbol.
sym [in] Requested symbol.
font [in] Requested font.

555

OEM Display Interface

IOEMDISP_GetSystemFont()
Description:

The function retrieves an interface to the font specified. A new instance of the font
should be created for each call to this function.

Prototype:
int IOEMDISP_GetSystemFont

(
IOEMDisp * pMe,
AEEFont font,
IFont ** pFont
)

Parameters:

Return Value:
SUCCESS is returned if function performed correctly.
EUNSUPPORTED if the specified font is not supported.

Comments:
None

See Also:
None
Return to the List of functions

pMe [in] Pointer to IOEMDisp interface.
font [in] Requested font.
pFont [out] Pointer to interface of font.

556

OEM Display Interface

IOEMDISP_MapPalette()
Description:

This function sets multiple entries in the device's palette table. It only sets a contiguous
set of entries, starting from index 0 (zero). If the device does not support a dynamic
palette, this function returns EUNSUPPORTED.

Prototype:
int IOEMDisp_MapPalette

(
IOEMDisp *pMe,
unsigned int cntRGB,
RGBVAL *pRGB
)

Parameters:

Return Value:
SUCCESS if the function performed correctly.
EUNSUPPORTED if the device does not have a dynamic palette.

Comments:
None

See Also:
IOEMDISP_SetPaletteEntry()
IOEMDISP_GetPaletteEntry()
Return to the List of functions

pMe Pointer to the OEM Display Interface.
cntRGB Number of entries to set.
pRGB Array of colors that are to be used in the palette.

557

OEM Display Interface

OEMDisp_New()
Description:

This function creates a new instance of the IOEMDisp interface.

Prototype:
int OEMDisp_New(IShell * ps, AEECLSID cls, void ** ppif)

Parameters:

Return Value:
SUCCESS is returned if the function performed correctly.
EBADPARM if the parameters are invalid
ENOMEMORY if there is not enough memory

Comments:
None

See Also:
None
Return to the List of functions

ps [in] Pointer to the IShell interface.
cls [in] Class ID of the new IOEMDisp interface.
ppif [out] Pointer to the new OEM Display Interface.

558

OEM Display Interface

IOEMDISP_SetAnnunciators()
Description:

This function turns annunciators on or off. Two bitmasks are passed as parameters:
wMask and wVal.The bits set in wMask select the corresponding annunciators. For
each of the selected annunciators, the bits in wVal indicate whether the corresponding
annunciator needs to be turned on or off.

Prototype:
int IOEMDISP_SetAnnunciators

(
IOEMDisp *pMe,
unsigned int wVal,
unsigned int wMask
)

Parameters:

Return Value:
SUCCESS is returned if the function performed correctly.
EUNSUPPORTED if the operation is not supported.

Comments:
None

See Also:
None
Return to the List of functions

pMe Pointer to the OEM Display Interface.
wVal Annunciator bitmask values.
wMask Annunciator bitmask masks.

559

OEM Display Interface

IOEMDISP_SetPaletteEntry()
Description:

This function sets an entry in the device's palette table. If the device does not support
a dynamic palette, this function returns EUNSUPPORTED.

Prototype:
int IOEMDisp_SetPaletteEntry

(
IOEMDisp * pMe,
unsigned int index,
RGBVAL rgb
)

Parameters:

Return Value:
SUCCESS if the function performed correctly.
EUNSUPPORTED if the device does not have a dynamic palette.

Comments:
None

See Also:
IOEMDISP_GetPaletteEntry()
IOEMDISP_MapPalette()
Return to the List of functions

pMe Pointer to the OEM Display Interface.
index Index of palette entry to change.
rgb Color to put in the palette.

560

OEM Display Interface

IOEMDISP_Update()
Description:

This function updates the graphic memory (display) using the contents of the shadow
buffer. The function can do either of the following:

• Deferred refresh where the update waits for any ongoing draw operations to
complete.

• Forced refresh where the update happens immediately.

Prototype:
int IOEMDISP_Update(IOEMDisp *pMe, boolean bDefer)

Parameters:

Return Value:
SUCCESS is returned if the function performed correctly.
Other implementation-specific error codes.

Comments:
None

See Also:
None
Return to the List of functions

pMe Pointer to the OEM Display Interface.
bDefer Flag that determines whether to do a deferred update or a forced update.

561

OEM File System Interface

This section describes the File System interface functions that the AEE uses. The interface
provides a basic foundation for simple file system operations.

List of functions

Functions in this interface include:

OEMFS_Close()
OEMFS_EnumNext()
OEMFS_EnumStart()
OEMFS_EnumStop()
OEMFS_GetDirInfo()
OEMFS_GetFileAttributes()
OEMFS_GetLastError()
OEMFS_GetOpenFileAttributes()
OEMFS_Mkdir()
OEMFS_Open()
OEMFS_Read()
OEMFS_Remove()
OEMFS_Rename()
OEMFS_Rmdir()
OEMFS_Seek()
OEMFS_SpaceAvail()
OEMFS_SpaceUsed()
OEMFS_Tell()
OEMFS_Test()
OEMFS_Truncate()
OEMFS_Write()

The remainder of this section provides details for each function.

562

OEM File System Interface

OEMFS_Close()
Description:

This function closes the file identified by pFileHandle. The function takes the file
handle returned by OEMFS_Open() and frees all resources associated with it.
Subsequent operations on the file handle fail.

Prototype:
int OEMFS_Close(void * pFileHandle)

Parameters:

Return Value:
SUCCESS if the operation was successful
Valid BREW-defined error code, otherwise.
EMEMPTR: "pFileHandle" does not point to a valid handle

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

Side Effects:
Any OEM-specific memory structures associated with the file are closed.

See Also:
OEMFS_Open()
Return to the List of functions

pFileHandle File handle returned from OEMFS_Open().

563

OEM File System Interface

OEMFS_EnumNext()
Description:

This function uses the file or directory enumeration control object referenced by
pIterator to return file information for the next file or directory specified in
OEMFS_EnumStart(). The function returns not only the name, but all of the other
parameters of AEEFileInfo, including flags, creation date, and file size.
Upon success, the OEMFSEnum object will contain the values associated with the
enumerated file or directory.

Prototype:
int OEMFS_EnumNext

(
OEMFSEnum *pcxt
)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.
SUCCESS error code if no more items are to be enumerated. The function fills pInfo
with zeros.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
OEMFS_EnumStart()
OEMFS_EnumStop()
OEMFS_GetLastError()
Return to the List of functions

pcxt Input/Output structure for the enumeration operation.

564

OEM File System Interface

OEMFS_EnumStart()
Description:

This function initializes a file or directory enumeration control object for use by
subsequent calls to OEMFS_EnumNext(). Enumeration can be of either files or
directories in the parent directory szDir. To enumerate files, the isDir parameter is
zero. To enumerate directories, the value is non-zero.

Prototype:
OEMFSEnum * OEMFS_EnumStart

(
const char*szDir,
charisDir
)

Parameters:

Return Value:
Returns a pointer to the structure that will be populated with the results of all future
OEMFS_EnumNext() operations.

Comments:
BREW will reference members of the OEMFSEnum only during the time that it is valid
(between OEMFS_EnumStart() and OEMFS_EnumStop())
This function should set an internal error value that can be retrieved with
OEMFS_GetLastError().
Common error codes:

 EFILENOEXISTS: If an element of the directory path does not exist
 EBADFILENAME: If "szDir" is NULL, empty or longer than
AEE_MAX_FILE_NAME

Side Effects:
This function allocates memory to hold the structure.

See Also:
OEMFS_EnumNext()
OEMFS_EnumStop()
Return to the List of functions

szDir Directory to be enumerated.
isDir Flag to indicate enumeration of files or directories.

565

OEM File System Interface

OEMFS_EnumStop()
Description:

This function frees any resources associated with an enumeration.

Prototype:
int OEMFS_EnumStop

(
OEMFSEnum *pcxt
)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

EMEMPTR: if "pIterator" is not valid

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
OEMFS_EnumStart()
OEMFS_EnumNext()
Return to the List of functions

pcxt Enumeration control object returned from OEMFS_EnumStart int
OEMFS_EnumStop(void * pIterator)

566

OEM File System Interface

OEMFS_GetDirInfo()
Description:

Get the following information about the given directory:
- Number of files in this directory (including sub-directories)
- Total space occupied by this directory (including sub-directories)

Prototype:
int OEMFS_GetDirInfo

(
IFileMgr *pfm,
const char* pszDir,
uint16 *pwCount,
uint32 *pdwSize
);

Parameters:

Return Value
AEE_SUCCESS, if successful
EFAILED, if failed

Comments:
None

See Also:
None

Return to the List of functions

pfm Pointer to IFileMgr interface
pszDir Directory whose info is needed. The AEE function AEE_BuildPath()

must be used to build the complete path specified by pszDir.
pwCount If non Null on input, *pwCount must contain the total number of files in

this directory tree on return
pdwSize If non NULL on onput, *pdwSize must contain the total space occuped

by this directory tree on return

567

OEM File System Interface

OEMFS_GetFileAttributes()
Description:

This function returns the following file attributes of the file specified by szFilename:
• Flags (Hidden, System, Directory)
• Creation date in seconds from the beginning of the GPS epoch
• File size
• Filename

The attributes matched are exactly the same as those currently returned to the
programmer by the upper level API.

Prototype:
int OEMFS_GetFileAttributes

(
const char * szFilename,
AEEFileInfo * pInfo
)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

szFilename Name of the open file
pInfo Pointer to a structure used to return the file attributes

568

OEM File System Interface

OEMFS_GetLastError()
Description:

This function gets the last error produced by the OEMFS subsystem. If the last
operation was successful, this function returns SUCCESS.

Prototype:
int OEMFS_GetLastError(void)

Parameters:
None

Return Value:
SUCCESS if successful.
Valid BREW-defined error code if fails.

Comments:
None

See Also:
None
Return to the List of functions

569

OEM File System Interface

OEMFS_GetOpenFileAttributes()
Description:

This function returns the following file attributes of the currently open file specified by
pFileHandle:

• Flags (Hidden, System, Directory)
• Creation date in seconds from the beginning of the GPS epoch
• File size
• Filename

Prototype:
int OEMFS_GetOpenFileAttributes

(
void* pFileHandle,
const char* szFilename,
AEEFileInfo *pInfo
)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

pFileHandle File handle returned by OEMFS_Open().
szFilename Name of the open file.
pInfo Pointer to structure used to return data.

570

OEM File System Interface

OEMFS_Mkdir()
Description:

This function creates a new user file directory named dirname. This directory is
created as long as the new directory’s parent directories exist.

Prototype:
int OEMFS_Mkdir(const char * dirname)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
This function sets an internal error value that can be retrieved with
OEMFS_GetLastError().

See Also:
None
Return to the List of functions

dirname Name of new directory.

571

OEM File System Interface

OEMFS_Open()
Description:

This function opens the file specified by szFilename for the type of access specified
by nMode. The function allocates and initializes a data structure that it returns. The
current file position is set to be the beginning of the file.

Prototype:
void* OEMFS_Open(const char * szFilename, AEEOpenFileMode nMode)

Parameters:

Return Value:
Pointer identifying the open file. The AEE does not attempt to de-reference the pointer,
but instead passes it as a parameter to all functions that act upon the open file (such
as read, write, and truncate).
NULL if there is an error.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
OEMFS_Close()
Return to the List of functions

szFilename Name of file to open.
nMode File open mode, which ttakes the following values:

_OFM_READ: File is opened for read only and will not create a file.
_OFM_READWRITE: File is opened in readwrite mode and will not
create a file.
_OFM_APPEND: Same as _OFM_READWRITE but sets the file
pointer to the end of the file. .
_OFM_CREATE: Creates a new file in read/write mode. An error is
generated, and no file opened, if the file already exists.

572

OEM File System Interface

OEMFS_Read()
Description:

This function reads nBytes bytes from the file identified by pFileHandle into buffer
starting at the current file pointer position associated with pFileHandle. The number of
bytes actually read is returned. If an error occurs with the operation, 0 (zero) is
returned.

Prototype:
uint32 OEMFS_Read(void * pFileHandle, void * buffer, uint32 nBytes)

Parameters:

Return Value:
Number of bytes read from the buffer.
0 (zero) if there is an error, including an End-Of-File (EOF) error.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

Side Effects:
The current file pointer position is incremented so that it points immediately after the
last byte returned.

See Also:
OEMFS_Write()
Return to the List of functions

pFileHandle Handle of file to read, returned by OEMFS_Open().
buffer Buffer with bytes to read.
nBytes Number of bytes to read.

573

OEM File System Interface

OEMFS_Remove()
Description:

This function removes the file identified by Filename.

Prototype:
int OEMFS_Remove(const char * Filename)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

Filename Name of file to remove

574

OEM File System Interface

OEMFS_Rename()
Description:

This function renames the file identified by old_filename, the old filename, to
new_filename, the new filename.

Prototype:
int OEMFS_Rename(const char * old_filename, const char * new_filename)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

old_filename Current name of the file.
new_filename New name of the file.

575

OEM File System Interface

OEMFS_Rmdir()
Description:

This function removes the user file directory specified by dirname.

Prototype:
int OEMFS_Rmdir(const char * dirname)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

dirname Directory to remove.

576

OEM File System Interface

OEMFS_Seek()
Description:

This function sets the current file pointer position of the file associated with
pFileHandle from a starting point sType, offset by a number of bytes (positive or
negative) specified by nOffset. The sType parameter can be one of three values:

• _SEEK_START (offset is based on the beginning of the file)
• _SEEK_END (offset is based on the end of the file)
• _SEEK_CURRENT (offset from the current position)

If the new seek pointer is beyond the end of the file, the file is enlarged to accomodate
the seek.

Prototype:
int OEMFS_Seek

(
void * pFileHandle,
AEEFileSeekType sType,
int32 nOffset
)

Parameters:

Return Value:
SUCCESS if the operation was successful
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

Side Effects:
Sets the current file position associated with pFileHandle to the specified position.

See Also:
None
Return to the List of functions

pFileHandle File handle returned by OEMFS_Open().
sType Type of seek starting point.
nOffset Offset from starting point.

577

OEM File System Interface

OEMFS_SpaceAvail()
Description:

This function returns the amount of available file system space (in bytes).

Prototype:
uint32 OEMFS_SpaceAvail(void)

Parameters:
None

Return Value:
Number of bytes of file system space currently available.

Comments:
The file service handling task must have been started already. This function does not
set or return an error.

See Also:
None
Return to the List of functions

578

OEM File System Interface

OEMFS_SpaceUsed()
Description:

This function returns the amount of file system space (in bytes) in use. The function call
is synchronous and does not involve the file service handling task command queues.

Prototype:
uint32 OEMFS_SpaceUsed(void)

Parameters:
None

Return Value:
Number of bytes of file system space currently in use.

Comments:
The file service handling task must have been started already. This function does not
set or return an error.

See Also:
None
Return to the List of functions

579

OEM File System Interface

OEMFS_Tell()
Description:

This function returns the current file pointer position of the file associated with
pFileHandle.

Prototype:
int OEMFS_Tell(void * pFileHandle)

Parameters:

Return Value:
Offset from beginning of the file if successful.
-1 if an error occurs with the operation.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

pFileHandle File handle returned from OEMFS_Open().

580

OEM File System Interface

OEMFS_Test()
Description:

This function tests for the existence of a file or a directory. It first checks if the directory
exists, and then checks the specified name.

Prototype:
int OEMFS_Test(const char * filename)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

filename File or directory to check for existence.

581

OEM File System Interface

OEMFS_Truncate()
Description:

This function truncates the file identified by pFileHandle to the position specified by
nPos. The file must not be open for read only operations. The offset must be less than
the total length of the file.

Prototype:
int OEMFS_Truncate(void * pFileHandle, uint32 nPos)

Parameters:

Return Value:
SUCCESS if the operation was successful.
Valid BREW-defined error code, otherwise.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

See Also:
None
Return to the List of functions

pFileHandle File handle.
nPos File truncate position (new file size).

582

OEM File System Interface

OEMFS_Write()
Description:

This function writes nBytes bytes from buffer into the file identified by pFileHandle
starting at the current file pointer position associated with pFileHandle. The number of
bytes actually written is returned following operation completion.

Prototype:
uint32 OEMFS_Write

(
void * pFileHandle,
const void * buffer,
uint32 nBytes
)

Parameters:

Return Value:
Number of bytes written to the buffer.
0 (zero) if there is an error.

Comments:
The file service handling task must have been started already. This function sets an
internal error value that can be retrieved with OEMFS_GetLastError().

Side Effects:
The current file pointer position is incremented so that it points immediately after the
last byte returned.

See Also:
OEMFS_Read()
Return to the List of functions

pFileHandle Handle of file to write to, returned by OEMFS_Open().
buffer Buffer with bytes to write.
nBytes Number of bytes to write.

583

OEM Heap Interface

This section describes the basic heap memory routines that the AEE files use to provide
memory management functionality.

List of functions

Functions in this interface include:

OEM_CheckMemAvail()
OEM_Free()
OEM_GetRAMFree()
OEM_InitHeap()
OEM_Malloc()
OEM_Realloc()

The remainder of this section provides details for each function.

584

OEM Heap Interface

OEM_CheckMemAvail()
Description:

This function checks to see if a memory block of the given size can be allocated. The
function does not allocate memory, it simply returns TRUE or FALSE to indicate
whether it is possible to allocate a block of the given size.

Prototype:
boolean OEM_CheckMemAvail(uint32 dwSize)

Parameters:

Return Value:
TRUE if a memory block of the given size can be allocated.
FALSE if a block of the given size cannot be allocated.

Comments:
None

Side Effects:
This function may walk through the heap and collapse adjacent free blocks, if any are
available.

See Also:
None
Return to the List of functions

dwSize Size of the block whose allocation is to be verified.

585

OEM Heap Interface

OEM_Free()
Description:

This function frees an allocated memory buffer.

Prototype:
void OEM_Free(void * pBuff)

Parameter(s):

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pBuff Pointer to buffer that is to be freed.

586

OEM Heap Interface

OEM_GetRAMFree()
Description:

This function returns the number of free bytes in the heap. It conditionally fills the
values of the total heap size and the largest block that can be allocated.

Prototype:
uint32 OEM_GetRAMFree(uint32 * pdwTotal, uint32 * pdwMax)

Parameter(s):

Return Value:
Number of free bytes in the heap.

Comments:
None

See Also:
None
Return to the List of functions

pdwTotal Pointer to the value to set with the total space in the file system.
pdwMax Pointer to the value to set with the maximum size block that can be

allocated.

587

OEM Heap Interface

OEM_InitHeap()
Description:

This function initializes the heap sub-allocator.

Prototype:
void OEM_InitHeap(void * pMem, uint32 dwSize)

Parameter(s):

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pMem Memory buffer.
dwSize Size in bytes.

588

OEM Heap Interface

OEM_Malloc()
Description:

This function allocates a buffer from the heap.

Prototype:
void * OEM_Malloc(uint32 dwNewSize)

Parameter(s):

Return Value:
Pointer to the allocated buffer if successful.
NULL if fails.

Comments:
None

See Also:
None
Return to the List of functions

dwNewSize Size, in bytes, of the buffer to be allocated from the heap.

589

OEM Heap Interface

OEM_Realloc()
Description:

This function allocates or reallocates a buffer from the heap.

Prototype:
void * OEM_Realloc(void * pBuff, uint32 dwNewSize)

Parameter(s):

Return Value:
Pointer to the rellocated buffer if successful.
NULL if fails.

Comments:
None

See Also:
None
Return to the List of functions

pBuff Buffer or NULL.
dwNewSize New size of the buffer.

590

OEMLogger Interface

Description:

BREW provides a standardized and extensible data logging interface, which allows a BREW
application developer to log data using a number of different transport mechanisms.

Below are the primary logging transport implementations. A BREW application developer
selects one by creating an ILogger instance with one of the following class IDs:

Each implementation is responsible for handling and writing to a specific transport but the data
being sent is transport independent.

The header file AEELoggerTypes.h provides definitions for the logging data types common to
both BREW's ILogger interface and the PC side log parser in a client/server type of
architecture.

The file implementation outputs data to the output file in the following BREW packet format:

The Windows implementation of the ILogger interface writes all outgoing logs to the BREW
output window using the following format:

bkt:xx typ:xx cID:xx iID:xx FILENAME LINENUMBER MESSAGE ARGS

Class ID Description

AEECLSID_LOGGER_FILE Sends log items to a file.

AEECLSID_LOGGER_WIN Sends log items to the Emulator output window.

591

OEMLogger Interface

in which

When compiling a release version of a BREW application, the constant AEE_LOG_DISABLE
may be defined, which, using the preprocessor, removes all OEMLogger interface logging
functions, except the instance creation and getting and setting parameters processes. This
constant must be defined before a new BREW application includes AEELogger.h.

The contents of log data is determined by the type element of the BREW Log header. Three
standard log types are predefined by BREW, but the BREW application developer can also
define as many custom log types as required. The three standard BREW-defined log types are
as follows:

bkt Log bucket

typ Log type

cID ClassID of the currently running BREW application

iID User-defined instance ID

FILENAME Optional file name where log was sent

LINENUMBER Optional line number where log was sent

MESSAGE User defined text message

ARGS Optional arguments using OEMLogger_PutMsg()

Type Description Data contains

AEE_LOG_TYPE_TEXT ASCII text message If you use this log type, the data contains
nSize bytes of ASCII text.

AEE_LOG_TYPE_BIN_MSG AEELogTypeBinMsg If you use this log type, the data contains one
AEE LogTypeBinMsg structure.

AEE_LOG_TYPE_BIN_BLK Block of arbitrary
binary data

If you use this log type, the data contains
nSize bytes of arbitrary binary data.

592

OEMLogger Interface

Log items are sent and filtered in one of 255 distinct, general purpose buckets. These log
buckets are filtered by the developer at run time using ILOGGER_SetParam() and
ILOGGER_GetParam() or on the PC side, using a post processor.

The structure AEELogTypeBinMsg contains the following elements:

List of Header files to be included

The following header file is required:

OEMLogger.h

Element Description

Header b7,b6 – bits reserved
b5,b4 – number of args
b3 bit – file name present
b2,b1,b0 – message level

Line Line number in application code where this log
item was sent

args[MAX_LOG_TYPE_BIN_MSG_ARGS] Contains zero or more 32 bit integer values

pszMsg[MAX_LOG_TYPE_BIN_MSG_TEXT_SIZE] pszMsg contains two consecutive NULL
terminated strings: the first is the file name
where the log message was sent and the
second is an ASCII text message

593

OEMLogger Interface

List of functions

Functions in this interface include:

OEMLogger_Printf()
OEMLogger_PutItem()
OEMLogger_PutMsg()
OEMLoggerDMSS_GetParam()
OEMLoggerDMSS_PutRecord()
OEMLoggerDMSS_SetParam()
OEMLoggerFile_GetParam()
OEMLoggerFile_PutRecord()
OEMLoggerFile_SetParam()
OEMLoggerWin_GetParam()
OEMLoggerWin_PutRecord()
OEMLoggerWin_SetParam()

The remainder of this section provides details for each function.

594

OEMLogger Interface

OEMLogger_Printf()
Description:

This function is called to send a prioritized formatted ASCII text message. Since this
routine is a MACRO that allows variable arguments it must be called as follows:

OEMLogger_Printf(pMe->m_pILogger,
(pMe->m_pILogger,

USER_BUCKET1,
__FILE__,
(uint16)__LINE__,
"msg",
args)

);

Notice that the second argument is actually multiple arguments in parentheses, and
args can be multiple comma separated values

Prototype:
int OEMLogger_Printf

(
ILogger *pMe,
AEELogBucketType bucket,
const char *pszFileName,
uint16 nLineNum,
const char *pszFormat,
...);

Parameters:

Return Value:
SUCCESS Log send successfully
EBADPARM Invalid pointer to pszFormat
EUNSUPPORTED Log item filtered
ENOMEMORY Unable to allocated required memory
EFAILED Log not sent
-- The following log codes only apply to file logging

EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

pMe Pointer to the OEMLogger Interface object
bucket Bucket to place item
pszFileName Name of file calling this function
nLineNum Line number in file where it was called
pszFormat ASCII text string similar to a printf format string
... Format string arguments

595

OEMLogger Interface

Comments:
None

See Also:
AEELogBucketType
Return to the List of functions

596

OEMLogger Interface

OEMLogger_PutItem()
Description:

This function is called to send a prioritized user defined binary message.

To define a user log item type:

1. Select a user item number and define a meaningful name to it, For Example:

#define MY_APPS_LOG_ITEM_TYPE AEE_LOG_TYPE_USER_1

2. Define a structure that corresponds to you're new type, Example:

typedef struct{
uint8 foo1;
uint32 foo2;
uint8 fooString[STRING_SIZE];
} myAppsItem;

3. Enable the PC software that will be reading the logging output to recognize the log
item type AEE_LOG_TYPE_USER_1 (which in this case is
MY_APPS_LOT_ITEM_TYPE)

4. Call OEMLogger_PutItem() with MY_APPS_LOT_ITEM_TYPE, a pointer to an
instance of myAppsItem, and the size of myAppsItem.

Prototype:
int OEMLogger_PutItem(ILogger *pMe,

AEELogBucketType bucket,
AEELogItemType type,
uint16 nSize,
uint8 *pItem)

Parameters:

Return Value:
SUCCESS Log send successfully
EBADPARM Invalid pointer to pItem or size equal to zero
EUNSUPPORTED Log item filtered
ENOMEMORY Unable to allocated required memory
EFAILED Log not sent

pMe Pointer to the OEMLogger Interface object
bucket Bucket to place item
type User defined item type
nSize Size of type in bytes
pItem Pointer to instance of type

597

OEMLogger Interface

The following log codes only apply to file logging
EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

Comments:
None

See Also:
AEELogBucketType
AEELogItemType
Return to the List of functions

598

OEMLogger Interface

OEMLogger_PutMsg()
Description:

This function is called to send a prioritized predefined binary message and allows fast
logging due to the limited formatting required and the fixed size of the outgoing log
message. The outgoing binary message's data of type structure AEELogBinMsgType,
which is defined in AEELoggerTypes.h.

Prototype:
int OEMLogger_PutMsg(ILogger *pMe,

AEELogBucketType bucket,
const char *pszFileName,
uint16 nLineNum,
const char *pszMsg,
uint8 nNumArgs,
uint32 args[MAX_LOG_TYPE_BIN_MSG_ARGS])

Parameters:

Return Value:
SUCCESS Log send successfully
EBADPARM Invalid pointer to pszMsg or nNumArgs too large
EUNSUPPORTED Log item filtered
ENOMEMORY Unable to allocated required memory
EFAILED Log not sent
The following log codes only apply to file logging

EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

Comments:
None

See Also:
AEELogBucketType
AEELogBinMsgType
Return to the List of functions

pMe Pointer to the OEMLogger Interface object
bucket Bucket to place item
pszFileName ASCII NULL terminated name of file calling this function
nLineNum Line number in file where it was called
pszMsg ASCII NULL terminated text message
nNumArgs length of the args array
args array containing uint32 arguments

599

OEMLogger Interface

OEMLoggerDMSS_GetParam()
Description:

This function is called to get the configuration of the OEM logging interface.

Prototype:
int OEMLoggerDMSS_GetParam

(
ILogger *po,
AEELogParamType pType,
void* pParam
)

Parameters:

Return Value:
EMEMPTR: Invalid pParam pointer if pParam is required for this LogParamType
SUCCESS: LogParamType handled successfully
EUNSUPPORTED: The log parameter is not supported

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

pMe Pointer to the ILogger object
pType Parameter to modify
pParam Pointer to settings parameter to fill

600

OEMLogger Interface

OEMLoggerDMSS_PutRecord()
Description:

This function is called by ILOGGER_Printf(), ILOGGER_PutItem(), or
ILOGGER_PutMsg() to output a log record to the DMSS Diag task.

Prototype:
int ILOGGER_PutRecord

(
ILogger *po,
AEELogBucketType bucket,
AEELogRecord *pRcd
)

Parameters:
pMe: Pointer to the ILOGGER object
bucket: Bucket to place item
pItem: Pointer to data with BREW header at beginning to write to log

Return Value:
SUCCESS Item data written successfully
EBADPARM Invalid pointer to pItem
EFAILED General failure
-- The following log codes only apply to file logging

EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

Comments:
None

See Also:
AEELogBucketType
Return to the List of functions

601

OEMLogger Interface

OEMLoggerDMSS_SetParam()
Description:

This function is called to set performance and behavior of the logging interface.
Supported parameters depends on the current implementation's support,

Prototype:
int OEMLoggerDMSS_SetParam

(
ILogger *po,
AEELogParamType pType,
uint32 param,
void* pParam)

Parameters:

Return Value:
EMEMPTR: Invalid pParam pointer if pParam is required for this LogParamType
SUCCESS: LogParamType handled successfully
EFAILED: General failure
EUNSUPPORTED: The log parameter is not supported

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

pMe Pointer to the ILogger object
pType Parameter to modify
param New settings parameter
pParam Pointer to new settings parameter

602

OEMLogger Interface

OEMLoggerFile_GetParam()
Description:

This function is called to get the configuration fo the ILogger interface. Supported
parameters depends on the current implementation's support,

Prototype:
int OEMLoggerFile_GetParam

(
ILogger *po,
AEELogParamType pType,
void* pParam
)

Parameters:

Return Value:
EMEMPTR: Invalid pParam pointer if pParam is required for this LogParamType
SUCCESS: LogParamType handled successfully
EUNSUPPORTED: The log parameter is not supported

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

pMe Pointer to the ILogger object
pType Parameter to modify
pParam Pointer to be filled with settings parameter

603

OEMLogger Interface

OEMLoggerFile_PutRecord()
Description:

This function is called by ILOGGER_Printf(), ILOGGER_PutItem(), or
ILOGGER_PutMsg() to output a log record to the output log file.

Prototype:
int ILOGGER_PutRecord

(
ILogger *po,
AEELogBucketType bucket,
AEELogRecord *pRcd
)

Parameters:

Return Value:
SUCCESS Item data written successfully
EBADPARM Invalid pointer to pItem
EFAILED General failure
The following log codes only apply to file logging

EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

Comments:
None

See Also:
AEELogBucketType
Return to the List of functions

pMe Pointer to the ILOGGER object
bucket Bucket to place item
pRcd Pointer to data with BREW header at beginning to write to log

604

OEMLogger Interface

OEMLoggerFile_SetParam()
Description:

This function is called to set performance and behavior of the logging
interface.Supported parameters depends on the current implementation's support,

Prototype:
int OEMLoggerFile_SetParam

(
ILogger *po,
AEELogParamType pType,
uint32 param,
void* pParam
)

Parameters:

Return Value:
EMEMPTR: Invalid pParam pointer if pParam is required for this LogParamType
SUCCESS: LogParamType handled successfully
EUNSUPPORTED: The log parameter is not supported

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

pMe Pointer to the ILogger object
pType Parameter to modify
param New settings parameter
pParam Pointer to new settings parameter

605

OEMLogger Interface

OEMLoggerWin_GetParam()
Description:

This function is called to get the configuration fo the ILogger interface.Supported
parameters depends on the current implementation's support,

Prototype:
int OEMLoggerWin_GetParam

(
ILogger *po,
AEELogParamType pType,
void* pParam
)

Parameters:
pMe: Pointer to the ILogger object
pType: Parameter to modify
pParam: Pointer to be filled with settings parameter

Return Value:
EMEMPTR: Invalid pParam pointer if pParam is required for this LogParamType
SUCCESS: LogParamType handled successfully
EUNSUPPORTED: The log parameter is not supported

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

606

OEMLogger Interface

OEMLoggerWin_PutRecord()
Description:

This function is called by ILOGGER_Printf(), ILOGGER_PutItem(), or
ILOGGER_PutMsg() to output a log record to the BREW Emulator output window.
This function only supports text output and therefore only supports log types
AEE_LOG_TYPE_TEXT and AEE_LOG_TYPE_BIN_MSG.

Prototype:
int OEMLoggerWin_PutRecord

(
ILogger *po,
AEELogBucketType bucket,
AEELogRecord *pRcd
)

Parameters:

Return Value:
SUCCESS Item data written successfully
EBADPARM Invalid pointer to pItem
EFAILED General failure
The following log codes only apply to file logging

EFSFULL Not enough space in log file for this packet
EFILENOEXISTS Output log file is closed

Comments:
None

See Also:
AEELogBucketType
Return to the List of functions

pMe Pointer to the ILOGGER object
bucket Bucket to place item
pItem Pointer to data with BREW header at beginning to write to log

607

OEMLogger Interface

OEMLoggerWin_SetParam()
Description:

This function is called to set performance and behavior of the logging interface.
Supported parameters depends on the current implementation's support,

Prototype:
int OEMLoggerWin_SetParam

(
ILogger *po,
AEELogParamType pType,
uint32 param,
void* pParam
)

Parameters:

Return Value:
EMEMPTR: Invalid pParam pointer if pParam is required for this LogParamType
SUCCESS: LogParamType handled successfully
EUNSUPPORTED: The log parameter is not supported

Comments:
None

See Also:
AEELogParamType
Return to the List of functions

pMe Pointer to the ILogger object
pType Parameter to modify
param New settings parameter
pParam Pointer to new settings parameter

608

OEM MD5 Interface

This section describes the functions in the OEM MD5 interface.

List of functions

Functions in this interface include:

OEMMD5_Final()
OEMMD5_Init()
OEMMD5_Update()

The remainder of this section provides details for each function.

609

OEM MD5 Interface

OEMMD5_Final()
Description:

This function ends an MD5 message-digest operation, writing the message digest and
changing the context to 0 (zero).

Prototype:
void OEMMD5_Final(uint8 digest[16], OEMMD5_CTX * context)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

digest Message digest.
context Pointer to the MD5 context.

610

OEM MD5 Interface

OEMMD5_Init()
Description:

This function begins an MD5 operation, writing a new context.

Prototype:
void OEMMD5_Init(OEMMD5_CTX * context)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

context Pointer to a context that will be initialized.

611

OEM MD5 Interface

OEMMD5_Update()
Description:

This function continues an MD5 message-digest operation, processing another
message block and updating the context.

Prototype:
void OEMMD5_Update

(
OEMMD5_CTX * context,
uint8 * input,
uint32 inputLen
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

context MD5 context.
input Input block.
inputLen Length of the input block.

612

OEM Net Interface

The OEM Net interface provides the underlying networking services required for sockets to
operate. Primarily this consists of functions for managing PPP, with a few additional utility
functions. If an operation is unable to complete immediately, it should return an error code of
AEE_NET_EWOULDBLOCK. When the operation completes, call AEE_NetEventOccurred to
notify BREW.

The following functions are optional and may return EUNSUPPORTED:

OEMNet_GetPPPAuth()
OEMNet_GetRLP3Cfg()
OEMNet_GetUrgent()
OEMNet_SetPPPAuth()
OEMNet_SetRLP3Cfg()

List of functions

Functions in this interface include:

OEMNet_CloseNetlib()
OEMNet_GetPPPAuth()
OEMNet_GetRLP3Cfg()
OEMNet_GetUrgent()
OEMNet_MyIPAddr()
OEMNet_NameServers()
OEMNet_OpenNetlib()
OEMNet_PPPClose()
OEMNet_PPPOpen()
OEMNet_PPPSleep()
OEMNet_PPPState()
OEMNet_SetPPPAuth()
OEMNet_SetRLP3Cfg()

The remainder of this section provides details for each function.

613

OEM Net Interface

OEMNet_CloseNetlib()
Description:

This function closes the network library for the application. All sockets must have been
closed for the application before closing the library. If this is the last remaining
application, the network subsytem (PPP/traffic channel) must also be brought down
before closing the library. The function is called from the context of the socket client’s
task.

Prototype:
int16 OEMNet_CloseNetlib(void)

Parameters:
None

Return Value:
AEE_NET_SUCCESS, if successful
AEE designated error codes indicating reason for failure, if otherwise

Comments:
None

See Also:
OEMNet_OpenNetlib()
Return to the List of functions

614

OEM Net Interface

OEMNet_GetPPPAuth()
Description:

This function allows the caller to retrieve the configured PPP authentication settings, if
this is relevant to the network implementation.

Prototype:
int16 OEMNet_GetPPPAuth(char *pszAuth, int *pnLen)

Parameters:

Return Value:
SUCCESS, if the credentials were retrieved
EUNSUPPORTED, if PPP authentication cannot be retrieved
EBADPARM, if pszAuth is not-NULL and pnLen is less than or equal to 0 (zero).

Comments:
None

See Also:
OEMNet_SetPPPAuth()
Return to the List of functions

pszAuth [out] The buffer into which the credentials are to be copied, in the
form of 2 concatenated, null terminated strings, for example:
“userid@vzw.com\000password\000”

pnLen [in/out] The size of pszAuth. If pszAuth is NULL, pnLen is ignored
on input, and set to the number of bytes required to hold
authentication information on output.

615

OEM Net Interface

OEMNet_GetRLP3Cfg()
Description:

This function allows the caller to discover the configured RLP settings, if the OEM’s
network layer is implemented using RLP.

Prototype:
int16 OEMNet_GetRLP3Cfg(int16 nOptName,AEERLP3Cfg *prlp3)

Parameters:

Return Value:
SUCCESS, if the settings were retrieved
EUNSUPPORTED, if RLP isn’t employed or this API is otherwise unsupported
AEE designated error codes indicating reason for failure, if otherwise

Comments:
None

See Also:
OEMNet_SetRLP3Cfg()
AEERLP3Cfg
Return to the List of functions

nOptName One of 3 values
INET_OPT_DEF_RLP3 retrieve default RLP3 settings
INET_OPT_CUR_RLP3 retrieve current RLP3 settings
INET_OPT_NEG_RLP3 retrieve negotiated RLP3 settings

prlp3 [out] filled with relevant settings

616

OEM Net Interface

OEMNet_GetUrgent()
Description:

Determines whether urgent sendto option is supported and the payload limit, if any.
This function is synchronous, and therefore should not callback any notification
function.

Prototype:
int16 OEMNet_GetUrgent

(
 AEEUDPUrgent* pUrgent
)

Parameters:

Return Value:
On success, returns AEE_NET_SUCCESS.
On error, returns one of the AEE designated error codes indicating reason for failure.

Comments:
None

See Also:
AEEUDPUrgent
Return to the List of functions

pUrgent pointer to AEEUDPUrgent struct

617

OEM Net Interface

OEMNet_MyIPAddr()
Description:

This function returns the IP address of the active session.

Prototype:
int16 OEMNet_MyIPAddr(INAddr * addr)

Parameters:

Return Value:
AEE_NET_SUCCESS, if successful.

Comments:
Always returns success because failure conditions not currently defined.

See Also:
None
Return to the List of functions

addr Pointer to the buffer used to hold the IP address, in network byte order.

618

OEM Net Interface

OEMNet_NameServers()
Description:

This function allows the caller to discover the configured name server addresses. The
addresses may come from PPP setup or from phone configuration, or both. If it's both,
the PPP addresses are listed first.

Prototype:
int16 OEMNet_NameServers(INAddr *ainaAddrs, int *pnNumAddrs);

Parameters:

Return Value:
SUCCESS, if the addresses are found, filled

Comments:
pnNumAddrs may be set to 0, if there is no servers configured in NVRam and there is
no PPP setup available the addresses returned in ainaAddrs must be in network byte-
order

See Also:
INAddr
Return to the List of functions

ainaAddrs [in/out] a caller-allocated array of INAddrs, filled by INetMgr with the
answer to the question: "which nameservers?" If NULL, pnNumAddrs
is filled with the number of addresses available .

pnNumAddrs [in/out] caller sets this to array size of ainaAddrs, set by INetMgr to the
number filled(if ainaAddrs is non-null)/available

619

OEM Net Interface

OEMNet_OpenNetlib()
Description:

This function opens the network library and assigns the application ID. It sets the
application-defined callback functions to be called when the library and socket calls
make progress. The function is called from the context of the socket client’s task.

Prototype:
int16 OEMNet_OpenNetlib(void)

Parameters:
None

Return Value:
AEE_NET_SUCCESS, if successful.
AEE designated error code, if there is an error.

Comments:
None

See Also:
OEMNet_CloseNetlib()
Return to the List of functions

620

OEM Net Interface

OEMNet_PPPClose()
Description:

This function initiates termination to bring down any network connections started with
OEMNet_PPPOpen(). This function is asynchronous and must call
AEE_NetEventOccurred() upon completion of the close operation.

Prototype:
int16 OEMNet_PPPClose(void)

Parameters:
None

Return Value:
AEE_NET_SUCCESS, if successful.
AEE designated error code, if there is an error.

Comments:
None

See Also:
OEMNet_PPPOpen()
OEMNet_PPPState()
Return to the List of functions

621

OEM Net Interface

OEMNet_PPPOpen()
Description:

This function starts the network subsystem (data service and PPP) and establishes a
network connection to the internet. After the network is established, this function must
call AEE_NetEventOccurred() to indicate to the libraries that the connection is ready
for use.

Prototype:
int16 OEMNet_PPPOpen(void)

Parameters:
None

Return Value:
AEE_NET_SUCCESS, if successful.
AEE designated error code, if there is an error.

Comments:
None

Side Effects:
Initiates call origination and PPP negotiation.

See Also:
OEMNet_PPPClose()
OEMNet_PPPState()
Return to the List of functions

622

OEM Net Interface

OEMNet_PPPSleep()
Description:

This function releases data channel resources, but preserve PPP state basically: go to
CDMA2000 dormant mode

Prototype:
int16 OEMNet_PPPSleep(void)

Parameters:
None

Return Value:
SUCCESS, if PPP is ASLEEP
AEE_NET_EWOULDBLOCK, if dormancy is kicked off or in progress
AEE_NET_EINVAL, if PPP is WAKING or CLOSED or the network hasn't been
initialized with OpenNetLib()
AEE_NET_EOPNOTSUPP, if dormancy can't be supported

Comments:
The OEM network state should transition to NET_PPP_SLEEPING or
NET_PPP_ASLEEP synchronously, and AEE_NetEventOccurred() must be called.

See Also:
None
Return to the List of functions

623

OEM Net Interface

OEMNet_PPPState()
Description:

This function returns the state of the PPP connection.

Prototype:
NetState OEMNet_PPPState (void)

Parameters:
None

Return Value:
State of PPP connection, if successful.
NET_INVALID_STATE, if fails.

Comments:
None

See Also:
NetState
OEMNet_PPPOpen()
OEMNet_CloseNetlib()
Return to the List of functions

624

OEM Net Interface

OEMNet_SetPPPAuth()
Description:

This function allows the caller to modify the configured PPP authentication settings, if
this is relevant to the network implementation.

Prototype:
int16 OEMNet_SetPPPAuth(const char *cpszAuth)

Parameters:

Return Value:
SUCCESS, if the credentials were set
EUNSUPPORTED, if PPP authentication cannot be configured

Comments:
None

See Also:
OEMNet_GetPPPAuth()
Return to the List of functions

cpszAuth The new credentials, in the form of 2 concatenated, null terminated
strings, for example: “userid@vzw.com\000password\000”

625

OEM Net Interface

OEMNet_SetRLP3Cfg()
Description:

This function allows the caller to modify the configured RLP settings, if the OEM’s
network layer is implemented using RLP.

Prototype:
int16 OEMNet_SetRLP3Cfg

(
int16 nOptName,
AEERLP3Cfg *prlp3
)

Parameters:

Return Value:
SUCCESS, if the settings were configured
EUNSUPPORTED, if RLP isn’t employed or this API is otherwise unsupported
AEE designated error code, if there is an error.

Comments:
None

See Also:
OEMNet_GetRLP3Cfg()
AEERLP3Cfg
Return to the List of functions

nOptName One of 2 values

INET_OPT_DEF_RLP3: set default RLP3 settings.

INET_OPT_CUR_RLP3: set current RLP3 settings.

prlp3 the new settings

626

OEM Registry Interface

This section describes the OEM Registry-related function.

List of functions

Functions in this interface include:

OEMRegistry_DetectType()

The remainder of this section provides details for each function.

627

OEM Registry Interface

OEMRegistry_DetectType()
Description:

Given data in a buffer or the name of an object, this function detects the MIME type.
This function is typically used to get the handler associated with the data type. For
example, if the data represents standard MIDI format, then this function returns the
MIME "audio/mid". Using the MIME type, you can query Shell registry to obtain the
handler (Class ID) of type AEECLSID_MEDIA.

Prototype:
 int OEMRegistry_DetectType

(
const void * cpBuf,
uint32 * pdwSize,
const char * cpszName,
const char ** pcpszMIME
);

Parameters:

Return Value:
SUCCESS: Data type is detected and MIME is returned
ENOTYPE: There is no type associated with this data
EBADPARM: Wrong input data (parameter(s))
ENEEDMORE: Need more data to perform type detection. *pdwSize contains the the
required number of additional bytes.
EUNSUPPORTED: Type detection for the specified input is not supported

Comments:
pBuf takes precedence over pszName. If both of them are specified, then first pBuf is
used for type detection followed by pszName.
If the function returns ENEEDMORE, then *pdwSize is filled with the required
additional bytes to carry out the operation. Call this function again with (original dwSize
+ *pdwSize) bytes.
To determine the maximum number of bytes required to enable type detection, you can
call

cpBuf [in] Buffer containing the data whose type needs to be determined

pdwSize [in/out] On input - Size of data in pBuf, unless pBuf is NULL, then ignored
On output - number of additional data bytes needed to perform
type detection

cpszName [in] Name of the object whose type needs to be determined (may
be null, if unknown).

pcpszMIME [out] MIME string returned to caller, on return, filled with a pointer to a
constant string (do not free)

628

OEM Registry Interface

if (ENEEDMORE == ISHELL_DetectType(ps, NULL, &dwReqSize, NULL,
NULL))
{
// dwReqSize contains the max bytes needed for type detection
}

 IMPORTANT NOTE TO OEMs:
(1) Do not modify the existing type detection code.
(2) Add your new type detection functions and you may order them accordingly.

See Also:
ISHELL_DetectType()
ISHELL_GetHandler()
ISHELL_CreateInstance()
Return to the List of functions

629

OEM Operating System
Interface

This section describes the functions in the OEM Operating System Interface.

List of functions

Functions in this interface include:

OEMOS_ActiveTaskID()
OEMOS_BrewHighPriority()
OEMOS_BrewNormalPriority()
OEMOS_CancelDispatch()
OEMOS_GetLocalTime()
OEMOS_GetTimeMS()
OEMOS_GetUptime()
OEMOS_LocalTimeOffset()
OEMOS_SetTimer()
OEMOS_SignalDispatch()
OEMOS_Sleep()

The remainder of this section provides details for each function.

630

OEM Operating System Interface

OEMOS_ActiveTaskID()
Description:

This function returns the ID of the currently running task.

Prototype:
uint32 OEMOS_ActiveTaskID(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

631

OEM Operating System Interface

OEMOS_BrewHighPriority()
Description:

This function raises BREW's task priority so that certain time-limited operations (such
as signature verification) will be performed more quickly.

Prototype:
void OEMOS_BrewHighPriority(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

632

OEM Operating System Interface

OEMOS_BrewNormalPriority()
Description:

This function return BREW's task priority to its normal level.

Prototype:
void OEMOS_BrewNormalPriority(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

633

OEM Operating System Interface

OEMOS_CancelDispatch()
Description:

If there is an event in the queue to call AEE_DISPATCH, this function sets its enable
field to FALSE so that AEE_DISPATCH will not be called. If such an event does not
exist, one is created. This is OK because the event will have its enable set to FALSE
so it will be ignored by the event handler.

Prototype:
void OEMOS_CancelDispatch(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

634

OEM Operating System Interface

OEMOS_GetLocalTime()
Description:

This function returns the current time in seconds since 1/6/1980.

Prototype:
uint32 OEMOS_GetLocalTime(void)

Parameters:
None

Return Value:
The current time in seconds since 1/6/1980.

Comments:
The time returned by this function can change when the device acquires time from a
network. Therefore, do not assume that each call to this function will return a greater
value.
Even though this function returns the current time in seconds, the accuracy of that time
is determined by the time resolution of the underlying hardware/software platform.

See Also:
OEMOS_GetTimeMS()
OEMOS_GetUptime()
Return to the List of functions

635

OEM Operating System Interface

OEMOS_GetTimeMS()
Description:

This function returns the number of milliseconds since midnight.

Prototype:
uint32 OEMOS_GetTimeMS(void)

Parameters:
None

Return Value:
The number of milliseconds since midnight.

Comments:
The time returned by this function can change when the device acquires time from a
network. Therefore, do not assume that each call to this function will return a greater
value.
Even though this function returns the current time in milliseconds, the accuracy of that
time is determined by the time resolution of the underlying hardware/software platform.

See Also:
OEMOS_GetLocalTime()
OEMOS_GetUptime()
Return to the List of functions

636

OEM Operating System Interface

OEMOS_GetUptime()
Description:

This function returns the time in milliseconds since the device started.

Prototype:
uint32 OEMOS_GetUptime(void)

Parameters:
None

Return Value:
The time in milliseconds since the device started.

Comments:
If a device is turned on for approximately 50 days, this value can roll over and restart
at zero.

See Also:
OEMOS_GetLocalTime()
OEMOS_GetTimeMS()
Return to the List of functions

637

OEM Operating System Interface

OEMOS_LocalTimeOffset()
Description:

This function returns the local time zone offset from UTC, in seconds. It optionally
returns a flag indicating that daylight savings time is active. if it is active, the value of
the local time zone offset already takes the shift into account, and the flag controls the
display of a time zone name.
The returned value is added to UTC to give the local time, or subtracted from the local
time to give the UTC time.

Prototype:
int32 OEMOS_LocalTimeOffset(boolean * DaylightSavings)

Parameters:

Return Value:
The local time zone offset from UTC in seconds.

Comments:
None

See Also:
None
Return to the List of functions

DaylightSavings Pointer to boolean, which is set to TRUE if daylight savings time is
active.

638

OEM Operating System Interface

OEMOS_SetTimer()
Description:

This function sets the master OEM timer to nMSecs milliseconds. After nMSecs, the
OEM code will call the AEE_TimerExpired() function. A call to OEMOS_SetTimer while
another timer is still pending will cancel the previous timer before setting the new one.
A call to OEMOS_SetTimer with an nMSecs value of 0 will cancel the pending timer,
if one is active.

Prototype:
void OEMOS_SetTimer(uint32 nMSecs)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

nMSecs Number of milliseconds to set the master OEM timer.

639

OEM Operating System Interface

OEMOS_SignalDispatch()
Description:

This function adds an event to the event queue that will cause AEE_DISPATCH to be
called.

Prototype:
void OEMOS_SignalDispatch(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

640

OEM Operating System Interface

OEMOS_Sleep()
Description:

This function delays execution of subsequent code for nMSecs milliseconds. It will
block for nMSecs.

Prototype:
void OEMOS_Sleep(uint32 nMSecs)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

nMSecs Number of milliseconds to sleep.

641

OEM Random Number
Generator Interface

This interface provides all of the basic routines for Random Number Generation.

List of functions

Functions in this interface include:

OEMRan_GetNonPseudoRandomBytes()
OEMRan_Next()
OEMRan_Seed()

The remainder of this section provides details for each function.

642

OEM Random Number Generator Interface

OEMRan_GetNonPseudoRandomBytes()
Description:

Return 20 bytes of crypto quality random data. This routine need not return new
random data more than about once every 100ms. If you don't have a source of pure
random numbers, fill the buffer with zeros and return.

Prototype:
void OEMRan_GetNonPseudoRandomBytes(byte *pbRand, int *pcbLen);

Parameters:

Return Value:
None

Comments:
Brew internally produces cryptographic quality random numbers using key stroke and
network timing and randomness in the memory manager. However if an additional very
high quality source of randomness is available it can be fed in to the pool here. A good
example would be noise taken of the phone antenna. A bad example would be
randomness from key strokes or time.
If you have more good random data, return it 20 bytes at a time when called here. If
the pool you have is larger than 20 bytes, used SHA-1 or MD5 to reduce it to 20 bytes.
If you don't have good random data this should return a buffer of zeros.
No concern should be given here for accumulating or stirring the random pool. This is
all handled internally.

See Also:
None

Return to the List of functions

pbRand buffer to fill with random data

pcbLen length of buffer on input, length of random data on output

643

OEM Random Number Generator Interface

OEMRan_Next()
Description:

This function returns the next number in the sequence.

Prototype:
uint32 OEMRan_Next(void)

Parameters:
None

Return Value:
The next number in the sequence.

Comments:
None

See Also:
None
Return to the List of functions

644

OEM Random Number Generator Interface

OEMRan_Seed()
Description:

This function seeds the random number generator.

Prototype:
void OEMRan_Seed(uint32 seed)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

seed Seed value for the random number generator.

645

OEM SMS Interface

This section describes the SMS Interface functions that the AEE files use to provide Short
Message Service functionality to BREW applications.

List of Functions

Functions in this interface include:

OEM_extract_SMS_text()
OEM_format_SMS_msg()
OEM_format_SMS_text()
OEM_uasms_config_listeners()

The remainder of this section provides details for each function.

646

OEM SMS Interface

OEM_extract_SMS_text()
Description:

This function extracts text from the SMS message. This routine is necessary because
OEMs in some markets choose to decode into an alternate format that is more
appropriate for the type of SMS supported.

Prototype:
AEESMSTextMsg * OEM_extract_SMS_text

(
const uasms_user_data_type * pm,
byte * pDest,
int nSize
)

Parameters:

Return Value:
Final formatted SMS text if successful.
NULL if fails.

Comments:
None

See Also:
None
Return to the List of Functions

pm Input SMS message (user data).
pDest Buffer to hold the text extracted from the SMS message.
nSize Size of the destination buffer.

647

OEM SMS Interface

OEM_format_SMS_msg()
Description:

This function extracts AEESMSMsg from the SMS message. This routine is necessary
because OEMs in some markets choose to decode into an alternate format that is
more appropriate for the type of SMS supported.

Prototype:
void OEM_format_SMS_msg

(
uasms_teleservice_e_type ts,
const uasms_client_bd_type * pData,
AEESMSMsg * pm
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of Functions

ts Teleservice type.
pData Input SMS data.
pm Formatted SMS message.

648

OEM SMS Interface

OEM_format_SMS_text()
Description:

This function formats SMS text given the buffer, length, and encoding.

Prototype:
AEESMSTextMsg * OEM_format_SMS_text

(
byte * pMsgData,
int nMsgLen,
uasms_user_data_encoding_e_type encoding,
byte * pDest,
int nSize
)

Parameters:

Return Value:
Final formatted SMS text if successful.
NULL if fails.

Comments:
None

See Also:
None
Return to the List of Functions

pMsgData Input SMS text string.
nMsgLen Input SMS text string length.
encoding Encoding type.
pDest Buffer to hold the formatted SMS text.
nSize Size of the destination buffer.

649

OEM SMS Interface

OEM_uasms_config_listeners()
Description:

This function registers OEM SMS notification functions to the AEE.

Prototype:
void OEM_uasms_config_listeners

(
uasms_message_listener_type pfnMsg,
uasms_status_listener_type pfnStatus,
uasms_event_listener_type pfnEvent
)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of Functions

pfnMsg Message listener function pointer.
pfnStatus Status listener function pointer.
pfnEvent Event listener function pointer.

650

OEM Socket Interface

The OEM Socket interface provides standard internet socket support. The semantics are
modeled after BSD style sockets, but are strictly non-blocking. If an operation is unable to
complete immediately, it should return an error code of AEE_NET_EWOULDBLOCK. BREW
will then use OEMSocket_AsyncSelect() to indicate interest in an event for a particular socket.
When the event occurs, call AEE_SocketEventOccurred, and BREW will in turn use
OEMSocket_GetNextEvent() to determine which specific event has occurred for that socket.

The following functions are encouraged, but are optional and may return an error code of
AEE_NET_EOPNOTSUPP:

OEMSocket_Accept()
OEMSocket_Listen()
OEMSocket_Shutdown()

List of functions

Functions in this interface include:

OEMSocket_Accept()
OEMSocket_AsyncSelect()
OEMSocket_Bind()
OEMSocket_Close()
OEMSocket_Connect()
OEMSocket_GetNextEvent()
OEMSocket_GetPeerName()
OEMSocket_GetSockName()
OEMSocket_Listen()
OEMSocket_Open()
OEMSocket_Read()
OEMSocket_Readv()
OEMSocket_RecvFrom()
OEMSocket_SendTo()
OEMSocket_Shutdown()
OEMSocket_Write()
OEMSocket_Writev()

The remainder of this section provides details for each function.

651

OEM Socket Interface

OEMSocket_Accept()
Description:

The accept function is used on listening sockets to respond when
AEE_NET_READ_EVENT is asserted. The first backlog queued connection is
removed from the queue, and bound to a new socket (as if you called
OEMSocket_Open). The newly created socket is in the connected state. The listening
socket is unaffected and the queue size is maintained (i.e. there is no need to call listen
again.)

Prototype:
OEMCONTEXT OEMSocket_Accept

(
OEMCONTEXT sockd,
int16 *err
);

Parameters:

Return Value:
On successful creation of a socket, this function returns socket descriptor which is
OEM defined.
On error, returns AEE_NET_ERROR. Error specifics are returned via the err
parameter.

Comments:
None

See Also:
OEMSocket_Listen()
Return to the List of functions

sockd listening socket descriptor
err error code (returned by operation)

652

OEM Socket Interface

OEMSocket_AsyncSelect()
Description:

This function enables the events to be notified about through the asynchronous
notification mechanism. The application specifies a bitmask of events in which it is
interested, for which it will receive asynchronous notification by its application callback
function.
This function also performs a real-time check to determine if any of the events have
already occurred, and if so, it invokes the application callback.
Events OEMs need to support are:

AEE_NET_READ_EVENT: Socket is now available to read or connect
AEE_NET_WRITE_EVENT: Socket is now available for writing
AEE_NET_CLOSE_EVENT: Socket is being closed

Prototype:
int16 OEMSocket_AsyncSelect(OEMCONTEXT sockd, int32 interest_mask)

Parameters:

Return Value:
AEE_NET_SUCCESS, if successful.
AEE designated error code, if there is a failure.

Comments:
None

Side Effects:
The application will be notified using the callback function.

See Also:
None
Return to the List of functions

sockd Socket descriptor.
mask Bitmask of events to set (see above).

653

OEM Socket Interface

OEMSocket_Bind()
Description:

For all client sockets, this function attaches a local address and port value to the
socket. If the call is not explicitly issued, the socket implicitly binds during calls to
OEMSocket_Connect() or OEMSocket_SendTo().
NOTE: This function does not support binding a local IP address, but only a local port
number.
The local IP address is assigned automatically by the sockets library. The function
must receive (as a parameter) a valid socket descriptor, implying a previous successful
call to OEMSocket_Open().
This function is synchronous, and therefore should not callback any notification
functions.

Prototype:
int16 OEMSocket_Bind(OEMCONTEXT sockd, INAddr addr, INPort port)

Parameters:

Return Value:
AEE_NET_SUCCESS, if successful.
AEE designated error code, if there is a failure.

Comments:
None

See Also:
INAddr
INPort
Return to the List of functions

sockd Socket descriptor.
addr Local address in network byte order.
port Local port in network byte order.

654

OEM Socket Interface

OEMSocket_Close()
Description:

This function performs a non-blocking close of a socket, and performs all necessary
clean-up of data structures and frees the socket for re-use. For TCP, it initiates the
active close for connection termination. After the TCP connection is complete, the
socket resources may optionally not be freed. In this case, this function should return
AEE_NET_ERROR and set err to AEE_NET_EWOULDBLOCK. The AEE libraries
receive notification through OEMSocket_AsyncSelect() and call OEMSocket_Close()
again to free the resources.
This function can be synchronous (returning anything other than *err set to
AEE_NET_EWOULDBLOCK), or asynchronous as described above. For
asynchronous incantations, AEE_SocketEventOccurred() should be called only if the
AEE_NET_CLOSE_EVENT was registered with OEMSocket_AsyncSelect().

Prototype:
int16 OEMSocket_Close(OEMCONTEXT sockd)

Parameters:

Return Value:
AEE_NET_SUCCESS, if successful.
AEE designated error code, if there is a failure. If the socket cannot be closed right
away, the OEM may return an AEE_NET_EWOULDBLOCK error, indicating that it
should be called at a later time (through an indication from OEMSocket_AsyncSelect().

Comments:
None

Side Effects:
Initiates active close for TCP connections.

See Also:
OEMSocket_AsyncSelect()
Return to the List of functions

sockd Socket descriptor.

655

OEM Socket Interface

OEMSocket_Connect()
Description:

For TCP, this function attempts to establish the TCP connection. Upon successful
connection, it calls the socket callback function
This function is asynchronous and should call AEE_NetEventOccurred() if the
connection attempt is completed or aborted, and the original error value was
AEE_NET_SUCCESS.

Prototype:
int16 OEMSocket_Connect(OEMCONTEXT sockd, INAddr addr, INPort port)

Parameters:

Return Value:
AEE_NET_SUCCESS, if arguments are valid, and the connection process could be
started. Thus, a return value of AEE_NET_SUCCESS does not indicate that the socket
could be connected.
AEE designated error code, if there is a failure or an error can be detected immediately

Comments:
None

Side Effects:
This function starts the connection process for a socket. It may automatically call bind()
on that socket.

See Also:
INAddr
INPort
Return to the List of functions

sockd Socket descriptor.
addr Destination address in network byte order.
port Destination port in network byte order.

656

OEM Socket Interface

OEMSocket_GetNextEvent()
Description:

This function performs a real-time check to determine if any of the events of interest
specified with the mask in OEMSocket_AsyncSelect() have occurred. It also clears any
bits in the event mask that have occurred. The application must re-enable these events
through a subsequent call to OEMSocket_AsyncSelect(). It may pass a pointer to a
single socket descriptor to determine if any events have occurred for that socket.
Alternatively, the application may set this pointer’s referenced value to NULL (0).
NOTE: Do not confuse the referenced value of NULL (0) with a NULL pointer. NULL
(0) is a pointer referencing an address with a value of 0 (zero), in which case the
function returns values for the next available socket.
The next available socket’s descriptor is to be placed in the socket descriptor pointer,
and the function will return. If no sockets are available (no events have occurred across
all sockets for that application) the pointer value remains NULL (original value passed
in), and the function returns 0, indicating that no events have occurred.

Prototype:
int32 OEMSocket_GetNextEvent(OEMCONTEXT * sockd, int16 * err)

Parameters:

Return Value:
Returns an event mask of the events that were asserted. A value of zero indicates that
no events have occurred.
On passing a pointer whose value is NULL into the function for the socket descriptor
(not to be confused with a NULL pointer), this function places the next available socket
descriptor in *sockd and returns the event mask for that socket. If no sockets are
available (no events have occurred across all sockets for that application) the pointer
value remains NULL (original value passed in), and the function returns zero indicating
that no events have occurred. On error, returns AEE_NET_ERROR.

Comments:
None

See Also:
OEMSocket_AsyncSelect()
Return to the List of functions

sockd Socket descriptor.
err Error code returned by operation.

657

OEM Socket Interface

OEMSocket_GetPeerName()
Description:

This function returns the IP address and port of a connected peer.The address and port
are in network byte order. This function is synchronous, and therefore must not call any
notification functions.

Prototype:
int16 OEMSocket_GetPeerName

(
OEMCONTEXT sockd,
INAddr *addr,
INPort *port
);

Parameters:

Return Value:
On success, returns AEE_NET_SUCCESS. On error, returns one of the AEE
designated error codes indicating reason for failure.

Comments:
None

See Also:
INAddr
INPort
Return to the List of functions

sockd [in] Socket descriptor
addr [out] IP address
port [out] Port number

658

OEM Socket Interface

OEMSocket_GetSockName()
Description:

Returns the local IP address and port of a socket. The address and port will be in
network byte order.
This function is synchronous, and therefore must not call any notification functions.

Prototype:
int16 OEMSocket_GetSockName

(
OEMCONTEXT sockd,
INAddr *addr,
INPort *port
);

Parameters:

Return Value:
On success, returns AEE_NET_SUCCESS.
On error, returns one of the AEE designated error codes indicating reason for failure.

Comments:
None

See Also:
INAddr
INPort
Return to the List of functions

sockd [in] socket descriptor
addr [out] IP address
port [out] port number

659

OEM Socket Interface

OEMSocket_Listen()
Description:

Performs a passive open for connections, such that incoming connections may be
subsequently accepted. The socket must be a TCP socket that has been bound to a
local port. The backlog parameter indicates the maximum length for the queue of
pending connections. If backlog is larger than the system maximum, it will be silently
reduced to the system maximum.

Prototype:
int16 OEMSocket_Listen

(
OEMCONTEXT sockd,
int16 backlog
);

Parameters:

Return Value:
On success, returns AEE_NET_SUCCESS.
On error, returns one of the AEE designated error codes indicating reason for failure.

Comments:
None

See Also:
OEMSocket_Accept()
Return to the List of functions

sockd socket descriptor
backlog maximum number of pending connections

660

OEM Socket Interface

OEMSocket_Open()
Description:

This function creates a TCP or UDP socket and related data structures, and returns a
reference to that socket.

Supported Types:
The OEM must support the SOCK_STREAM (TCP) and SOCK_DGRAM (UDP) data
types. This function must be called to obtain a valid socket descriptor for use with all
other socket-related functions. Before any socket functions can be used (such as I/O,
asynchronous notification, and so on), this call must have successfully returned a valid
socket descriptor.
This function is synchronous, and therefore should not callback any notification
function.

Prototype:
OEMCONTEXT OEMSocket_Open(NetSocket type, int16 * err)

Parameters:

Return Value:
On successful creation of a socket, this function returns socket file descriptor that is a
signed value greater than or equal to 0 (zero).
On error, returns AEE_NET_ERROR. Error specifics are returned via the err
parameter.

Comments:
None

See Also:
None
Return to the List of functions

type Socket type (see above).
err Error code (returned by operation).

661

OEM Socket Interface

OEMSocket_Read()
Description:

This function reads the specified number of bytes into the buffer from the TCP
transport. If the socket is connected but there is no data to read, the function should
return AEE_NET_ERROR and set *err to AEE_NET_EWOULDBLOCK.

Prototype:
int32 OEMSocket_Read

(
OEMCONTEXT sockd,
byte * buffer,
uint32 nbytes,
int16 * err
)

Parameters:

Return Value:
On success, returns the number of bytes read, which could be less than the number of
bytes specified.
On error, returns AEE_NET_ERROR, including when *err is
AEE_NET_EWOULDBLOCK.
NOTE: A return of 0 (zero) indicates that an End-of-File (EOF) condition has occurred.

Comments:
None

See Also:
None
Return to the List of functions

sockd Socket descriptor.
buffer User buffer to which to copy data.
nbytes Maximum number of bytes to be read from socket.
err Error code (returned by operation).

662

OEM Socket Interface

OEMSocket_Readv()
Description:

This function provides the scatter read variant of OEMSocket_Read(), which allows the
application to read into non-contiguous buffers. It reads the specified number of bytes
into the buffer from the TCP transport.

Prototype:
int32 OEMSocket_Readv

(
OEMCONTEXT sockd,
SockIOBlock iov[],
uint16 iovcount,
int16 * err
)

Parameters:

Return Value:
On success, returns the number of bytes read, which could be less than the number of
bytes specified.
On error, returns AEE_NET_ERROR.
NOTE: A return of 0 (zero) indicates that an End-of-File (EOF) condition has occurred.

Comments:
None

See Also:
SockIOBlock
Return to the List of functions

sockd Socket descriptor.
iov Array of data buffers to which to copy data.
iovcount Number of array items.
err Error code (returned by operation).

663

OEM Socket Interface

OEMSocket_RecvFrom()
Description:

This function reads nbytes bytes in the buffer from the UDP transport. It fills in the
address and port pointers with values from who sent the data.

Prototype:
int32 OEMSocket_RecvFrom

(
OEMCONTEXT sockd,
byte * buffer,
uint32 nbytes,
uint16 flags,
INAddr * addr,
INPort * port,
int16 * err
)

Parameters:

Return Value:
Number of bytes read. Can be less than the number of bytes specified.
AEE_NET_ERROR, if there is an error.

Comments:
None

See Also:
INAddr
INPort
Return to the List of functions

sockd Socket descriptor.
buffer User buffer into which to copy data.
nbytes Number of bytes to be read.
flags
addr IP address, in network byte order.
port Port number, in network byte order.
err Error condition value.

664

OEM Socket Interface

OEMSocket_SendTo()
Description:

This function sends nbytes bytes in the buffer over the UDP transport.

Prototype:
int32 OEMSocket_SendTo

(
OEMCONTEXT sockd,
const byte * buffer,
uint32 nbytes,
uint16 flags,
INAddr addr,
INPort port,
int16 * err
)

Parameters:

Return Value:
Number of bytes written. Can be less than the number of bytes specified.
AEE_NET_ERROR, if there is an error.

Comments:
Currently supported flags are documented in AEENet.h.
For cdma2000, the URGENT flag corresponds to use of Short Data Burst (SDB) over
the reversed enhanced access channel (R-EACH). The WAKEUP flag requests traffic
channel origination immediately after the SDB attempt. This is necessary because the
cdma2000 standard currently requires origination to take priority over any other access
attempt, and thus the short data burst would either be prematurely aborted or
undesirably delayed.

See Also:
INAddr
INPort
Return to the List of functions

sockd Socket descriptor.
buffer User buffer from which to copy the data.
nbytes Number of bytes to be written.
flags send flags
addr IP address, in network byte order.
port Port number, in network byte order.
err Error condition value.

665

OEM Socket Interface

OEMSocket_Shutdown()
Description:

Causes all or part of a full-duplex connection to be terminated gracefully.
If how is AEE_SHUTDOWN_RD, no more reads will be allowed. If how is
AEE_SHUTDOWN_WR, no more writes will be allowed (AKA half-close). If how is
AEE_SHUTDOWN_RDWR, both read and write will be disallowed.

Prototype:
int16 OEMSocket_Shutdown

(
OEMCONTEXT sockd,
int32 how
);

Parameters:

Return Value:
On success, returns AEE_NET_SUCCESS.
On error, returns one of the AEE designated error codes (including
AEE_NET_WOULDBLOCK) indicating reason for failure.

Comments:
None

See Also:
None
Return to the List of functions

sockd socket descriptor
how dictates which portion(s) of the connection to shutdown

666

OEM Socket Interface

OEMSocket_Write()
Description:

This function sends a specified number of bytes in the buffer over the TCP transport.

Prototype:
int32 OEMSocket_Write

(
OEMCONTEXT sockd,
const byte * buffer,
uint32 nbytes,
int16 * err
)

Parameters:

Return Value:
Number of bytes written. Can be less than the number of bytes specified.
AEE_NET_ERROR, if there is an error; places one of the following error condition
values in err:

DS_EBADF: Invalid socket descriptor is specified.
DS_ENOTCONN: Socket not connected.
DS_ECONNRESET: TCP connection reset by server.
DS_ECONNABORTED: TCP connection aborted due to timeout or other failure.
DS_EIPADDRCHANGED: IP address changed, causing TCP connection reset.
DS_EPIPE: Broken pipe.
DS_EADDRREQ: Destination address required;
DS_ENETDOWN: Network subsystem unavailable.
DS_EFAULT: Application buffer no valid part of address space.
DS_EWOULDBLOCK: Operation would block.

Comments:
None

See Also:
None
Return to the List of functions

sockd Socket descriptor.
buffer User buffer from which to copy data.
nbytes Number of bytes to be written to socket.
err Error condition value.

667

OEM Socket Interface

OEMSocket_Writev()
Description:

This function provides the gather write variant of the OEMSocket_Write() function,
which allows the application to write from non-contiguous buffers. It sends a specified
number of bytes in the buffer over the TCP socket.

Prototype:
int32 OEMSocket_Writev

(
OEMCONTEXT sockd,
const SockIOBlock iov[],
uint16 iovcount,
int16 * err
)

Parameters:

Return Value:
Written number of bytes. Can be less than the specified number of bytes.
AEE_NET_ERROR, if there is an error; places one of the following error condition
values in err:

DS_EBADF: Invalid socket descriptor is specified.
DS_ENOTCONN: Socket not connected.
DS_ECONNRESET: TCP connection reset by server.
DS_ECONNABORTED: TCP connection aborted due to timeout or other failure.
DS_EIPADDRCHANGED: IP address changed, causing TCP connection reset.
DS_EPIPE: Broken pipe.
DS_EADDRREQ: Destination address required.
DS_ENETDOWN: Network subsystem unavailable.
DS_EFAULT: Application buffer no valid part of address space.
DS_EWOULDBLOCK: Operation would block.

Comments:
None

See Also:
SockIOBlock
Return to the List of functions

sockd Socket descriptor.
iov Array of data buffers from which to copy data.
iovcount Number of array items.
err Error condition value.

668

OEM Sound Interface

This section describes the Sound Interface functions that the AEE uses to provide a simple
way to play multi-tones, generate vibration, and set the device volume.

List of functions

Functions in this interface include:

OEMSound_DeleteInstance()
OEMSound_GetLevels()
OEMSound_GetVolume()
OEMSound_Init()
OEMSound_NewInstance()
OEMSound_PlayFreqTone()
OEMSound_PlayTone()
OEMSound_PlayToneList()
OEMSound_SetDevice()
OEMSound_SetVolume()
OEMSound_StopTone()
OEMSound_StopVibrate()
OEMSound_Vibrate()

The remainder of this section provides details for each function.

669

OEM Sound Interface

OEMSound_DeleteInstance()
Description:

This function decreases ref count of underlying audio device and gives an opprtunity
to restore the default settings when ref count goes to zero.

Prototype:
int OEMSound_NewInstance(AEESoundInfo * psi);

Parameters:
psi [in]: Sound info of the ISound object

Return Value:
SUCCESS if successful.
Error code otherwise.

Comments:
This function is called every time an instance of ISound is deleted.

See Also:
OEMSound_NewInstance()
Return to the List of functions

670

OEM Sound Interface

OEMSound_GetLevels()
Description:

This function returns the number of volume levels supported for the device/class pair.
It is called when a user issues ISOUND_GetVolume() or ISOUND_SetVolume().

Prototype:
void OEMSound_GetLevels(AEESoundInfo * psi, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_LevelCB is called with the result.

See Also:
None
Return to the List of functions

psi Sound device information. See the BREW API Reference Guide for the
definition of AEESoundInfo.

pUser User data that is passed back to the caller through the status callback
function.

671

OEM Sound Interface

OEMSound_GetVolume()
Description:

This function issues a command to get the volume level of device/class pair.

Prototype:
void OEMSound_GetVolume(AEESoundInfo * psi, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_VolumeCB is called with the result.

See Also:
None
Return to the List of functions

psi Sound device information. See the BREW API Reference Guide for the
definition of AEESoundInfo.

pUser User data that is passed back to the caller through the status callback
function.

672

OEM Sound Interface

OEMSound_Init()
Description:

Maps device sound layer enumerations to AEE_SOUND enumerations.

Prototype:
void OEMSound_Init(void);

Parameters:
None

Return Value:
None

Comments:
This function is called only once during BREW initialization.

See Also:
None
Return to the List of functions

673

OEM Sound Interface

OEMSound_NewInstance()
Description:

This function increases ref count of underlying audio device. It returns current
AEESoundInfo.

Prototype:
int OEMSound_NewInstance(AEESoundInfo * psi);

Parameters:

Return Value:
SUCCESS if successful.
Error code otherwise.

Comments:
This function is called every time an instance of ISound is created.

See Also:
OEMSound_DeleteInstance()
Return to the List of functions

psi [out] Current sound info

674

OEM Sound Interface

OEMSound_PlayFreqTone()
Description:

This function issues a command to play a specified pair of tone frequencies.

Prototype:
void OEMSound_PlayFreqTone

(
AEESoundInfo * psi,
uint16 wHiFreq,
uint16 wLoFreq,
uint16 wDuration,
void * pUser
)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_StatusCB is called with the status.

See Also:
None
Return to the List of functions

psi Sound device information. See the BREW API Reference Guide for the
definition of AEESoundInfo.

wHiFrteeq High frequency of the specified pair of tone frequencies.
wLoFreq Low frequency of the specified pair of tone frequencies.
wDuration Duration of the tone play.
pUser User data that is passed back to the caller through the status callback

function.

675

OEM Sound Interface

OEMSound_PlayTone()
Description:

This function issues a command to play a specified tone.

Prototype:
void OEMSound_PlayTone

(
AEESoundInfo * psi,
AEESoundToneData toneData,
void * pUser
)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_StatusCB is called with the status.

See Also:
None
Return to the List of functions

psi Sound device information. See the BREW API Reference Guide for the
definition of AEESoundInfo.

toneData Tone and duration to be played.
pUser User data that is passed back to the caller through the status callback

function.

676

OEM Sound Interface

OEMSound_PlayToneList()
Description:

This function issues a command to play a list of tones.

Prototype:
void OEMSound_PlayToneList

(
AEESoundInfo * psi,
AEESoundToneData * pToneData,
uint16 wDataLen,
void * pUser
)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_StatusCB is called with the status.

See Also:
None
Return to the List of functions

psi Sound device information. See the BREW API Reference Guide for the
definition of AEESoundInfo.

pToneData An array of tones and durations.
wDataLen Number of tones and durations.
pUser User data that is passed back to the caller through the status callback

function.

677

OEM Sound Interface

OEMSound_SetDevice()
Description:

This function issues a command to set the sound output device.

Prototype:
void OEMSound_SetDevice(AEESoundInfo * psi, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_StatusCB is called with the status.

See Also:
None
Return to the List of functions

psi New sound device information. See the BREW API Reference Guide for the
definition of AEESoundInfo.

pUser User data that is passed back to the caller through the status callback
function.

678

OEM Sound Interface

OEMSound_SetVolume()
Description:

This function issues a command to set the volume of a sound device/class pair.

Prototype:
void OEMSound_SetVolume

(
AEESoundInfo * psi,
uint16 wLevel,
void * pUser
)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_VolumeCB is called with the result.

See Also:
None
Return to the List of functions

psi Sound device information. See the BREW API Reference Guide for the
definition of AEESoundInfo.

wLevel New volume for the device.
pUser User data that is passed back to the caller through the status callback

function.

679

OEM Sound Interface

OEMSound_StopTone()
Description:

This function issues a command to stop playing a single tone or playlist.

Prototype:
void OEMSound_StopTone(boolean bPlayList, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_StatusCB is called with the status.

See Also:
None
Return to the List of functions

bPlayList Flag that stops playing a tone list playback.
pUser User data that is passed back to the caller through the status callback

function.

680

OEM Sound Interface

OEMSound_StopVibrate()
Description:

This function stops the current vibration. If the feature is not supported, it does not do
anything.

Prototype:
void OEMSound_StopVibrate(void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_StatusCB is called with the status.

See Also:
None
Return to the List of functions

pUser User data that is passed to the caller through the status callback function.

681

OEM Sound Interface

OEMSound_Vibrate()
Description:

This function causes the device to vibrate for the specified amount to time. If the
feature is not supported, it does not do anything.

Prototype:
void OEMSound_Vibrate(uint16 wDuration, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESound_StatusCB is called with the status.

See Also:
None
Return to the List of functions

wDuration Duration of vibration in milliseconds.
pUser User data that is passed to the caller through the status callback

function.

682

OEM SoundPlayer Interface

This section describes the multimedia SoundPlayer Interface functions that the AEE uses to
provide controls for a basic sound player.

List of functions

Functions in this interface include:

OEMSoundPlayer_FastForward()
OEMSoundPlayer_GetTotalTime()
OEMSoundPlayer_Pause()
OEMSoundPlayer_Play()
OEMSoundPlayer_PlayRinger()
OEMSoundPlayer_Resume()
OEMSoundPlayer_Rewind()
OEMSoundPlayer_Stop()
OEMSoundPlayer_Tempo()
OEMSoundPlayer_Tune()

The remainder of this section provides details for each function.

683

OEM SoundPlayer Interface

OEMSoundPlayer_FastForward()
Description:

This function issues a command to fast forward an audio the indicated number of
milliseconds.

Prototype:
void OEMSoundPlayer_FastForward(uint32 dwTime, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_StatusCB is called with the command status. It can be one of the
following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

It must also trigger to call AEESoundPlayer_PlayCB with
AEE_SOUNDPLAYER_FFORWARD.

See Also:
OEMSoundPlayer_Pause()
OEMSoundPlayer_Resume()
OEMSoundPlayer_Rewind()
Return to the List of functions

dwTime Number of milliseconds to fast forward.
pUser Client data to be sent back with the callback function.

684

OEM SoundPlayer Interface

OEMSoundPlayer_GetTotalTime()
Description:

This function issues a command to calculate the time of the indicated audio file.

Prototype:
void OEMSoundPlayer_GetTotalTime

(
AEESoundPlayerInput * pInfo,
void * pUser
)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_TimeCB is called with the command status and time information if
the command was successfully performed. It can be one of the following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

See Also:
None
Return to the List of functions

pInfo SoundPlayer source data.
pUser Client data to be sent back with the callback function.

685

OEM SoundPlayer Interface

OEMSoundPlayer_Pause()
Description:

This function issues a command to pause an audio playback.

Prototype:
void OEMSoundPlayer_Pause(void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_StatusCB is called with the command status. It can be one of the
following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

It must also call AEESoundPlayer_PlayCB with AEE_SOUNDPLAYER_PAUSE.

See Also:
OEMSoundPlayer_Resume()
Return to the List of functions

pUser Client data to be sent back with the callback function.

686

OEM SoundPlayer Interface

OEMSoundPlayer_Play()
Description:

This function issues a command to play an audio file.

Prototype:
void OEMSoundPlayer_Play(AEESoundPlayerInput * pInfo, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_PlayCB is called with the current audio play. There must be at least
one callback when this function executed with one of the following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

If AEE_SOUNDPLAYER_SUCCESS is sent back, one of the following status codes
must be sent back at some time before the next play:

AEE_SOUNDPLAYER_DONE
AEE_SOUNDPLAYER_ABORTED

For other operations, the current play also triggers a callback to inform the client of the
play status.

See Also:
OEMSoundPlayer_FastForward()
OEMSoundPlayer_Pause()
OEMSoundPlayer_Resume()
OEMSoundPlayer_Rewind()
OEMSoundPlayer_Stop()
Return to the List of functions

pInfo SoundPlayer source data.
pUser Client data to be sent back with the callback function.

687

OEM SoundPlayer Interface

OEMSoundPlayer_PlayRinger()
Description:

This function issues a command to play a MIDI ringer.

Prototype:
void OEMSoundPlayer_PlayRinger

(
AEESoundPlayerInfo * pInfo,
uint16 wRepeatTimer,
void * pUser
)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_PlayCB is called with the current audio play. There must be at least
one callback when this function executed with one of the following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

If AEE_SOUNDPLAYER_SUCCESS is sent back, one of the following status codes
must be sent back at some time before the next play:

AEE_SOUNDPLAYER_DONE
AEE_SOUNDPLAYER_ABORTED

See Also:
OEMSoundPlayer_Stop()
Return to the List of functions

pInfo SoundPlayer source data.
wRepeatTimer Time, in milliseconds, of the silence between the playbacks of the

MIDI file. Playback is not repeated if this is set to 0 (zero).
pUser Client data to be sent back with the callback function.

688

OEM SoundPlayer Interface

OEMSoundPlayer_Resume()
Description:

This function issues a command to resume MIDI or WebAudio playback.

Prototype:
void OEMSoundPlayer_Resume(void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_StatusCB is called with the command status. It can be one of the
following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

It must also call AEESoundPlayer_PlayCB with AEE_SOUNDPLAYER_RESUME.

See Also:
OEMSoundPlayer_Pause()
Return to the List of functions

pUser Client data to be sent back with the callback function.

689

OEM SoundPlayer Interface

OEMSoundPlayer_Rewind()
Description:

This function issues a command to rewind an audio playback the indicated number of
milliseconds.

Prototype:
void OEMSoundPlayer_Rewind(uint32 dwTime, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_StatusCB is called with the command status. It can be one of the
following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

It must also call AEESoundPlayer_PlayCB with AEE_SOUNDPLAYER_REWIND.

See Also:
OEMSoundPlayer_FastForward()
OEMSoundPlayer_Pause()
OEMSoundPlayer_Resume()
Return to the List of functions

dwTime Number of milliseconds to rewind.
pUser Client data to be sent back with the callback function.

690

OEM SoundPlayer Interface

OEMSoundPlayer_Stop()
Description:

This function issues a command to stop an audio playback.

Prototype:
void OEMSoundPlayer_Stop(void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_StatusCB is called with the command status. It can be one of the
following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

It must also call AEESoundPlayer_PlayCB with AEE_SOUNDPLAYER_ABORTED.

See Also:
OEMSoundPlayer_Play()
Return to the List of functions

pUser Client data to be sent back with the callback function.

691

OEM SoundPlayer Interface

OEMSoundPlayer_Tempo()
Description:

This function issues a command to adjust the audio playback tempo.

Prototype:
void OEMSoundPlayer_Tempo(uint32 dwTempoFactor, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_StatusCB is called with the command status. It can be one of the
following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

It must also call AEESoundPlayer_PlayCB with AEE_SOUNDPLAYER_TEMPO.

See Also:
None
Return to the List of functions

dwTempoFactor New tempo value.
pUser Client data to be sent back with the callback function.

692

OEM SoundPlayer Interface

OEMSoundPlayer_Tune()
Description:

This function issues a command to adjust the an audio playback tune.

Prototype:
void OEMSoundPlayer_Tune(int32 dwTuneFactor, void * pUser)

Parameters:

Return Value:
None

Comments:
None

Side Effects:
AEESoundPlayer_StatusCB is called with the command status. It can be one of the
following status codes:

AEE_SOUNDPLAYER_SUCCESS
AEE_SOUNDPLAYER_FAILURE

It must also call AEESoundPlayer_PlayCB with AEE_SOUNDPLAYER_TUNE.

See Also:
None
Return to the List of functions

dwTuneFactor New tune value.
pUser Client data to be sent back with the callback function.

693

OEM String Interface

This section describes the String Interface functions that the AEE uses to perform formatting
and printing operations on strings.

List of functions

Functions in this interface include:

OEM_FloatToWStr()
OEM_GetCHType()
OEM_UTF8ToWStr()
OEM_vxprintf()
OEM_WStrLower()
OEM_WStrToFloat()
OEM_WStrToUTF8()
OEM_WStrUpper()

The remainder of this section provides details for each function.

694

OEM String Interface

OEM_FloatToWStr()
Description:

This function converts a floating point to a string.

Prototype:
boolean OEM_FloatToWStr(double v, AECHAR * psz, int nSize)

Parameters:

Return Value:
TRUE, if successful.
FALSE, if fails (if psz is NULL or nSize is zero or lesser).

Comments:
None

See Also:
None
Return to the List of functions

v Floating point value.
psz Destination string.
nSize Size of destination string.

695

OEM String Interface

OEM_GetCHType()
Description:

This function returns the type (such as numeric or alpha) of a wide character.

Prototype:
TChType OEM_GetCHType(AECHAR ch)

Parameters:

Return Value:
Type of character, if successful.
SC_UNKNOWN, if fails.

Comments:
None

See Also:
None
Return to the List of functions

ch Input character.

696

OEM String Interface

OEM_UTF8ToWStr()
Description:

This function converts a UTF8 string to a wide string.

Prototype:
boolean OEM_UTF8ToWStr

(
const byte * pSrc,
int nLen,
AECHAR * pDst,
int nSize
)

Parameters:

Return Value:
TRUE, if successful.
FALSE, if fails (if pSrc or pDst is NULL; if nSize is zero or lesser).

Comments:
None

See Also:
None
Return to the List of functions

pSrc Input string.
nLen Length of input string.
pDst Destination string.
nSize Size in bytes of destination.

697

OEM String Interface

OEM_vxprintf()
Description:

This function prints a formatted string to a buffer, or determines how much room to
allocate for a formatted string. This size includes the NULL terminator.

Prototype:
int32 OEM_vxprintf

(
void * buf,
uint32 f,
const char * format,
VA_LIST list
)

Parameters:

Return Value:
Number of bytes stored in buf.
Or, number of bytes required for the formatted string including the NULL terminator.
-1, if fails.

Comments:
None

See Also:
None
Return to the List of functions

buf Buffer to write to. Use NULL to find out the size required for the string.
f Maximum size of the buffer (0x7FFFFFFF). Use 0 (zero) with NULL buf to

determine the size required for the string. The rest are reserved for flags.
format String containing formatting.
list Optional list of arguments based on formatting.

698

OEM String Interface

OEM_WStrLower()
Description:

This function converts all upper case characters in a wide string to lower case.

Prototype:
void OEM_WStrLower(AECHAR * pszDest)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pszDest Source/destination string.

699

OEM String Interface

OEM_WStrToFloat()
Description:

This function converts a string to a floating point value.

Prototype:
double OEM_WStrToFloat(const AECHAR *psz)

Parameters:

Return Value:
Floating point, if successful.
0 (zero), if fails (if psz is NULL).

Comments:
None

See Also:
None
Return to the List of functions

psz Input string.

700

OEM String Interface

OEM_WStrToUTF8()
Description:

This function converts a wide string to UTF8.

Prototype:
boolean OEM_WStrToUTF8

(
const AECHAR * pSrc,
int nLen,
byte * pDst,
int nSize
)

Parameters:

Return Value:
TRUE, if successful.
FALSE, if fails (pSrc or pDst is NULL; nSize is zero or lesser).

Comments:
None

See Also:
None
Return to the List of functions

pSrc Input string.
nLen Length of input string.
pDst Destination string.
nSize Size in bytes of destination.

701

OEM String Interface

OEM_WStrUpper()
Description:

This function converts all lower case characters in a wide string to upper case.

Prototype:
void OEM_WStrUpper(AECHAR * pszDest)

Parameters:

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

pszDest Source/destination string.

702

OEM Text Interface

This section describes the Text Interface input functions that the AEE uses. OEMs can modify
the reference implementation to add more text input modes for foreign languges or other input
methods.

List of functions

Functions in this interface include:

OEM_TextAddChar()
OEM_TextCreate()
OEM_TextDelete()
OEM_TextDraw()
OEM_TextEnumMode()
OEM_TextEnumModesInit()
OEM_TextGet()
OEM_TextGetCurrentMode()
OEM_TextGetCursorPos()
OEM_TextGetMaxChars()
OEM_TextGetModeString()
OEM_TextGetProperties()
OEM_TextGetRect()
OEM_TextGetSel()
OEM_TextKeyPress()
OEM_TextQueryModes()
OEM_TextQuerySymbols()
OEM_TextSet()
OEM_TextSetCursorPos()
OEM_TextSetEdit()
OEM_TextSetMaxChars()
OEM_TextSetProperties()
OEM_TextSetRect()
OEM_TextSetSel()
OEM_TextUpdate()

The remainder of this section provides details for each function.

703

OEM Text Interface

OEM_TextAddChar()
Description:

This function adds or overwrites a character at the current cursor location in the
specified text control.

Prototype:
void OEM_TextAddChar

(
OEMCONTEXT hTextField,
AECHAR ch,
boolean bOverStrike
)

Parameters:

Return Value:
None

Comments:
Overstrike is meaningful only if there is an insertion point rather than a selection and
the insertion point is not at the very end of the text. If hTextField is NULL, the function
simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
ch Wide character to be added to the text control.
bOverStrike Overwrites the text at the cursor location.

704

OEM Text Interface

OEM_TextCreate()
Description:

This function creates a dynamic text control object. It uses the given rectangle pRect
to create the text control. The pIShell and pIDisplay pointers are saved in the newly
created context to be used by the text control for notification, drawing, and so forth.

Prototype:
OEMCONTEXT OEM_TextCreate

(
const IShell* pIShell,
const IDisplay* pIDisplay,
const AEERect * pRect
)

Parameters:

Return Value:
OEMCONTEXT that can be used as the handle to the newly created text control, if
successful.
NULL, if fails.

Comments:
If pIShell, pIDisplay, or pRect is NULL, the function fails.

See Also:
None
Return to the List of functions

pIShell Pointer to the IShell interface object.
pIDisplay Pointer to the IDisplay interface object.
pRect Pointer to the rectangle specifying the bounds and location of the text

control to be created.

705

OEM Text Interface

OEM_TextDelete()
Description:

This function deletes a dynamic text control object. The text control must have been
created successfully using OEM_TextCreate(). This function also frees memory and
any other resources associated with this text control.

Prototype:
void OEM_TextDelete(OEMCONTEXT hTextField)

Parameters:

Return Value:
None

Comments:
If hTextField is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object to be deleted.

706

OEM Text Interface

OEM_TextDraw()
Description:

This function draws the text associated with a given text control object on the screen.
It also draws the associated items (such as Scroll Bar, Border, and Cursor) if necessary
and if they are supported.

Prototype:
void OEM_TextDraw(OEMCONTEXT hTextField)

Parameters:

Return Value:
None

Comments:
When the TP_PASSWORD property is set, please display a text buffer of **** in place
of actual characters. You must maintain your original buffer of actual text.
When in multitap mode, please allow the selection to appear while the user presses
the key. After the selection is committed to text, show only the * character.
If hTextField is NULL, the function perform no task and returns no errors.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.

707

OEM Text Interface

OEM_TextEnumMode()
Description:

This function gets the next text enumeration mode.

Prototype:
boolean OEM_TextEnumMode(AEETextMode * pMode)

Parameters:

Return Value:
TRUE, if the next mode is valid.
FALSE, if already at the end of the list.

Comments:
If pMode is NULL, the function returns FALSE.

See Also:
None
Return to the List of functions

pMode [OUT] Pointer to the next text mode.

708

OEM Text Interface

OEM_TextEnumModesInit()
Description:

This function initializes the enumeration mode. It does not have an associated handle
for the text control object.

Prototype:
void OEM_TextEnumModesInit(void)

Parameters:
None

Return Value:
None

Comments:
None

See Also:
None
Return to the List of functions

709

OEM Text Interface

OEM_TextGet()
Description:

This function gets the text associated with a given text control object, and returns a
pointer to the text.

Prototype:
AECHAR* OEM_TextGet(OEMCONTEXT hTextField)

Parameters:

Return Value:
Pointer to the text string in the text control, if successful.
NULL, if fails.

Comments:
If hTextField is NULL, the function returns NULL.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.

710

OEM Text Interface

OEM_TextGetCurrentMode()
Description:

This function returns the current text mode of the text control specified by hTextField.

Prototype:
AEETextInputMode OEM_TextGetCurrentMode(OEMCONTEXT hTextField)

Parameters:

Return Value:
Current text mode for the text control specified.

Comments:
None

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.

711

OEM Text Interface

OEM_TextGetCursorPos()
Description:

This function gets the absolute position of the cursor.

Prototype:
int32 OEM_TextGetCursorPos(OEMCONTEXT hTextField)

Parameters:

Return Value:
The 0 based position of the cursor. For example, if you have the Text Hi and the cursor
is given as |:

• |Hi would return 0.
• H|i would return 1.
• Hi| would return 2.

Comments:
None

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.

712

OEM Text Interface

OEM_TextGetMaxChars()
Description:

This function gets the maximum number of characters that can be added to the
specified text control.

Prototype:
uint16 OEM_TextGetMaxChars(OEMCONTEXT hTextField)

Parameters:

Return Value:
Maximum number of characters for the text control specified by hTextField.

Comments:
If hTextField is NULL, the function returns 0 (zero).

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.

713

OEM Text Interface

OEM_TextGetModeString()
Description:

This function returns the wide string corresponding to the current mode of the text
control specified by hTextField. The mode strings are Multitap, Numbers, and
Symbols.

Prototype:
void OEM_TextGetModeString

(
OEMCONTEXT hTextField,
AECHAR* szBuf,
uint16 len
)

Parameters:

Return Value:
None

Comments:
If hTextField or szBuf is NULL, or if len is one or less, the function simply returns.

See Also:
None
Return to the List of functions

hTextField [IN] Handle for the text control object.
szBuf [IN] String corresponding to the mode of the text control.
len [OUT] Length of the mode string buffer.

714

OEM Text Interface

OEM_TextGetProperties()
Description:

This function returns the properties of the text control, such as frame type, multiline, or
rapid entry (like T9).

Prototype:
uint32 OEM_TextGetProperties(OEMCONTEXT hTextField)

Parameters:

Return Value:
Property of the text control.

Comments:
Important properties are:

TP_MULTILINE, if set,the text control object is multiple line control.
TP_FRAME, if set, the text control object has a frame.
TP_RAPID_MODE, if set, the text control object is in rapid mode.
TP_PASSWORD, if set, the text control displays * characters in place of real
characters.

It is safe to ignore the following:
TP_NODRAW, if set, the text control object does not draw itself
TP_NOUPDATE, if set, the text control object does not call IDISPLAY_Update
when it is not needed

When using TP_PASSWORD in multitap mode, please allow the selection to appear
while the user presses the key. After the selection is committed to text, show only the
* character.
If hTextField is NULL, the function returns 0 (zero).

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.

715

OEM Text Interface

OEM_TextGetRect()
Description:

This function returns the rectangle corresponding to the bounds of this text control.

Prototype:
void OEM_TextGetRect(OEMCONTEXT hTextField, AEERect *pOutRect)

Parameters:

Return Value:
None

Comments:
If hTextField or pOutRect is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
pOutRect Rectangle corresponding to the bounds of the text control.

716

OEM Text Interface

OEM_TextGetSel()
Description:

This function gets the start and end locations for the selected text.

Prototype:
void OEM_TextGetSel

(
OEMCONTEXT hTextField,
int * piSelStart,
int * piSelEnd
)

Parameters:

Return Value:
None

Comments:
If htextField is NULL and piSelStart is non-NULL, the first entry is set to 0 (zero).
If htextField is NULL and piSelEnd is non-NULL, the first entry is set to 0 (zero).

See Also:
None
Return to the List of functions

hTextField [IN] Handle for the text control object.
pSelStart [OUT] Start location of the text selection.
pSelEnd [OUT] Ending location of the text selection.

717

OEM Text Interface

OEM_TextKeyPress()
Description:

This function handles the key press events in a text control. When a key is pressed
while a text control is active, this function is invoked, passing information relating to the
key that has been pressed. The OEM layer must handle the key event and process it
appropriately.

Prototype:
boolean OEM_TextKeyPress

(
OEMCONTEXT hTextField,
AEEEvent eCode,
uint32 dwKeyCode,
uint32 dwKeySyms
)

Parameters:

Return Value:
The current text mode for the specified text control.

Comments:
None

See Also:
None
Return to the List of functions

hTextField Handle for the text control object
eCode Event code for the key event
dwKeyCode Key code of the key that has been pressed
dwKeySyms Not used.

718

OEM Text Interface

OEM_TextQueryModes()
Description:

This function is invoked by the AEE to query the different text modes (such as T9 and
MULTITAP) supported by the OEM layer. The AEE uses this information for two
purposes:

• To populate the pop-up menu containing selections for the different modes
supported.

• To notify the text control, using OEM_TextSetEdit(), of the mode selected by the
user.

The OEM layer must populate the given data structure and return from this function.

Prototype:
int OEM_TextQueryModes(AEETextMode ** ppTextMode)

Parameters:

Return Value:
Number of text modes supported by the OEM.

Comments:
The following is a brief description of how text modes are supported.

• The AEE platform invokes the OEM function OEM_TextQueryModes() to get
information on the different text modes supported by the OEM.

• The information obtained above is used to populate the menu containing
selection strings for the different modes.

• When the user selects a particular mode, the function OEM_TextSetEdit() is
invoked and is passed the ID of the mode that has been selected. If the user has
not changed the mode, the ID is set to OEM_TEXT_MODE_DEFAULT, informing
the OEM layer to use the currently selected mode.

• The OEM layer must use the standard ID OEM_TEXT_MODE_SYMBOLS for
supporting the symbol mode. All other IDs must be based out of
OEM_TEXT_MODE_USER.

See Also:
None
Return to the List of functions

ppTextMode On return, this contains a valid pointer to an array of AEE_TextMode
containing information about the different modes supported by the
OEM layer. The OEM layer must use the standard identifier
OEM_TEXT_MODE_ SYMBOLS for symbols mode. Memory for this
pointer must be allocated by the OEM.

719

OEM Text Interface

OEM_TextQuerySymbols()
Description:

This function gets the buffer pszOut with the symbols. The length of the buffer is
specified by size.

Prototype:
uint16 OEM_TextQuerySymbols(AECHAR * pszOut, uint16 size)

Parameters:

Return Value:
Number of symbols put in the query buffer.
If pszOut is NULL or if size is less than the number of OEM symbols, this function
returns 0 (zero).

Comments:
If pszOut is NULL, the function returns 0 (zero).

See Also:
None
Return to the List of functions

pszOut Symbols buffer.
size Size of the buffer.

720

OEM Text Interface

OEM_TextSet()
Description:

This function sets the text of a given text control object. The text control must have
been created successfully using OEM_TextCreate(). Once the text has been set,
OEM_TextDraw() must be called to update the screen with the new text.

Prototype:
boolean OEM_TextSet

(
OEMCONTEXT hTextField,
const AECHAR *pszText,
int nChars)

Parameters:

Return Value:
None

Comments:
If htextField is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
pszText Text string to be set into the text control.
nChars Number of characters to set.

721

OEM Text Interface

OEM_TextSetCursorPos()
Description:

This function gets the absolute position of the cursor.

Prototype:
int32 OEM_TextSetCursorPos(OEMCONTEXT hTextField, int32 nOffset)

Parameters:

Return Value:
None

Comments:
This function should move the cursor to the 0-based position of the cursor.
If nOffset is > the length of the text, the cursor should be placed after the text.
If nOffset is <= 0, the cursor should be placed at the beginning of the text.
For example, if you have the Text Hi and | represents the cursor:

nOffset = 0 |Hi
nOffset = -1 |Hi
nOffset = 1 H|i
nOffset = 2 Hi|
nOffset = 100 Hi|

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
nOffset Absolute offset where the cursor is to be moved.

722

OEM Text Interface

OEM_TextSetEdit()
Description:

This function informs the text control whenever it goes in or out of focus. Typically,
when the text control is in focus, the border and cursor are activated; when the text
control goes out of focus, these items are de-activated. This function also informs the
text control of the current text mode.

Prototype:
vvoid OEM_TextSetEdit

(
OEMCONTEXT hTextField,
boolean bIsEditable,
AEETextInputMode wmode
)

Parameters:

Return Value:
None

Comments:
If htextField is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
bIsEditable Flag to indicate if the text control object is in focus (that is, it is

editable).
wmode Text input mode.

723

OEM Text Interface

OEM_TextSetMaxChars()
Description:

This function sets the maximum number of characters that can be added to the
specified text control.

Prototype:
void OEM_TextSetMaxChars(OEMCONTEXT hTextField, uint16 wMaxChars)

Parameters:

Return Value:
None

Comments:
If htextField is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
wMaxChars New maximum number of characters in this text control.

724

OEM Text Interface

OEM_TextSetProperties()
Description:

This function sets the properties of the text control, such as frame type, multiline, rapid
entry (such as T9), or a combination of properties.

Prototype:
void OEM_TextSetProperties(OEMCONTEXT hTextField, uint32 dwProperties)

Parameters:

Return Value:
None

Comments:
Important properties are:

TP_MULTILINE, if set, text control object is multiple line control
TP_FRAME, if set, text control object has a frame
TP_RAPID_MODE, if set, text control object is in rapid mode
TP_PASSWORD, if set, text control displays * characters in place of real
characters

It is safe to ignore the following properties:
TP_NODRAW, if set, text control object does not draw itself
TP_NOUPDATE, if set, text control object does not call IDIPLAY_Update when not
needed

When using TP_PASSWORD in multitap mode, please allow the selection to appear
while the user presses the key. After the selection is committed to text, show only the
* character.
If htextField is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
dwProperties Properties (TP_FRAME, TP_MULTILINE, TP_RAPID_MODE, or a

combination).

725

OEM Text Interface

OEM_TextSetRect()
Description:

This function returns the rectangle corresponding to the bounds of this text control.

Prototype:
void OEM_TextSetRect(OEMCONTEXT hTextField, const AEERect *pInRect)

Parameters:

Return Value:
None

Comments:
If htextField or pInRect is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
pInRect New bounds for the text control.

726

OEM Text Interface

OEM_TextSetSel()
Description:

This function sets the start and end locations for the text selection.

Prototype:
void OEM_TextSetSel(OEMCONTEXT hTextField, int iSelStart, int iSelEnd)

Parameters:

Return Value:
None

Comments:
If htextField is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.
iSelStart Start location of the text selection.
iSelEnd Ending location of the text selection.

727

OEM Text Interface

OEM_TextUpdate()
Description:

This function draws the text associated with a given text control object on the screen if
the text control is modified.

Prototype:
void OEM_TextUpdate(OEMCONTEXT hTextField)

Parameters:

Return Value:
None

Comments:
If htextField is NULL, the function simply returns.

See Also:
None
Return to the List of functions

hTextField Handle for the text control object.

728

Data Types

This section describes the data types used by the BREW OEM API functions. These data
types define the format and content of the data that is passed by applications to the BREW
functions and received by the applications. Type definitions for the BREW data structures are
contained in the BREW header files. Some data structures are specific to a particular BREW
interface and are contained in the header files for those interfaces. Other data structures are
used by more than one interface and are found in the files AEE.h and AEEError.h. The
description of each BREW function contains links to the descriptions of all relevant data
structures.

BREW data structures are of three main types:

• Structures and Unions: Some BREW functions take pointers to structures as input
parameters. To use such a function, populate an instance of a structure and pass a
pointer to the instance when calling the function. Other BREW functions return
pointers to structures as output. This section describes each field in each of the
BREW structures.

• Enumerated Types: Some BREW variables and structure members take values
from a finite set defined by the C typedef enum construct. For example, the font types
supported by text-drawing functions are specified with an enumerated-type
definition. This section describes each value of each enumerated type.

• Constant Definitions: The BREW functions use constants that are defined with the
#define construct. One common use of constants is to define a set of bit masks for
testing and setting the values of the bits in a bit vector variable. Each control defines
a set of bit mask constants that are used to test and set the values of each of the
control's properties. This section describes each set of related constants.

729

Data Types

List of data structures

Data structures in this interface include:

AEE Events
AEE ITextCtl Properties
AEE Static Properties
AEE_ADDR_RECID_NULL
AEE3DColor
AEE3DCoordinateTransformType
AEE3DCullingType
AEE3DEventNotify
AEE3DLight
AEE3DLightingMode
AEE3DLightType
AEE3DMaterial
AEE3DMatrixMode
AEE3DModelData
AEE3DModelPoly
AEE3DModelSegment
AEE3DPoint
AEE3DPoint16
AEE3DPrimitiveType
AEE3DRenderType
AEE3DRotateType
AEE3DTexture
AEE3DTextureSamplingType
AEE3DTextureType
AEE3DTextureWrapType
AEE3DTLVertex
AEE3DTransformMatrix
AEE3DVertex
AEE_DBError
AEE_DBRecInfo
AEEAppStart
AEEBitmapInfo
AEECallHistoryEntry
AEECallHistoryField
AEECameraNotify
AEEDeviceInfo
AEEDeviceItem
AEEDNSClass
AEEDNSItem
AEEDNSType
AEEFileInfoEx
AEEFileUseInfo
AEEFontInfo
AEEGPSConfig
AEEGPSInfo

730

Data Types

AEEGSM1xSig_NotifyMessageType
AEEGSM1xSig_RejectMessageType
AEEGSM1xSig_SignalingMessageType
AEEGSM1xControl_statusType
AEELogBinMsgType
AEELogBucketType
AEELogItemType
AEELogParamType
AEELogRcdHdrType
AEELogVerHdrType
AEEMedia
AEEMediaCallback
AEEMediaCmdNotify
AEEMediaData
AEEMediaMIDISpec
AEEMediaMP3Spec
AEEMediaSeek
AEENotify
AEENotifyStatus
AEEOrientationInfo
AEEObjectHandle
AEEParmInfo
AEEPosAccuracy
AEERasterOp
AEERect
AEERingerCat
AEERingerCatID
AEERingerEvent
AEERingerID
AEERingerInfo
AEERLP3Cfg
AEESectorInfo
AEESize
AEESMSTextMsg
AEESoundPlayerFile
AEETextInputMode
AEETextInputModeInfo
AEETileMap
AEETransformMatrix
AEEUDPUrgent
Camera Command codes
Camera Control Parameters
Camera Status codes
CameraExifTagInfo
CMediaFormat
CMediaMIDI
CMediaMIDIOutMsg
CMediaMIDIOutQCP
CMediaMP3
CMediaPMD

731

Data Types

CMediaQCP
Configuation Parameters
CtlAddItem
CtlValChange
FileAttrib
FileInfo
GSMSMSEncodingType
GSMSMSMsg
GSMSMSMsgType
GSMSMSRawMsg
GSMSMSStatusType
GSMSMSStorageType
I3D_Events
IDC_COMMAND_RESERVED
IDIB
INAddr
INPort
ITransform Properties
NativeColor
NetSocket
NetState
OEMAppEvent
oemLogType
PFNCBCANCEL
PFNDLTEXT
PFNMEDIANOTIFY
Q12 Fixed Point Format
Q14 Fixed Point Format
Q16 Fixed Point Format
Q3D File Format
AEEObjectHandle
PFNPOSITIONCB
PFNRINGEREVENT
PFNSIONOTIFY
PhoneState
RGBVAL
TAPIStatus
Tile Properties
Tile Map Properties

The remainder of this section provides details for each function.

732

Data Types

AECHAR
Description:

AECHAR is BREW defined data type for wide strings.

Definition:
typedef uint16 AECHAR;

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

733

Data Types

AEE Events
Description:

The defined AEE events that can be received by an applet or control. For each event,
the wParam and dwParam parameters, if any, that are passed to the applet or control
are given.

Definition:

The following tables list the event codes and key codes supported by BREW.

Key Codes are received with EVT_KEY, EVT_KEY_PRESS, EVT_KEY_RELEASE, and
EVT_KEY_HELD events.

Event codes

Event code Description Parameters
EVT_ALARM Alarm event. wParam = Alarm Code, dwParam = 0.

EVT_APP_BROWSE_FILE Called after
EVT_APP_START.

EVT_APP_BROWSE_URL Called after EVT_APP_START dwParam = (const AECHAR * pURL).
EVT_APP_CONFIG Alternate application start.

Configuration screen shown.
wParam = 0, dwParam = 0.

EVT_APP_HIDDEN_
CONFIG

Alternate application start.
Configuration screen hidden.

wParam = 0, dwParam = 0.

EVT_APP_NO_CLOSE Application should not be
closed

EVT_APP_NO_SLEEP Application is working - called
after long periods of non-idle
application

EVT_APP_RESUME Application resume. wParam = 0, dwParam = 0.

EVT_APP_START Application start. wParam = 0, dwParam = const char
*(arguments).

EVT_APP_STOP Application stop. wParam = 0, dwParam = boolean *(flag
to indicate if application wants to close
now or later. Default is now.

EVT_APP_SUSPEND Application suspend. wParam = 0, dwParam = 0.

734

Data Types

EVT_BUSY Sent to application to
determine if the application
can be suspended or stopped.
Application must return TRUE
if it does not want to be
suspended or stopped.
Typically, applications return
FALSE.

wParam = 0, dwParam = 0.

EVT_CB_COPY Copy request - dwParam = (const char *)

const char * indicating the preferred
format,

NULL for copy all

EVT_CB_CUT Cut request - dwParam = (const char *)

const char * indicating the preferred
format,

NULL for cut all

EVT_CB_PASTE Paste request - no parameters

EVT_CHAR Character event. wParam = AECHAR code of character,
dwParam = bitflags for modifier keys.

EVT_COMMAND Application custom controls
event.

wParam = user command ID, dwParam
= user data.

EVT_COPYRIGHT_END Dialog event: Copyright dialog
ended.

wParam = DialogID, dwParam = IDialog
*.

EVT_CTL_ADD_ITEM Message interface to add item. wParam = 0, dwParam = CtlAddItem *.

EVT_CTL_CHANGING Change control event. wParam = 0, dwParam =
CtlValChange*.

EVT_CTL_MENU_OPEN Sent by ITextCtl before menu
is activated.

wParam = 0, dwParam =
IMenuCtl *.

EVT_CTL_SEL_CHANGE
D

Sent by IMenuCtl when
selection has changed

wParam - selection ID, dwParam ==
IMenuCtl *

EVT_CTL_SET_TEXT Set text control event. wParam = ID, dwParam = if ID is not
zero, then resource file, else text.

EVT_CTL_SET_TITLE Set control title event. wParam = ID, dwParam = if ID is not
zero, then resource file, else text.

EVT_CTL_SKMENU_PAG
E_FULL

Sent by IMenuCtl when SK
menu page is full

dwParam == IMenuCtl *

EVT_CTL_TAB Application tab event. wParam = 0-left, 1-right, dwParam =
pointer to the control.

EVT_CTL_TEXT_MODE
CHANGED

Sent by ITextCtl when input
mode was changed

Event code Description Parameters

735

Data Types

EVT_DIALOG_END Dialog event: Dialog
completed normally.

wParam = DialogID, dwParam = IDialog
*.The dwPram has 1 for a "Yes"
response and 2 for "No" response from
user.

EVT_DIALOG_INIT Dialog Event: Controls
created, pre-init values, flags,
and other items.

wParam = Dialog ID, dwParam =
IDialog *.

EVT_DIALOG_START Dialog event: Dialog opening. wParam = DialogID, dwParam = IDialog
*.

EVT_FLIP Device-specific event: Sent to
application when flip-type
(clam-shell) device is opened
or closed.

wParam = TRUE if open, FALSE if
closed; dwParam = 0.

EVT_KEY Key handling event. wParam = key code (see Key codes
table), dwParam = bitflags for modifier
keys.

EVT_KEY_HELD Key held event. The hold time
is device-specific. Not
supported in Emulator.

wParam = key code (see Key codes
table), dwParam = bitflags for modifier
keys.

EVT_KEY_PRESS Keypress event. wParam = key code (see Key codes
table), dwParam = bitflags for modifier
keys.

EVT_KEY_RELEASE Key release event. wParam = key code (see Key codes
table), dwParam = bitflags for modifier
keys.

EVT_KEYGUARD Device-specific event: Sent to
application when device
keypad is locked.

wParam = TRUE if keyguard is on,
FALSE otherwise; dwParam = 0.

EVT_LOCKED Device-specific event: Sent to
application when device user
interface is locked.

wParam = TRUE if locked, FALSE
otherwise; dwParam = 0.

EVT_MOD_LIST_CHANG
ED

List of modules changed. May
be sent while application
suspended!

EVT_NOTIFY BREW-generated notification
or application-registered
notification event.

wParam = 0, dwParam = AEENotify *.

EVT_UPDATECHAR Character update event. wParam = AECHAR code of character,
dwParam = bitflags for modifier keys.

EVT_USER Start of application/user-
defined events.

Private to application.

Event code Description Parameters

736

Data Types

Members:
None

Comments
The user-defined events start from EVT_USER.

See Also:
None
Return to the List of data structures

737

Data Types

AEE ITextCtl Properties
Description:

The properties defined for ITextCtl Interface.

Definition:

Members:
None

Comments
None

See Also:
ITEXTCTL_SetProperties()
ITEXTCTL_GetProperties()
Return to the List of data structures

TP_MULTILINE If set, text control object is multiple line control.
TP_FRAME If set, text control object has a frame.
TP_T9_MODE (Deprecated)
TP_RAPID_MODE Supports Rapid Entry and uses as default
TP_NODRAW Disables all drawing by the control
TP_NOUPDATE Disables wasteful IDISPLAY_Update calls
TP_PASSWORD Displays ***, manages correct buffer chars
TP_INTEGRALHEIGHT If set this forces the rectangle of the TextCtl to be of an even

height with respect to the character height. Basically there
will be no left over space and the text will fit naturally into the
text control. Rather than showing 1.5 lines of text it will show
either 1 or 2. It will round to the nearest line height and snap
to it.

TP_FIXSETRECT Actual height more closely represents requested height.

738

Data Types

AEE Static Properties
Description:

The properties defined for IStatic Interface.

Definition:

Members:
None

Comments
None

See Also:
ISTATIC_SetProperties()
ISTATIC_GetProperties()
Return to the List of data structures

ST_CENTERTEXT Center Text
ST_CENTERTITLE Center Title
ST_NOSCROLL Do not scroll text
ST_TEXTALLOC Text allocated on heap - dialog takes responsibility of freeing it.
ST_TITLEALLOC Title allocated on heap - dialog takes responsibility of freeing it.
ST_MIDDLETEXT Text is drawn in the middle of the screen
ST_UNDERLINE Underline the title
ST_ICONTEXT Text is IImage *
ST_ASCII Text is single-byte
ST_ENABLETAB Generate EVT_CTL_TAB when at top or bottom
ST_ENABLE_HLGHT Highlights the static, if it has focus

739

Data Types

AEE_ADDR_RECID_NULL
Description:

This constant defines a NULL record ID in the BREW Address Book interface.

Definition:
#define AEE_ADDR_RECID_NULL 0xffff

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

740

Data Types

AEE3DColor
Description:

This STRUCT defines the color format used in I3D API.

Definition:
typedef struct {

uint8 r,g,b,a;
} AEE3DColor;

Members:
r: RED value.
g: GREEN value.
b: BLUE value.
a: ALPHA value.

Comments:
Alpha blending is not supported in this release. The default color scheme is 5-6-5 for
(r, g,b).

See Also:
None
Return to the List of data structures

741

Data Types

AEE3DCoordinateTransformType
Description:

NOTE: This data item is currently not supported.
This ENUM defines the coordinate transformation type.

Definition:
typedef enum

{
AEE3D_COORDINATE_TRANSFORM_NONE =0,
AEE3D_COORDINATE_TRANSFORM_SCREENMAP,
AEE3D_COORDINATE_TRANSFORM_PROJECTION,
AEE3D_COORDINATE_TRANSFORM_MODELVIEW
}AEE3DCoordinateTransformType;

Members:
AEE3D_CORDINATE_TRANSFORM_NONE: Vertices are given in screen
coordinates. No transformation is necessary.
AEE3D_CORDINATE_TRANSFORM_SCREENMAP: Screen mapping is made.
AEE3D_CORDINATE_TRANSFORM_PROJECTION: Screen mapping is made after
projection.
AEE3D_CORDINATE_TRANSFORM_MODELVIEW: Vertices go through the entire
transformation pipeline: model-view, projection, and screen mapping.

Comments:
None

See Also:
I3D_GetCoordTransformMode()
I3D_SetCoordTransformMode()
Return to the List of data structures

742

Data Types

AEE3DCullingType
Description:

This ENUM defines which triangles should be discarded before they are rendered. By
default, triangles with vertices arranged in counterclockwise rotation will be visible. A
counterclockwise rotation indicates front-facing. A clockwise rotation is considered
back facing.

Definition:
typedef enum

{
AEE3D_CULLING_BACK_FACING = -1,
AEE3D_CULLING_FRONT_FACING = 1
} AEE3DCullingType;

Members:
AEE3D_CULLING_BACK_FACING: All triangles with vertices arranged in clockwise
rotation will be visible. And triangles that are back facing will be discarded when they
are drawn.
AEE3D_CULLING_FRONT_FACING: All triangles with vertices arranged in counter-
clockwise rotation will be visible. And triangles that are front facing will be discarded
when they are drawn.

Comments:
None

See Also:
I3D_SetCullingMode()
I3D_GetCullingMode()
Return to the List of data structures

743

Data Types

AEE3DEventNotify
Description:

This STRUCT defines a 3D event notifier.

Definition:
typedef struct _AEE3DEventNotify

{
 I3D* p3D;
 int16 nEventType;
 int16 nErrorCode;
 void* pData;
} AEE3DEventNotify;

Members:

Comments:
Your registered event notifier will be passed this event notify type.

See Also:
I3D_RegisterEventNotify()
I3D_StartFrame()
Return to the List of data structures

p3D Pointer to I3D instance associated with the event.
InEventType Type of event that occurred.
InErrorCode The error code.
pData Pointer to event data. Could be dropped frame, status, and so on.

744

Data Types

AEE3DLight
Description:

This STRUCT defines a 3D light type.

Definition:
typedef struct _AEE3DLight {

AEE3DLightType type;
AEE3DColor color;
AEE3DPoint direction;
} AEE3DLight;

Members:
type: The type of light to use.
color: The color of the light.
direction: The direction of the light.

 Comments:
None

See Also:
I3D_SetLight()
I3D_SetLightingMode()
AEE3DLightType
Return to the List of data structures

745

Data Types

AEE3DLightingMode
Description:

This ENUM defines constants that determine which lighting mode to use.

Definition:
typedef enum

{
AEE3D_LIGHT_MODE_DIFFUSED = 0,
AEE3D_LIGHT_MODE_COLOR_DIFFUSED,
AEE3D_LIGHT_MODE_DIFFUSED_COLOR_SPECULAR,
AEE3D_LIGHT_MODE_COLOR_DIFFUSED_COLOR_SPECULAR
AEE3D_LIGHT_MODE_NONE
}AEE3DLightingMode;

Members:
AEE3D_LIGHT_MODE_DIFFUSED: lighting will be white diffused only.
AEE3D_LIGHT_MODE_COLOR_DIFFUSED: lighting will be color diffused.
AEE3D_LIGHT_MODE_DIFFUSED_COLOR_SPECULAR: lighting will be white
diffused with color specular light. Both lights are in the same direction.
AEE3D_LIGHT_MODE_COLOR_DIFFUSED_COLOR_SPECULAR: lighting will be
color diffused with color specular light. Each light can have a different direction.

 Comments:
AEE3D_LIGHT_MODE_DIFFUSED_COLOR_SPECULAR is the default.
AEE3D_LIGHT_MODE_COLOR_DIFFUSED_COLOR_SPECULAR is the most CPU
intensive.

See Also:
I3D_SetLight()
I3D_SetLightingMode()
Return to the List of data structures

746

Data Types

AEE3DLightType
Description:

This ENUM defines which will determine what light to use.

Definition:
typedef enum

{
AEE3D_LIGHT_DIFFUSED = 0,
AEE3D_LIGHT_SPECULAR

}AEE3DLightType;

Members:
AEE3D_LIGHT_DIFFUSED: define diffused light.
AEE3D_LIGHT_SPECULAR: define specular light.

 Comments:
None

See Also:
I3D_SetLight()
I3D_SetLightingMode()
Return to the List of data structures

747

Data Types

AEE3DMaterial
Description:

This.

Definition:
typedef struct _AEE3DMaterial {
 AEE3DColor color;
 uint8 shininess;
 uint8 emissive;
} AEE3DMaterial;

Members:
 color: The color of the material
 shininess: The shininess value (0-255)
 emissive: The emissive value (0-255)

Comments:
None

See Also:
I3D_SetMaterial()
Return to the List of data structures

748

Data Types

AEE3DMatrixMode
Description:

This ENUM defines constants that determine which matrix to use when pushing or
popping a matrix. You should set this mode before calling push and pop matrix.

Definition:
typedef enum

{
AEE3D_MATRIX_MODE_MODELVIEW = 0
} AEE3DMatrixMode;

Members:
AEE3D_MATRIX_MODE_MODELVIEW: Use the model view matrix when pushing
and popping a matrix.

 Comments:
None

See Also:
I3D_PushMatrix()
AEE3DMatrixMode()
Return to the List of data structures

749

Data Types

AEE3DModelData
Description:

This STRUCT defines a 3D model that will be used by the I3DModel functions.

Definition:
typedef struct _AEE3DModelData
{
 uint8 model_index;
 uint8 num_material;
 uint8 num_texture;
 uint8 num_segment;
 uint16 num_vertex;
 uint16 reserved;
 uint16 num_poly;
 uint16 extra;
 AEE3DPoint* pOrignalVertex_tbl;
 AEE3DVertex* pVertex_tbl;
 AEE3DModelPoly* pPoly_tbl;
 AEE3DColor* pMaterialColor_tbl;
 AEE3DModelSegment* pSegment_tbl;
 AEE3DTransformMatrix* pModelViewMatrixStack;
 void* pReserved;
 AEE3DTexture** pTexture_tbl;
 void* extra_features;
 unsigned char* pAlloc_mem;
} AEE3DModelData;

Members:
model_index The model index value
num_material Number of materials
num_texture Number of textures
num_segment Number of segments
num_vertex Number of vertices
reserved reserved field
num_poly Number of polygons
extra For future use
pOrignalVertex_tbl Pointer to original vertex table (list of vertices)
pVertex_tbl Pointer to vertex table (list of vertices)
pPoly_tbl Pointer to polygon table (list of polygons)
pMaterialColor_tbl Pointer to material color table (list of material colors)
pSegment_tbl Pointer to segment table (list of segments)
pModelViewMatrixStack Pointer to a list of Model View transformation matrices.

Index range (0,num_segment-1) contains the segment’s
transformation matrices.

pReserved for internal use only.

750

Data Types

Comments:
 The struct is designed to hold a 3D model in the Q3D format.

See Also:
Q3D File Format
AEE3DModelSegment
AEE3DModelPoly
Return to the List of data structures

pTexture_tbl Pointer to an array of texture bitmaps in IDIB format
extra_features currently not used.
pAlloc_mem Pointer to allocated memory pool for Model, Data block

transfer are faster if data is continuous for firmware
acceleration.

751

Data Types

AEE3DModelPoly
Description:

This STRUCT defines a polygon (triangle) that will be used by the I3DModel functions.

Definition:
typedef struct _AEE3DModelPoly {

uint16 vi0;
uint16 vi1;
uint16 vi2;
uint16 attr;
int16 pnorm_x;
int16 pnorm_y;
int16 pnorm_z;

} AEE3DModelPoly;

Members:
vi0: vertex index 0
vi1: vertex index 1
vi2: vertex index 2
attr: polygon attribute vector which indicates:

bits 0-7: color index
bits 8-10: texture index. This is the index value into the pTexture_tbl. The
Texture_tbl is defined in AEE3DModelData structure.
bits 11-12: texture method (00: not textured, 01: replace, 10: mixed, 11:
blending)
bits 13: flag for shading (0: no shading)
bits 14: flag for double draw (0: no double draw)
bits 15: flag for using polygon level feature (0: use segmental features)

pnorm_x:
pnorm_y:
pnorm_z: The polygon normal

Comments:
 None

See Also:
AEE3DModelSegment
Return to the List of data structures

752

Data Types

AEE3DModelSegment
Description:

This STRUCT defines a segment that will be used by the I3DModel functions.

Definition:
typedef struct _AEE3DModelSegment {

uint16 num_vertex;
uint16 vertex_offset;
uint16 reserved;
uint16 num_face;
uint16 face_offset;
uint16 attr;
uint16 material_attr;
} AEE3DModelSegment;

Members:
num_vertex: number of vertices in the segment
vertex_offset: offset of vertex in the vertex buffer.
reserved: reserved for future use.
num_face: number of polygons.
face_offset: offset in the pPoly_tbl defined in AEE3DModelData. This offset will be
where the first polygon starts in the Poly_tbl for this segment.
attr: segment level attributes.
material_attr: material attributes.
The attribute values here have the same definition as that in AEE3DModelPoly. It
indicates:

bits 0-7: color index.
bits 8-10: texture index This is the index value into the pTexture_tbl. The
Texture_tbl is defined in AEE3DModel structure.
bits 11-12: texture method (00: not textured, 01: replace, 10: mixed, 11: blending).
bits 13: flag for shading (0: no shading).
bits 14: flag for double draw (0: no double draw).
bits 15: flag for using polygon level feature (0: use segmental features).

The Material attributes values are as follows:
bits 0-7: shininess (0-255).
bits 8-15: emissive (0-255).

Comments:
 None

See Also:
AEE3DModelPoly

753

Data Types

Return to the List of data structures

754

Data Types

AEE3DPoint
Description:

This STRUCT defines a 3D point type.

Definition:
typedef struct _AEE3DPoint {

int32 x;
int32 y;
int32 z;
} AEE3DPoint;

Members:
x: X coordinate.
y: Y coordinate.
z: Z coordinate.

Comments:
The coordinates are in Q16 format.

See Also:
None
Return to the List of data structures

755

Data Types

AEE3DPoint16
Description:

This STRUCT defines a 3D 16-bit point type.

Definition:
typedef struct _AEE3DPoint16 {
int16 x;
int16 y;
int16 z;
} AEE3DPoint16;

Members:
x: X coordinate.
y: Y coordinate.
z: Z coordinate.

Comments:
The coordinates are in Q16 format.

See Also:
None
Return to the List of data structures

756

Data Types

AEE3DPrimitiveType
Description:

This ENUM defines constants that determine the primitive type to use with vertex
arrays.

Definition:
typedef enum

{
AEE3D_TRIANGLE,
AEE3D_TRIANGLE_FAN,
AEE3D_TRIANGLE_STRIP,
} AEE3DPrimitiveType;

Members:

Comments:
None

See Also:
I3D_CalcVertexArrayNormal()
I3D_CalcVertexArrayColor()
Return to the List of data structures

 AEE3D_TRIANGLE Vertices in the array form triangles.
 AEE3D_TRIANGLE_FAN Vertices in the array form a triangle fan.
 AEE3D_TRIANGLE_STRIP Vertices in the array form a triangle strip.

757

Data Types

AEE3DRenderType
Description:

This ENUM defines 3D rendering types. It determines how each triangle will be filled.

Definition:
typedef enum

{
AEE3D_RENDER_FLAT_SHADING = 0,
AEE3D_RENDER_FLAT_TEXTURE_FAST_SHADING,
AEE3D_RENDER_FLAT_TEXTURE_SHADING,
AEE3D_RENDER_SMOOTH_SHADING,
AEE3D_RENDER_SMOOTH_TEXTURE_FAST_SHADING,
AEE3D_RENDER_SMOOTH_TEXTURE_SHADING,
AEE3D_RENDER_TEXTURE_REPLACE,
}AEE3DRenderType;

Members:
AEE3D_RENDER_FLAT_SHADING: Each triangle is filled with the same color as the
color of the first vertex.
AEE3D_RENDER_FLAT_TEXTURE_FAST_SHADING: Flat shading with texture colors
averaged with surface colors.
AEE3D_RENDER_FLAT_TEXTURE_SHADING: Flat shading with texture colors blended
with surface colors. (higher quality, slower performance)
AEE3D_RENDER_SMOOTH_SHADING: Each triangle is filled with color interpolated
across the three vertices.
AEE3D_RENDER_SMOOTH_TEXTURE_FAST_SHADING: Smooth shading with texture colors
averaged with surface colors.
AEE3D_RENDER_SMOOTH_TEXTURE_SHADING,: Smooth shading with texture colors
blended with surface colors. (higher quality, slower performance)
AEE3D_RENDER_TEXTURE_REPLACE: Texture is as a decal.

Comments:
Render type significantly influences rendering performance. Flat shading is the fastest
whereas smooth texture blending is the slowest.

See Also:
I3D_GetRenderMode()
I3D_SetRenderMode()
Return to the List of data structures

758

Data Types

AEE3DRotateType
Description:

This ENUM defines what axis to use when calculating a rotational matrix.

Definition:
typedef enum

{
AEE3D_ROTATE_X,
AEE3D_ROTATE_Y,
AEE3D_ROTATE_Z
}AEE3DRotateType;

Members:
AEE3D_ROTATE_X: rotate about the X axis.
AEE3D_ROTATE_Y: rotate about the Y axis.
AEE3D_ROTATE_Z: rotate about the Z axis.

Comments:
None

See Also:
I3DUtil_GetRotateMatrix()
I3DUtil_GetRotateVMatrix()
Return to the List of data structures

759

Data Types

AEE3DTexture
Description:

This STRUCT defines the texture for a 3D Model. All texture images need to be
converted into an IBitmap format. An application needs to decode and palettize (if
necessary) these images and set the decoded raw pixel image (8-bits per pixel
arranged row-by-row) to the pixel_map component of IBitmap, and the palette to the
palette. The width and height of the pixel map need to be a power of 2, and no greater
than 256. Color depth of the palette ranges from 1-8.

Definition:
typedef struct _AEE3DTexture {

AEE3DTextureType type;

AEE3DTextureSamplingType SamplingMode;

AEE3DTextureWrapType Wrap_s;

AEE3DTextureWrapType Wrap_t;

uint32 BorderColorIndex;

IBitmap *pImage;

} AEE3DTexture;

Members:

Comments:
Image decoding should be done at program initialization.

See Also:
IBitmap Interface
AEE3DTextureSamplingType
AEE3DTextureWrapType
AEE3DColor
Return to the List of data structures

Type The texture type
SamplingMode Sampling type
Wrap_s Wrap mode in horizontal direction
Wrap_t Wrap mode in vertical direction
BorderColorIndex Index into the color palette for texture border color
*pImage Pointer to IBitmap structure

760

Data Types

AEE3DTextureSamplingType
Description:

This ENUM defines texture sampling types. Texture sampling refers to how to
determine which texel (or texels) to use for a given fragment.

Definition:
typedef enum

{
AEE3D_TEXTURE_SAMPLING_NEAREST = 0
}AEE3DTextureSamplingType;

Members:
AEE3D_TEXTURE_SAMPLING_NEAREST: Texture is sampled from the nearest
neighbor.

Comments:
Other sampling methods may be supported in future releases.

See Also:
I3D_GetTexture()
I3D_SetTexture()
Return to the List of data structures

761

Data Types

AEE3DTextureType
Description:

This ENUM defines texture types.

Definition:
typedef enum

{
AEE3D_TEXTURE_DIFFUSED,
}AEE3DTextureType;

Members:
AEE3D_TEXTURE_DIFFUSED: The diffused texture.

Comments:
Other texture types may be supported in future releases.

See Also:
I3D_SetTexture()
I3D_GetTexture()
Return to the List of data structures

762

Data Types

AEE3DTextureWrapType
Description:

This ENUM defines the texture wrapping modes. The wrapping mode controls how a
texel is selected when the texture coordinate goes beyond the size of the texture
image.

Definition:
typedef enum

{
AEE3D_TEXTURE_WRAP_REPEAT,
AEE3D_TEXTURE_WRAP_MIRROR,
AEE3D_TEXTURE_WRAP_CLAMP,
AEE3D_TEXTURE_WRAP_BORDER
}AEE3DTextureWrapType;

Members:
AEE3D_TEXTURE_WRAP_REPEAT: Texture is repeated.
AEE3D_TEXTURE_WRAP_MIRROR: Texture is mirrored and repeated.
AEE3D_TEXTURE_WRAP_CLAMP: Border pixel is used.
AEE3D_TEXTURE_WRAP_BORDER: Border color defined in texture structure is
used.

Comments:
None

See Also:
I3D_SetTexture()
I3D_GetTexture()
Return to the List of data structures

763

Data Types

AEE3DTLVertex
Description:

This STRUCT defines the tlvertex used in the I3D API. It includes the location
(x,y,z,w), color(r,g,b,a), and texture coordinates(s,t).

Definition:
typedef struct _AEE3DTLVertex {

int32 x;
int32 y;
int32 z;
int16 w;
uint8 r;
uint8 g;
uint8 b;
uint8 a;
uint8 s;
uint8 t;
} AEE3DTLVertex;

Members:

Comments:
None.

See Also:
I3D_CalcVertexArrayColor()
I3D_CalcVertexArrayNormal()
I3D_RenderTriangles()
Return to the List of data structures

x,y,z,w Location (x,y,z,w).
r,g,b,a Color of vertex.
s,t One set of normalized (0-255) texture coordinates.

s is the horizontal coordinate.
t is the vertical coordinate.

764

Data Types

AEE3DTransformMatrix
Description:

This STRUCT defines the model view transformation matrix (3x4).
The rotation part (left 3x3) is in Q12 fixed. The translation or shift part
(right 3x1) should have the same Q factor as the vertex coordinate (Q16).
| m00 m01 m02 m03 |
| m10 m11 m12 m13 |
| m20 m21 m22 m23 |

Definition:
typedef struct _AEE3DTransformMatrix {

int32 m00;
int32 m01;
int32 m02;
int32 m03;
int32 m10;
int32 m11;
int32 m12;
int32 m13;
int32 m20;
int32 m21;
int32 m22;
int32 m23;
} AEE3DTransformMatrix;

Members:
m00: element at 1st row, 1st column, x-scaling.
m01: element at 1st row, 2nd column, xy-shearing.
m02: element at 1st row, 3rd column, xz-shearing.
m03: element at 1st row, 4th column, x-shift.
m10: element at 2nd row, 1st column, yx-shearing.
m11: element at 2nd row, 2nd column, y-scaling.
m12: element at 2nd row, 3rd column, yz-shearing.
m13: element at 2nd row, 4th column, y-shift.
m20: element at 3rd row, 1st column, zx-shearing.
m21: element at 3rd row, 2nd column, zy-shearing.
m22: element at 3rd row, 3rd column, z-scaling.
m23: element at 3rd row, 4th column, z-shift.

Comments:
None

765

Data Types

See also:
None
Return to the List of data structures

766

Data Types

AEE3DVertex
Description:

This STRUCT defines the vertex used in the I3D API. It includes the location, color, and
texture coordinates. It is also needed as an output for the function
I3D_ApplyModelViewTransform().

Definition:
typedef struct _AEE3DVertex {

int32 x;
int32 y;
int32 z;
int16 vnorm_x;
int16 vnorm_y;
int16 vnorm_z;
uint8 s;
uint8 t;

} AEE3DVertex;

Members:
x,y,z: Location (x,y,z).
vnorm_x, vnorm_y, vnorm_z: The vertex normal.
s,t: One set of normalized (0-255) texture coordinates.

s is the horizontal coordinate.
t is the vertical coordinate.

Comments:
None

See Also:
I3D_ApplyModelViewTransform()
I3D_RenderTriangles()
Return to the List of data structures

767

Data Types

AEE_DBError
Description:

This data structure indicates the error in OEMDB to the AEE layer. A pointer to this
error type is passed to every OEMDB function and is populated by every OEMDB
function.

Definition:
typedef enum _AEE_DBError

{
AEE_DB_ERR_NO_ERR,
AEE_DB_ERR_NO_MEMORY,
AEE_DB_ERR_BAD_HANDLE,
AEE_DB_ERR_BAD_RECID,
AEE_DB_ERR_BAD_STATE,
AEE_DB_ERR_ALREADY_EXIST,
AEE_DB_ERR_NOT_EXIST,
AEE_DB_ERR_ALREADY_OPEN,
AEE_DB_ERR_DB_NOT_OPEN,
AEE_DB_ERR_TOO_MANY_DB,
AEE_DB_ERR_TOO_MANY_RECORD,
AEE_DB_ERR_NO_RECORD,
AEE_DB_ERR_UNKNOWN_FORMAT,
AEE_DB_ERR_ABORTED,
AEE_DB_ERR_NO_FS_SPACE,
AEE_DB_ERR_BAD_PATH,
AEE_DB_ERR_OTHER_FS_ERR,
AEE_DB_ERR_CANNOT_INIT,
AEE_DB_ERR_BAD_RECORD,
AEE_DB_ERR_NO_RECINFO_STRUCT,
AEE_DB_ERR_BAD_NEW_RECORD,
AEE_DB_ERR_NOT_ALLOWED,
AEE_DB_ERR_NO_RECBUF,
AEE_DB_ERR_MAX
} AEE_DBError;

Members:
AEE_DB_ERR_NO_ERR DB is OK, operation succeeded.
AEE_DB_ERR_NO_MEMORY Not enough memory for this operation.
AEE_DB_ERR_BAD_HANDLE DB handle is not valid.
AEE_DB_ERR_BAD_RECID Record ID is not valid.
AEE_DB_ERR_BAD_STATE DB in bad state; suggest closing and

reopening.
AEE_DB_ERR_ALREADY_EXIST DB already exists (cannot create).
AEE_DB_ERR_NOT_EXIST DB does not exist (cannot open).
AEE_DB_ERR_ALREADY_OPEN DB is open already (cannot open/recover).
AEE_DB_ERR_DB_NOT_OPEN DB is not open, and therefore cannot be

closed.

768

Data Types

Comments:
None

See Also:
None
Return to the List of data structures

AEE_DB_ERR_TOO_MANY_DB Too many open DBs (cannot open).
AEE_DB_ERR_TOO_MANY_RECORD Too many records (cannot add record).
AEE_DB_ERR_NO_RECORD No records in the database.
AEE_DB_ERR_UNKNOWN_FORMAT Unknown data file format.
AEE_DB_ERR_ABORTED DB operation is aborted (for example, in

async operation).
AEE_DB_ERR_NO_FS_SPACE Not enough space in file system for the

operation.
AEE_DB_ERR_BAD_PATH DB exists in a path that is restricted.
AEE_DB_ERR_OTHER_FS_ERR General file system errors (other than no

space).
AEE_DB_ERR_CANNOT_INIT Cannot initialize database.
AEE_DB_ERR_BAD_RECORD Specified record is invalid.
AEE_DB_ERR_NO_RECINFO_STRUCT No pointer to RecInfo structure.
AEE_DB_ERR_BAD_NEW_RECORD New record to be added is invalid.
AEE_DB_ERR_NOT_ALLOWED Requested operation is not allowed on the

specified database (DB may be read only).
AEE_DB_ERR_NO_RECBUF No record buffer is allocated for this

database.
AEE_DB_ERR_MAX For range checking.

769

Data Types

AEE_DBRecInfo
Description:

This data structure defines the record information. The OEM layer returns information
on the record requested by OEM_DBRecordGet.

Definition:
typedef structure _AEE_DBRecInfo

{
word wRecID;
word wRecSize;
dword dwLastModified;
} AEE_DBRecInfo;

Members:

Comments:
None

See Also:
OEM_DBRecordGet()
Return to the List of data structures

wRecID ID of the record.
wRecSize Size of the record (in bytes), excluding the header.
dwLastModified Time when this record was last modified.

770

Data Types

AEEAppStart
Description:

This structure is sent on EVT_APP_START/EVT_APP_RESUME.

Definition:
typedef structure

{
int error;
AEECLSID clsApp;
IDisplay * pDisplay;
AEERect rc;
const char * pszArgs;
} AEEAppStart;

Members:

Comments:
None

See Also:
AEERect
Return to the List of data structures

error Filled by application, if there is an error.
clsApp Applet ID.
pDisplay Pointer to the IDisplay Interface object.
rc Rectangle for the applet.
pszArgs Pointer to character string of arguments. These arguments are also

passed using the
EVT_APP_BROWSE_FILE/EVT_APP_BROWSE_URL inputs.

771

Data Types

AEEBitmapInfo
Description:

This structure contains all of the information regarding the dimensions of a bitmap, for
both DIB and DDB.

Definition:
typedef structure

{
uint32 cx;
uint32 cy;
uint32 nDepth;
} AEEBitmapInfo;

Members:

Comments:
None.

See Also:
None
Return to the List of data structures

cx Number of pixels per row.
cy Number of pixel per column.
nDepth Number of bits per pixel.

772

Data Types

AEECallback
Description:

This structure specifies the data and functions for a callback registered with the
ISHELL_Resume() function.

Definition:
typedef structure _AEECallback AEECallback; structure _AEECallback

{
AEECallback * pNext;
void * pmc;
PFNCBCANCEL pfnCancel;
void * pCancelData;
PFNNOTIFY pfnNotify;
void * pNotifyData;
void * pReserved;
};

Members:

Comments:
None

See Also:
None
Return to the List of data structures

pNext Reserved and the caller must not modify this member.
pmc Reserved and the caller must not modify this member.
pfnCancel Pointer to the function called by the callback handler, if this callback

is cancelled. The caller must set this pointer to NULL.
pCancelData Data passed to pfnCancel. The caller must not modify this member.
pfnNotify This is the callback function that is invoked by AEE. The caller must

set this pointer to the function to be called by the AEE callback
handler.

pNotifyData Data to be passed to pfnNotify.
pReserved Reserved and this member is to be used by the callback handler.

773

Data Types

AEECallHistoryEntry
Description:

This struct contains the definition of each Call History entry Field. A Call History entry
is a collection of one or more of these Fields.

Definition:
typedef struct AEECallHistoryEntry

{
AEECallHistoryField *pFields;
uint16 wNumFields;
} AEECallHistoryEntry;

Members:

Comments:
None

See Also:
AEECallHistoryField
ICALLHISTORY_EnumNext()
Return to the List of data structures

pFields the array of fields
wNumFields number of fields in the array

774

Data Types

AEECallHistoryField
Description:

This struct contains the definition of each Call History entry Field. A Call History entry
is a collection of one or more of these Fields.

Definition:
typedef struct AEECallHistoryField

{
AEECLSID ClsId
uint16 wID;
uint16 wDataLen;
void *pData;
} AEECallHistoryField;

Members:

Comments:
None

See Also:
AEECallHistoryEntry
Return to the List of data structures

ClsId Class ID associated with the field ID. For predefined Fields, use a ClsID
of 0.

wID Field ID (ex AEECALLHISTORY_FIELD_NAME)
wDataLen Data Length
pData Data (form and length varies according to wID and ClsId)

775

Data Types

AEECameraNotify
Description:

This structure contains information of an event generated by ICamera object. It is sent
via the registered callback function.

Definition:
typedef struct AEECameraStatus {

ICamera * pCam;
int16 nCmd;
int16 nSubCmd;
int16 nStatus;
int16 nReserved;
void * pData;
uint32 dwSize;
} AEECameraStatus;

Members:

Comments:
If nCmd = CAM_CMD_SETPARM/CAM_CMD_GETPARM, then nSubCmd will be
nParmID (CAM_PARM_XXX).
If nCmd = CAM_CMD_START, then nSubCmd will be
CAM_MODE_PREVIEW/CAM_MODE_SNAPSHOT/CAM_MODE_MOVIE.

See Also:
ICAMERA_RegisterNotify()
ICAMERA_SetParm()
ICAMERA_GetParm()
ICAMERA_Start()
Return to the List of data structures

pCam ICamera object originating this callback
nCmd Command code. CAM_CMD_XXX
nSubCmd Sub command code (see comments)
nStatus Status code. CAM_STATUS_XXX
nReserved Reserved field
pData Context-based data
dwSize Context-based data size

776

Data Types

AEEDeviceInfo
Description:

This structure contains mobile device information requested in
ISHELL_GetDeviceInfo()

.Definition:
typedef struct

{
uint16 cxScreen;
uint16 cyScreen;
uint16 cxAltScreen;
uint16 cyAltScreen;
uint16 cxScrollBar;
uint16 wEncoding;
uint16 wMenuTextScroll;
uint16 nColorDepth;
EmptyEnum unused2;
uint32 wMenuImageDelay
uint32 dwRAM;
flg bAltDisplay:1;
flg bFlip:1;
flg bVibrator:1;
flg bExtSpeaker:1;
flg bVR:1;
flg bPosLoc:1;
flg bMIDI:1;
flg bCMX:1;
uint32 dwPromptProps;
uint16 wKeyCloseApp;
uint16 wKeyCloseAllApps;
uint32 dwLang;
uint16 wStructSize; /
uint32 dwNetLinger;
uint32 dwSleepDefer;
uint16 wMaxPath;
uint32 dwPlatformID;
} AEEDeviceInfo;

Members:
cxScreen Physical screen size (pixels)

cyScreen Physical screen size (pixels)

cxAltScreen Physical screen size of 2nd display

cyAltScreen Physical screen size of 2nd display

cxScrollBar Width of standard scroll bars

wEncoding Character set encoding (AEE_ENC_UNICODE,)

unused2 unused

777

Data Types

Comments:
None

See Also:
None
Return to the List of data structures

wMenuImageDelay Milliseconds that should be used for the delay
nColorDepth Color Depth (1 = mono, 2 = grey, etc.)

dwRAM Total RAM installed (RAM)

bAltDisplay Device has an alternate display (Pager)

bFlip Device is a flip-phone

bVibrator Vibrator installed

bExtSpeaker External speaker installed

bVR Voice recognition supported

bPosLoc Position location supported

bMIDI MIDI file formats supported

bCMX CMX audio supported

dwPromptProps Default prompt properties

wKeyCloseApp Key to close current app

wKeyCloseAllApps Key to close all applications (AVK_END is default)

dwLang ISO defined language ID

NOTE: In order to use the following fields, you MUST fill-in the wStructSize
element of the structure before passing this to the GetDeviceInfo call.

wStructSize Size of the struct. Need to be filled for the following fields to work

dwNetLinger PPP Linger Time in milliseconds

dwSleepDefer Time in milliseconds prior to the handset attempting to go into sleep
mode

wMaxPath Maximum length of the file name (including path name) supported on
the device

dwPlatformID ID used to uniquely identify the device platform.

778

Data Types

AEEDeviceItem
Description:

This specifies the ID of the item whose information is needed. This is used in the
function ISHELL_GetDeviceInfoEx()

Definition:
typedef int AEEDeviceItem

#define AEE_DEVICEITEM_CHIP_ID 1
#define AEE_DEVICEITEM_MOBILE_ID 2
#define AEE_DEVICEITEM_AMR_VOCODER_SUPPORT 3
#define AEE_DEVICEITEM_EVRC_VOCODER_SUPPORT 4
#define AEE_DEVICEITEM_IS96_VOCODER_SUPPORT 5
#define AEE_DEVICEITEM_IS96A_VOCODER_SUPPORT 6
#define AEE_DEVICEITEM_IS733_VOCODER_SUPPORT 7
#define AEE_DEVICEITEM_SMV_VOCODER_SUPPORT 8

Members:
The following Items are supported:

.

AEE_DEVICEITEM_CHIP_ID
Description:

This returns a String identifying the ID of the chipset. For QUALCOMM
chipsets, these strings are of the form: MSM3100, MSM3300,
MSM5100, etc.This information is returned as a AECHAR when
ISHELL_GetDeviceInfoEx() is invoked with this ID. When this ID is
passed to ISHELL_GetDeviceInfoEx(), the following details apply:
int ISHELL_GetDeviceInfoEx(IShell *po, AEEDeviceItem
nItem, void *pBuff, int *pnSize);

Parameters:
po: Pointer to the IShell object.
nItem: Specifies AEE_DEVICEITEM_CHIP_ID.
pBuff: Buffer capable of holding a AECHAR string.

pnSize: On input, this specifies the size of pBuff in bytes. On return, *pnSize contains
the actual size of pBuff filled by this function. If pBuff is NULL or smaller than the size
needed, *pnSize is filled with the actual size needed by this function if pnSize is NULL
on input, this function returns EBADPARM
AEE_DEVICEITEM_USER User defined or OEM defined

items to begin after this
AEE_DEVICEITEM_AMR_VOCODER_SUPPORT Is AMR (Adaptive Multi-Rate)

Vocoder Supported ?
AEE_DEVICEITEM_EVRC_VOCODER_SUPPORT Is EVRC (Enhanced Variable

Rate Codec) Vocoder
Supported ?

779

Data Types

Comments:
None

See Also:
ISHELL_GetDeviceInfoEx()
Return to the List of data structures

AEE_DEVICEITEM_IS96_VOCODER_SUPPORT Is QCELP-IS96(8K)(Qualcomm
Code Excited Linear Predictive
Coding) Vocoder Supported ?

AEE_DEVICEITEM_IS96A_VOCODER_SUPPORT Is QCELP-
IS96A(8K)(Qualcomm Code
Excited Linear Predictive
Coding) Vocoder Supported ?

AEE_DEVICEITEM_IS733_VOCODER_SUPPORT Is QCELP-
IS733(13K)(Qualcomm Code
Excited Linear Predictive
Coding) Vocoder Supported ?

AEE_DEVICEITEM_SMV_VOCODER_SUPPORT Is Selectable Mode Vocoder
Supported ?

AEE_DEVICEITEM_SYS_COLORS_DISP1 System color table for display 1
AEE_DEVICEITEM_SYS_COLORS_DISP2 System color table for display 2
AEE_DEVICEITEM_SYS_COLORS_DISP3 System color table for display 3
AEE_DEVICEITEM_SYS_COLORS_DISP4 System color table for display 4

780

Data Types

AEEDNSClass
Description:

This is a 16-bit integer used to hold DNS "class" values. Valid values are those defined
in Internet standards and supported by the server being queried.

Definition:
typedef int16 AEEDNSQType;

Members:
None

Comments:
None

See Also:
IDNS_AddQuestion()
Return to the List of data structures

781

Data Types

AEEDNSItem
Description:

Each AEEDNSItem structure describes either a DNS Question or a DNS Resource
Record.

Definition:
typedef struct AEEDNSItem {

const byte * pbyDomain;
int16 nType;
AEEDNSType nType;
AEEDNSClass nClass;
int32 nTTL;
const byte * pbyData;
int32 cbData;
} AEEDNSItem;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

pbyDomain The NAME field of the RR/Question record. This is given as a pointer into the
response data, and is in the DNS format for domain names (possibly using
header compression). Use IDNS_ParseDomain() to obtain a zero-terminated
string in dotted notation.

nType The TYPE field of the RR/Question record.

nClass The CLASS field of the RR/Question record.

nTTL RR-only 32-bit TTL value. Treat as a signed 32-bit int; note that multiple
records may have different TTLs, altough such server behavioy is
not recommended.

pbyData RR-only A pointer to the RDATA field of the RR record. Any domain names
within this memory range can be decoded using
IDNS_ParseDomain().

cbData RR-only Number of bytes in the RDATA record. Note that when pbyData[]
contains a domain name, cbData may be much smaller than the
resulting zero-terminated domain name (due to DNS header
compression.)

782

Data Types

AEEDNSResponse
Description:

AEEDNSResponse contains DNS response data. These items correspond directly to
fields as described in the DNS protocol specification (RFC1035).

Definition:
typedef struct AEEDNSResponse {

uint16 uFlags;
uint16 uReserved;
int16 nQuestions;
int16 nAnswers;
int16 nServers;
int16 nAdditional;
AEEDNSItem * pQuestions;
AEEDNSItem * pAnswers;
AEEDNSItem * pServers;
AEEDNSItem * pAdditional
} AEEDNSResponse;

Members:

The question records make use of only a few fields of the AEEDNSItem structure. The
remaining fields are left zero or NULL. pAnswers, pServers, pAdditional are pointers to
arrays of AEEDNSItem structures describing Resource Records. The sizes of these
array are given by nAnswers, nServes, and nAdditional, respectively.

Comments:
None

See Also:
AEEDNSItem
Return to the List of data structures

uFlags The flag field in the DNS message header

uReserved The reserved field in the DNS message header

nQuestions The number of "Question" records in the message

nAnswers The number of "Answer" records in the message

nServers The number of "Authority" or server records in the message

nAdditional The number of "Additional" records in the message

pQuestions The pointer to an array of AEEDNSItem structures describing
Question records. The size of this array is given by nQuestions.

783

Data Types

AEEDNSType
Description:

This is a 16-bit integer used to hold DNS "type" values. Valid values are those defined
in Internet standards and supported by the server being queried.

Definition:
typedef int16 AEEDNSType;

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

784

Data Types

AEEFileInfoEx
Description:

AEEFileInfoEx is used to contain extended information associated with a file.

Definition:
typedef struct _FileInfoEx

{
int nStructSize;
char attrib;
uint32 dwCreationDate;
uint32 dwSize;
char * pszFile;
int nMaxFile;
AECHAR * pszDescription;
int nDescriptionSize;
AEECLSID * pClasses;
int nClassesSize;
} AEEFileInfoEx;

Members:

Comments:
None

See Also:
FileInfo
Return to the List of data structures

nStructSize Size of the structure
attrib File attributes specified by FileAttrib
dwCreationDate File creation date
dwSize File size
pszName ASCIIZ name to be filled with the file name of max length

nMaxName
nMaxName Maximum size of name field filled
pszDescription Wide string description of the file with max size of nMaxDescription.
nMaxDescription Size in bytes of description
pClasses List of AEECLSIDs that own/use this file
nMaxClasses Size in bytes of pClasses list

785

Data Types

AEEFileUseInfo
Description:

AEEFileUseInfo is used to contain the file usage information.

Definition:
typedef struct _AEEFileUseInfo

{
uint16 wMaxFiles;
uint16 wFilesUsed;
uint32 dwMaxSpace;
uint32 dwSpaceUsed;
} AEEFileUseInfo;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

wMaxFiles Maximum number of files in EFS this Module is allowed to create

wFilesUsed Number of files currenty used by this Module

dwMaxSpace Maximum EFS Space this module is allowed to consume

dwSpaceUsed Total space currently used by this module so far

786

Data Types

AEEFontInfo
Description:

This structure describes characteristics of a font. Character cell height and baseline
offset are properties of a font; the values do not changed from character to character
within a font.
Each character's graphical representation is bounded by a rectangle called a character
cell. The height of this cell is a property of the font, and cell widths can vary from
character to character. When text is drawn opaquely, each character's cell is drawn to
a same-sized rectangle in the destination bitmap, in which the pixels are set to either
the background color or the foreground color. When a character is drawn transparently,
only the foreground pixels are drawn, and pixels that would otherwise take on the
background color are left unchanged.
A font's baseline is important for readability when different fonts are used on the same
line of text. The baseline divides the character cell into descent and ascent areas. The
descent area contains character desenders -- portions of a glyph that extend below the
bottom of most characters -- and any spacing included at the bottom of the character
cell. When different fonts are used on the same line of text, knowledge of the location
of the baseline within the character cell allows the application to align the baselines by
adjusting the vertical positioning of the characters.
This figure shows two adjacent character cells from a single font, illustrating how
nAscent and nDescent relate to the baseline and the height of the font:

----------- |
---X------- |
--X-X------ |
-X---X---X- | ascent = 7
-XXXXX---X- |
-X---X---X- |
-X---X---X-_|_________ baseline
---------X- |
-------XX-- | descent = 3
-----------_|__

total height = ascent + descent = 7 + 3 = 10

Definition:
typedef struct

{
int16 nAscent;
int16 nDescent;
} AEEFontInfo;

Members:
nAscent Maximum number of pixels that font extends above the baseline.
nDescent Maximum number of pixels that font extends below the baseline.

787

Data Types

Comments:
This structure may be extended in the future by adding new fields to the end.

See Also:
IFONT_GetInfo()
Return to the List of data structures

788

Data Types

AEEGPSConfig
Description:

This structure is used to configure the GPS engine provided by this interface.

Definition:
typedef struct _AEEGPSConfig {

AEEGPSMode mode;
uint16 nFixes;
uint16 nInterval;
AEEGPSOpt optim;
AEEGPSQos qos;
AEEGPSServer server;
} AEEGPSConfig;

Members:
mode The mode of operation to be configured for this interface

Possible options are:

AEEGPS_MODE_ONE_SHOT Only one position determination
request to be made. This option may
not be optimal for repeated position
determination requests.

AEEGPS_MODE_DLOAD_FIRST This mode is suited for applications
that would do repeated position
determination requests, and would
prefer the results to be computed
locally on the mobile device after
initial data is downloaded from the
server.

AEEGPS_MODE_TRACK_LOCAL This mode is suited for
applications intending to perform
tracking, and require frequent
fast location/velocity/ altitude
information. This mode also
requires minimizal requests to
the network for position
determination information.

AEEGPS_MODE_TRACK_NETWORK This mode is suited for
applications requiring tracking
that would prefer getting
accurate position determination
information from the network.

AEEGPS_MODE_DEFAULT The default mode of operation,
which is set to
AEEGPS_MOD_DLOAD_FIRST

789

Data Types

Comments:
None

See Also:
None
Return to the List of data structures

nFixes Estimated number of position determination requests that would be made
using this interface.

nInterval Estimated interval between fixes (in seconds).
optim The optimization required for this interface.

Possible values are:
AEEGPS_OPT_SPEED: Optimize for speed
AEEGPS_OPT_ACCURACY: Optimize for accuracy.
AEEGPS_OPT_DEFAULT: Default. Set for speed optimization.

qos Quality of service values between 1-255 are valid, 255 providing the highest
quality of service. This option may be ignored on certain mobile devices.

server Server configuration specifies the server type and configuration. Possible server
types are:

AEEGPS_SERVER_DEFAULT
AEEGPS_SERVER_IP
AEEGPS_SERVER_DBURST

If the server type is AEEGPS_SERVER_IP, the IP Address and port of the
Position Determination server must be specified.

790

Data Types

AEEGPSInfo
Description:

This structure is used to obtain GPS based position location information from the
system. The parameters returned are as per the TIA/EIA IS-801 standard.

Definition:
typedef struct _AEEGPSInfo {

uint32 dwTimeStamp;
uint32 status;
int32 dwLat;
int32 dwLon;
int16 wAltitude;
uint16 wHeading;
uint16 wVelocityHor;
int8 bVelocityVer;
AEEGPSAccuracy accuracy;
uint16 fValid;
uint8 bHorUnc;
uint8 bHorUncAngle;
uint8 bHorUncPerp;
uint16 wVerUnc;
} AEEGPSInfo;

Members:
dwTimeStamp: Time (in seconds since 1/6/1980) of this measurement
status: Response Status
dwLat: Latitude, 180/2^25 degrees, WGS-84 ellipsoid
dwLon: Longitude, 360/2^26 degrees, WGS-84 ellipsoid
wAltitude: Altitude, meters, WGS-84 ellipsoid
wHeading: Heading, 360/2^10 degrees
wVelocityHor: Horizontal velocity, 0.25 meters/second
bVelocityVer: Vertical velocity, 0.25 meters/second
accuracy: Accuracy of the data.
fValid: Flags indicating valid fields in the struct.
bHorUnc: Horizontal uncertainity
bHorUncAngle: Horizontal uncertainity at angle
bHorUncPerp: Horizontal uncertainty perpendicular
bVerUnc: Vertical uncertainity

Comments:
fValid indicates the fields set in the AEEGPSInfo structure. The following
flags are available.

AEEGPS_VALID_LAT: Valid latitude

791

Data Types

AEEGPS_VALID_LON: Valid longitude
AEEGPS_VALID_ALT: Valid altitude
AEEGPS_VALID_HEAD: Valid heading
AEEGPS_VALID_HVEL: Valid horizontal velocity
AEEGPS_VALID_VVEL: Valid vertical velocity
AEEGPS_VALID_HUNC: Valid horizontal uncertainity
AEEGPS_VALID_AUNC: Valid Horizontal uncertainity at angle
AEEGPS_VALID_PUNC: Valid horizontal uncertainity (orthogonal)

The accuracy is specified by 6 levels starting from AEEGPS_ACCURACY_LEVEL1

See Also:
None
Return to the List of data structures

792

Data Types

AEEGSM1xSig_NotifyMessageType
Description:

A pointer to AEEGSM1xSig_NotifyMessageType struct is sent as dwParam member
of the EVT_NOTIFY event when an application registers for
NMASK_GSM1xSIG_PROTOCOL_TYPE notification.

Definition:
typedef struct {

AEEGSM1xSig_NotifyMessageTypeEnum messageType;
 union {

AEEGSM1xSig_SignalingMessageType *signalMessage;
AEEGSM1xSig_RejecMessageType *rejectMessage;
} msg;

} AEEGSM1xSig_NotifyMessageType;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

messageType Indicates the type of message viz. Signaling or Reject

msg.signalMesage Contains the signaling payload.

msg.rejectMessage Contains the reject payload.

793

Data Types

AEEGSM1xSig_RejectMessageType
Description:

AEEGSM1xSig_RejectMessageType is used to send out a GSM1x Signaling Reject
message to the network using IGSM1xSig_SendSignalingReject().

Definition:
typedef struct {

byte ProtocolTypeRejected;
byte RejectCauseLength;
byte RejectCause[GSM1xSIG_REJECT_MAX];

} AEEGSM1xSig_RejectMessageType;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

ProtocolTypeRejected Protocol Type that is rejected. This is a 4 bit value
RejectCauseLength Length of the Reject Cause fields
RejectCause Holds the Reject Cause information

794

Data Types

AEEGSM1xSig_SignalingMessageType
Description:

AEEGSM1xSig_SignalingMessageType is used to send out a GSM1x Signaling
Message using IGSM1xSig_SendSignalingMessage()

Definition:
typedef struct {

byte ProtocolRevision;
byte ProtocolType;
byte ProtocolDataLen;
byte ProtocolData[GSM1xSIG_SIGNALING_MAX];

} AEEGSM1xSig_SignalingMessageType;

Members:

Comments:
None

See Also:
IGSM1xSig_SendSignalingMessage()
Return to the List of data structures

ProtocolRevision 4 bit field specifiying the Protocol Revision of GSM1x Sig Msg

ProtocolType 4 bit field specifying the Protocol Type of GSM1x Sig Msg

ProtocolDataLength Length of the protocl type specific field length

ProtocolData Array holding the Protocol Type Data

795

Data Types

AEEGSM1xControl_statusType
Description:

AEEGSM1xControl_statusType is sent as dwParam member of the EVT_NOTIFY
event when an application registers for NMASK_GSM1xSIG_STATUS_CHANGE
notification. This enum is also returned when applications call
IGSM1xSig_GetStatus().

Definition:
#define AEEGSM1XCONTROL_STATUS_SUCCESS (0x0000)
#define AEEGSM1XCONTROL_STATUS_NO_CARD (0x0001)
#define AEEGSM1XCONTROL_STATUS_NO_INFO_ON_CARD (0x0002)
#define AEEGSM1XCONTROL_STATUS_MODE_NOT_SUPPORTED (0x0003)
#define AEEGSM1XCONTROL_STATUS_NAM_SELECTION_FAILED (0x0004)
#define AEEGSM1XCONTROL_STATUS_BUF_TOO_SMALL (0x0005)
#define AEEGSM1XCONTROL_STATUS_FIELD_UNINITIALIZED (0x0006)
#define AEEGSM1XCONTROL_STATUS_VALUE_OUT_OF_RANGE (0x0007)
#define AEEGSM1XCONTROL_STATUS_INVALID_POINTER (0x0008)
#define AEEGSM1XCONTROL_STATUS_GSM1X_NOT_SUPPORTED (0x0009)
#define AEEGSM1XCONTROL_STATUS_CANNOT_READ_FROM_UIM (0x000A)
#define AEEGSM1XCONTROL_STATUS_CANNOT_WRITE_TO_UIM (0x000B)
#define AEEGSM1XCONTROL_STATUS_FAILURE_NV_WRITE (0x000C)
#define AEEGSM1XCONTROL_STATUS_FAILURE_NV_READ (0x000D)
#define AEEGSM1XCONTROL_STATUS_FAILURE_NAM_SELECT (0x000E)
#define AEEGSM1XCONTROL_STATUS_INVALID_DATA_GSM_DF (0x000F)
#define AEEGSM1XCONTROL_STATUS_INTERNAL_ERROR (0x0010)
#define AEEGSM1XCONTROL_STATUS_INVALID_PARAMETER (0x0011)
#define AEEGSM1XCONTROL_STATUS_INVALID_INFO_IN_NV (0x0012)
#define AEEGSM1XCONTROL_STATUS_INVALID_PRL (0x0013)
#define AEEGSM1XCONTROL_STATUS_COULD_NOT_CREATE_IPHONE (0x0014)
#define AEEGSM1XCONTROL_STATUS_CANNOT_SET_DESIRED_MODE (0x0015)
#define AEEGSM1XCONTROL_STATUS_INVALID_MODE (0x0016)

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

796

Data Types

AEELogBinMsgType
Description:

This represents the structure of the log data when using brew log type
AEE_LOG_TYPE_BIN_MSG as defined above. ILOGGER_PutMsg() fills this
structure using its function arguments.

Definition:
typedef PACKED struct{

uint8 header;
uint32 line;
uint32 args[MAX_LOG_TYPE_BIN_MSG_ARGS];
char pszMsg[MAX_LOG_TYPE_BIN_MSG_TEXT_SIZE];
} AEELogBinMsgType;

Comments:

See Also:
None
Return to the List of data structures

header b7,b6 - bits reserved
b5,b4 - number of args
b3 bit - file name present
b2,b1,b0 - message level

line line number in the log bucket where this log item was sent
args array containing at most MAX_LOG_TYPE_BIN_MSG_ARGS
pszMsg pszMsg contains two consecutive NULL terminated strings. The first if

the file name where the log message was sent, and the second is an
ASCII text message. The maximum size of this element is
MAX_LOG_TYPE_BIN_MSG_TEXT_SIZE.

797

Data Types

AEELogBucketType
Description:

Each log item is placed in one of 255 log buckets. By assigning a log bucket to each
log item the post parser is able to filter based on the bucket. Log items may be
seperated into subsystems, log types, etc...

Definition:
typedef uint8 AEELogBucketType;

#define AEE_LOG_BUCKET_FIRST 0
#define AEE_LOG_BUCKET_LAST 255

Comments:
How these buckets are used is up to the application developer

See Also:
None
Return to the List of data structures

798

Data Types

AEELogItemType
Description:

These are the different log types that distinguish the structure of the data contained in
the log item. AEE_LOG_TYPE_USER_BASE and above are available for application
developers to define thier own log data formats. The application developer is
responsible for eleminating any conflicts that may arrise due to multiple applications
using the same log type.

Definition:
typedef uint16 AEELogItemType;

#define AEE_LOG_TYPE_TEXT 0x000
#define AEE_LOG_TYPE_BIN_MSG 0x001
#define AEE_LOG_TYPE_BIN_BLK 0x002
#define AEE_LOG_TYPE_USER_BASE 0x100

Comments:
Predefined log item types include:

A user defined log item type

See Also:
None
Return to the List of data structures

AEE_LOG_TYPE_TEXT ASCII text message
AEE_LOG_TYPE_BIN_MSG AEELogTypeBinMsg
AEE_LOG_TYPE_BIN_BLK binary data block

AEE_LOG_TYPE_USER_BASE User must define own type structure for each user
type they use

799

Data Types

AEELogParamType
Description:

Possible parameters available to configure the ILOGGER interface or to get
information concerning the current state of the ILOGGER interface. In addition to the
list below, there may be OEM specific log parameters which will numerically start after
AEE_LOG_PARAM_LAST. See the specific implementation header files for more
information.

Definition:
typedef uint16 AEELogParamType

;

 AEE_LOG_PARAM_INSTANCE_ID 0x001 InstanceID is a developer defined ID number
that can be used as the developer wishes.
Possible uses are to distinguish between
different application thread, or different
application run-time states. Default instance
ID is zero

 AEE_LOG_PARAM_FILTER_ONE 0x002 Filter a single log bucket

 AEE_LOG_PARAM_FILTER_BLOCK 0x003 sets filters for a block of 32 buckets

 AEE_LOG_PARAM_SENT 0x004 Number of packets sent by an instance of
ILOGGER

 AEE_LOG_PARAM_DROPPED 0x005 Number of packets dropped by an instance
of ILOGGERDropeed packets do not include
packets that have been filtered.

 AEE_LOG_PARAM_FILE_FLUSH 0x006 Flushes the current log file and resets file
pointer to beginning of file. May only be used
with AEECLSID_LOGGER_FILE

 AEE_LOG_PARAM_FILE_MAX_SIZE 0x007 Sets the maximum size the log file may
become efaults to 1/2 the free EFS space.
May only be used with
AEECLSID_LOGGER_FILE

 AEE_LOG_PARAM_FILE_FREE_SPACE 0x008 Amount of free space left in the log file before
it reaches the maximum size set with the
AEE_LOG_PARAM_FILE_MAX_SIZE
parameter May only be used with
AEECLSID_LOGGER_FILE

 AEE_LOG_PARAM_FILE_NEW 0x009 Closes the current log file and creates a new
one using the specified name May only be
used with AEECLSID_LOGGER_FILE

 AEE_LOG_PARAM_LAST 0x100 This must be the last defined param type
OEM specific parameters start at this value,
See the specific implementation header files
for more information.

800

Data Types

Comments:
The following tables describes the parameter usage:

 AEE_LOG_PARAM_INSTANCE_ID
 SetParam: param - New instance ID,
 pParam - None
 GetParam: pParam - Address of memory location to place current instance ID
 AEE_LOG_PARAM_FILTER_ONE
 SetParam: param - Log bucket to filter, must be greater then 0 and less then
AEE_LOG_BUCKET_LAST
 pParam - Boolean value indicating weather to turn bucket on or off, TRUE
turns bucket on
 All buckets are off by default
 GetParam: pParam - None
 AEE_LOG_PARAM_FILTER_BLOCK
 SetParam: param - Which block of filters to set where 0 is the first block and param
 must be less then AEE_LOG_NUM_BUCKET_BLOCKS
 pParam - 32 bit value to set block to. Each bit represents one bucket
 GetParam: pParam - When calling which block to get where 0 is the first block, on
return the requsted 32 bit block
 AEE_LOG_PARAM_SENT
 SetParam: param - Number to preset sent count with, or zero to reset count,
 pParam - None
 GetParam: pParam - Address of memory location to place current number of
packets sent
 AEE_LOG_PARAM_DROPPED
 SetParam: param - Number to preset dropped count with, or zero to reset count,
 pParam - None
 GetParam: pParam - Address of memory location to place current number of
packets dropped
 AEE_LOG_PARAM_FILE_FLUSH
 SetParam: param - None
 pParam - None
 GetParam: Not supported
 AEE_LOG_PARAM_FILE_MAX_SIZE
 SetParam: param - New maximum log file size,
 pParam - none
 GetParam: pParam - address of memory location to place current maximum log
file size

801

Data Types

 AEE_LOG_PARAM_FILE_FREE_SPACE
 SetParam: Not supported
 GetParam: pParam - address of memory location to place remaining free space in
log file
 AEE_LOG_PARAM_FILE_NEW
 SetParam: param - File mode: _OFM_READWRITE or_OFM_APPEND,
 pParam - string containing name of new log file
 GetParam: Not supported

 *AEE_LOG_PARAM_FILE_NEW must be used to create new file but any other file
management must be done by the developer using IFILEMGR and IFILE.

See Also:
None
Return to the List of data structures

802

Data Types

AEELogRcdHdrType
Description:

Standard BREW log header version 2
This header is appended to the beginning of each outgoing
log packet.

Definition:
typedef PACKED struct{

AEELogVerHdrType verHdr;
uint32 upTime;
AEECLSID classID;
uint8 instanceID;
AEELogBucketType bucket;
AEELogItemType type;
} AEELogRcdHdrType;

Comments

See Also:
AEELogBucketType
AEELogItemType
Return to the List of data structures

verHdr Version and packet length information of the BREW log record header
upTime Number of milliseconds since the devices was powered on as returned

by the BREW helper function GETUPTIMEMS().
classID Class ID of the currently running application
instanceID Developer defined uint8 ID number that can be used as the developer

wishes. Possible uses are to distinguish between different application
thread, or different application run-time states.

bucket AEELogBucketType Logging bin number (word8)
type AEELogItemType Log type (word 16)

803

Data Types

AEELogVerHdrType
Description:

Starting with header version 2 and above this version header will always come first in
the BREW log packet (this does not include any transport medium headers such as the
serial packet headers). This version header defines the version of the following BREW
header (AEELogRcdHdrType) and the size of this entire BREW packet (not including
transport medium headers).

Definition:
typedef PACKED struct{

uint8 version;
uint16 length;
} AEELogVerHdrType;

Comments:

See Also:
None
Return to the List of data structures

version uint8 Log record header version (AEE_LOG_VERSION)
length Length of this entire uint16 BREW log packet

804

Data Types

AEEMedia
Description:

This structure defines the data members common across all IMedia-based classes.

Definition:
typedef struct _AEEMedia

{
INHERIT_AEEMedia(IMedia);
} AEEMedia;

Members:
INHERIT_AEEMedia(IMedia): A macro that declares the following members.
DECLARE_VTBL(iname): Declares the virtual table of the class
m_pIShell: Pointer to IShell
m_nRefs: Reference count
m_clsSelf: Class ID of the IMedia
m_nState: State of the media
m_bStateChanging: = TRUE, means IMedia is in state transition
m_md: Media data source/sink
m_pfnNotify: User registered callback function
m_pUser: User data passed when m_pfnNotify() is called
m_pszFile: Full path of the file name

Comments:
This structure is inherited by all the derived classes. Derived classes can directly use
the AEEMedia functions defined in this file if they inherit from structure and also can
use AEEMedia functions in their vtbls.

See Also:
None
Return to the List of data structures

805

Data Types

AEEMediaCallback
Description:

This structure defines IMedia-specific callback info structure wrapped around
AEECallback and IMedia callback info structures.

Definition:
typedef struct _AEEMediaCallback

{
int bInUse;
AEECallback cb;
AEEMediaCmdNotify cmdNotify;
} AEEMediaCallback;

Members:

Comments:
This structure is typically used by all the derived classes.

See Also:
AEEMedia_CallbackNotify()
Return to the List of data structures

bInUse Callback/Command availability; = TRUE, means this structure is in use.
cb Pre-loaded and does not change
cmdNotify IMedia callback-specific info

806

Data Types

AEEMediaCmdNotify
Description:

This structure is contains information regarding the event returned by IMedia through
an applet-registered callback.

Definition:
typedef structure

{
AEECLSID clsMedia;
IMedia * pIMedia;
int nCmd;
int nSubCmd;
int nStatus;
void * pCmdData;
uint32 dwSize;
} AEEMediaCmdNotify;

Members:

Comments:
The following table gives the possible events that contain command, subcommand,
status, and context sensitive data:

clsMedia CLSID of IMedia concrete class.
pIMedia Pointer to IMedia.
nCmd Command code.
nSubCmd Subcommand code, if any or 0 (zero).
nStatus Status code.
pCmdData Contains one of the values listed above.
dwSize Size of pCmdData.

nCmd nSubCmd nStatus
pData
[optional]

MM_CMD_SETMEDIA
PARM

MM_PARM_XXX
(See
IMEDIS_SetMediaParm
())

MM_STATUS_DONE <Depends
on parm>

MM_STATUS_ABORT

MM_CMD_GETMEDIA
PARM

MM_PARM_XXX
(See
IMEDIA_GetMediaParm
())

MM_STATUS_DONE <Depends
on parm>

MM_STATUS_ABORT

MM_CMD_PLAY 0 MM_STATUS_START

807

Data Types

MM_STATUS_DONE

MM_STATUS_ABORT

MM_STATUS_MEDIA_SP
EC

 [Ptr to
MediaSpe
c]

MM_STATUS_TICK_UPD
ATE

MM_STATUS_DATA_IO_D
ELAY

Elapsed
Time in
MS

MM_STATUS_SEEK [Elapsed
Time in
MS]

MM_STATUS_SEEK_FAIL

MM_STATUS_PAUSE Elapsed
Time in
MS

MM_STATUS_PAUSE_FAI
L

MM_STATUS_RESUME Elapsed
Time in
MS

MM_STATUS_RESUME_F
AIL

MM_STATUS_REPEAT [Elapsed
Time in
MS]

MM_CMD_RECORD 0 MM_STATUS_START

MM_STATUS_DONE

MM_STATUS_ABORT

MM_STATUS_MEDIA_SP
EC

 [Ptr to
MediaSpe
c]

MM_STATUS_TICK_UPD
ATE

MM_STATUS_DATA_IO_D
ELAY

[Elapsed
Time in
MS]

MM_STATUS_SEEK [Elapsed
Time in
MS]

808

Data Types

See Also:
PFNMEDIANOTIFY
IMEDIA_SetMediaParm()
IMEDIA_GetMediaParm()
IMEDIA_Play()
IMEDIA_Record()
IMEDIA_GetTotalTime()
Return to the List of data structures

MM_STATUS_SEEK_FAIL

MM_STATUS_PAUSE [Elapsed
Time in
MS]

MM_STATUS_PAUSE_FAI
L

MM_STATUS_RESUME [Elapsed
Time in
MS]

MM_STATUS_RESUME_F
AIL

MM_STATUS_SPACE_WA
RNING

MM_STATUS_SPACE_ER
ROR

MM_CMD_GETTOTAL
TIME

0 MM_STATUS_DONE Total Time
in MS

MM_STATUS_ABORT

809

Data Types

AEEMediaData
Description:

This structure defines the stream type and context sensitive data associated with the
media data.

Definition:
typedef structure {

AEECLSID clsData;
void * pData;
uint32 dwSize;
} AEEMediaData;

Members:

Comments:
Following table gives details of context sensitive data for predefined stream types.
Read/Write means Playback/Record.

For playback, cls can be set to CLSID of any ISource-based class with pData set to
the corresponding interface pointer.
For recording, only MMD_FILE_NAME/MMD_BUFFER types are allowed. Existing file
name or memory buffer will be overwritten.

See Also:
None
Return to the List of data structures

clsData Type of Stream.
pData Context sensitive data.
dwSize Context sensitive data.

clsData Mode pData dwSize
MMD_FILE_NAME Read/Write File name 0

MMD_BUFFER Read/Write Buffer pointer data size or 0

MMD_ISOURCE Read only ISource * data size or 0

810

Data Types

AEEMediaMIDISpec
Description: MIDI format specification

Definition:
typedef struct AEEMediaMIDISpec

{
byte nFormat;
uint16 nTracks;
int16 nDivision;
} AEEMediaMIDISpec;

Members:

Comments:
This structure is optionally returned in MM_MEDIA_SPEC callback by IMedia object
handling MIDI format.

See Also:
IMEDIA_Play()
Return to the List of data structures

nFormat SMF format 0, 1 or 2
nTracks Number of tracks in the SMF
nDivision Timing info

811

Data Types

AEEMediaMP3Spec
Description: MP3 format specification

Definition:
typedef struct AEEMediaMP3Spec

{
int nVersion;
byte nLayer;
boolean bCRCFlag;
uint16 wBitRate;
uint32 dwSampleRate;
byte nChannel;
byte nExtension;
boolean bCopyrightFlag;
boolean bOriginalFlag;
byte nEmphasis;
char szTitle[MM_MP3_ID3_TAG_LENGTH];
char szArtist[MM_MP3_ID3_TAG_LENGTH];
char szAlbum[MM_MP3_ID3_TAG_LENGTH];
char szYear[4];
char szComment[MM_MP3_ID3_TAG_LENGTH];
byte nGenre;
} AEEMediaMP3Spec;

Members:

Comments:
This structure is optionally returned in MM_MEDIA_SPEC callback by IMedia object
handling MP3 format.

nVersion MPEG version
nLayer MPEG layer compression: 1, 2 or 3
bCRCFlag TRUE, if CRC protection
wBitRate Bit rate [Kilo bits]
dwSampleRate Sampling rate [Kilo bits]
nChannel Channel
nExtension Only when JOINT_STEREO
bCopyrightFlag TRUE, if copyrighted
bOriginalFlag TRUE, if original
nEmphasis Audio emphasis
szTitle Song title
szArtist Song performer
szAlbum Album with the song
szYear Year Album released
szComment Text comment
nGenre ID3 genre tag

812

Data Types

See Also:
IMEDIA_Play()
Return to the List of data structures

813

Data Types

AEEMediaSeek
Description:

This enum specifies the seek reference in IMEDIA_Seek() API.

Definition:
typedef enum AEEMediaSeek

{
MM_SEEK_START = 0,
MM_SEEK_END,
MM_SEEK_CURRENT
} AEEMediaSeek;

Members:
MM_SEEK_START: Seek from the beginning of media
MM_SEEK_END: Seek from the end of media
MM_SEEK_CURRENT: Seek from the current position of the media

Comments:
IMEDIA_Rewind() and IMEDIA_FastForward() use MM_SEEK_CURRENT.

See Also:
IMEDIA_Seek()
IMEDIA_Rewind()
IMEDIA_FastForward()
Return to the List of data structures

814

Data Types

AEENotify
Description:

A pointer to this structure is passed as dwParam when EVT_NOTIFY event is sent to
an application. An application receives this event as part of the notification(s) for which
it has registered.

Definition:
typedef structure

{
AEECLSID cls;
INotifier * pNotifier;
uint32 dwMask;
void * pData;
AEENotifyStatus st;
} AEENotify;

Members:

Comments:
None

See Also:
ISHELL_RegisterNotify() (See the BREW API Reference Guide.)
ISHELL_Notify() (See the BREW API Reference Guide.)
AEENotifyStatus
Return to the List of data structures

cls Notifier class.
pNotifier Notifier object that issued the notification.
dwMask Mask of bits that occurred.
pData Notification-specific data.
st Indicates to IShell, if the application processed the notification.

815

Data Types

AEENotifyStatus
Description:

This enumerated type defines the notification status values that are returned to the
shell by an applet that receives a notification. The applet returns the status of its
processing of the notification by setting the st member of the AEENotify structure it is
passed along with theEVT_NOTIFY event.

Definition:
typedef enum

{
NSTAT_PROCESSED,
NSTAT_IGNORED,
NSTAT_STOP
} AEENotifyStatus;

Members:

Comments:
None

See Also:
ISHELL_RegisterNotify() (See the BREW API Reference Guide.)
ISHELL_Notify() (See the BREW API Reference Guide.)
AEENotify
Return to the List of data structures

NSTAT_PROCESSED The applet successfully processed the notification.
NSTAT_IGNORED The applet ignored the notification.
NSTAT_STOP The applet processed the notification, and the notification

cannot be sent to any other applets that have registered to
be notified of this event.

816

Data Types

AEEOrientationInfo
Description:

This structure

Definition:
typedef struct _AEEOrientationInfo {

uint16 wSize;
uint32 dwTimeStamp;
uint16 fValid;
uint16 wAzimuth;
uint16 wReserved1;
uint16 wReserved2;
} AEEOrientationInfo;

Members:

Comments:
None

See Also:
IPOSDET_GetOrientation()
Return to the List of data structures

wSize size of the data structure AEEOrientationInfo.
dwTimeStamp Time (in seconds since 1/6/1980) of this measurement
fValid Flags indicating valid fields in the struct.
wAzimuth Angle 0 - 359 degress and 59 arcminutes.

bits 0-5 contain arcminutes
bits 6-15 contain degrees.
This is the heading angle in the local horizontal plane measured
clockwise from true North

wReserved1 Reserved for support of tilt (pitch and roll)
wReserved2 Reserved field.

817

Data Types

AEEObjectHandle
Description:

Object handle returned by AEEObjectMgr_Register() API.

Definition:
typedef uint32 AEEObjectHandle

Members:
None

Comments:
Following registration, use the object handle to get the object pointer.

See Also:
None
Return to the List of data structures

818

Data Types

AEEParmInfo
Description:

This structure specifies finite equally spaced discrete values.

Definition:
typedef struct AEEParmInfo

{
int32 nMin;
int32 nMax;
int32 nStep;
int32 nDefault;
int32 nCurrent;
} AEEParmInfo;

Members:

Comments:
None.

See Also:
None
Return to the List of data structures

nMin Minimum value
nMax Maximum value
nStep Increment/Decrement steps
nDefault Default value
nCurrent Current value

819

Data Types

AEEPosAccuracy
Description:

This data structure describes the Position Location Information Accuracy.

Definition:
typedef enum

{
AEE_ACCURACY_LOW,
AEE_ACCURACY_MED,
AEE_ACCURACY_HIGH
} AEEPosAccuracy;

Members:
None

Comments:
The position location information precision is directly related to the time it takes to
satisfy the ISHELL_GetPosition() request.

See Also:
ISHELL_GetPosition()
Return to the List of data structures

820

Data Types

AEEPositionInfo
Description:

This data structure describes thePosition Location Information

Definition:
typedef structure

{
int32 dwLat;
int32 dwLon;
uint32dwTimeStamp;
} AEEPositionInfo;

Members:

Comments:
None.

See Also:
ISHELL_GetPosition()
Return to the List of data structures

dwLat Latitude, 180/2^25 degrees, WGS-84 ellipsoid.
dwLon Longitude, 360/2^26 degrees, WGS-84 ellipsoid.
dwTimeStamp Time Stamp, seconds since 1/6/1980.

821

Data Types

AEERasterOp
Description:

This ENUM specifies the raster operation for bit-block transfers of bitmaps, and
drawing images on the screen with the functions in the IImage Interface.

Definition:
typedef enum

{
AEE_RO_OR,
AEE_RO_XOR,
AEE_RO_COPY,
AEE_RO_NOT,
AEE_RO_MASK,
AEE_RO_MERGENOT,
AEE_RO_MASKNOT,
AEE_RO_TRANSPARENT,
AEE_RO_TOTAL
} AEERasterOp;

Members:
NOTE:
AEE_RO_MASK is deprecated; use AEE_RO_OLDTRANSPARENT instead.
AEE_RO_MASKNOT is deprecated; use AEE_RO_ANDNOT instead.
AEE_RO_TOTAL is not a raster operation in itself but important to list here.

AEE_RO_OR SRC .OR. DST*.
AEE_RO_XOR SRC .XOR. DST*.
AEE_RO_COPY DST = SRC*.
AEE_RO_NOT DST = (!SRC)*.
AEE_RO_OLDTRANSPARENT Same as AEE_RO_TRANSPARENT. In

monochrome mode it is equivalent to DST .AND.
SRC*.

AEE_RO_MERGENOT DST .OR. (!SRC).
AEE_RO_ANDNOT DST .AND. (!SRC).
AEE_RO_TRANSPARENT The SRC* pixels with a certain color are transparent

meaning that the corresponding DST* pixels are
seen through:
For a monochrome device, the color is
RGB_MASK_MONO, which is white.
For a gray -scale devices, the color is
RGB_MASK_GREY, which is white
For a color device, the color is
RGB_MASK_COLOR, which is magenta.

AEE_RO_TOTAL The total number of raster operations
* Where SRC is the source bitmap buffer, and DST is the destination bitmap buffer.

822

Data Types

Comments:
None

See Also:
None
Return to the List of data structures

823

Data Types

AEERect
Description:

AEERect is used to define a rectangle used by various Display, Graphics, Text Control,
and other helper functions.

Definition:
typedef structure

{
int16 x, y;
int16 dx, dy;
} AEERect;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

x The horizontal coordinate for the beginning (top left corner) of the rectangle.
y The vertical coordinate for the beginning (top left corner) of the rectangle.
dx The width of the rectangle (in pixels).
dy The height of the rectangle (in pixels).

824

Data Types

AEERingerCat
Description:

This data structure contains information about a ringer category.

Definition:
typedef structure _AEERingerCat

{
AEERingerCatID id;
AEERingerID idRinger;
AECHAR szName[MAX_RINGER_CATEGORY];
} AEERingerCat;

Members:

Comments:
None

See Also:
AEERingerID
Return to the List of data structures

id ID for the category for use in later calls.
idRinger ID of default ringer for category.
szName Wide string name of category.

825

Data Types

AEERingerCatID
Description:

Ringer category identifier.

Definition:
None

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

826

Data Types

AEERingerEvent
Description:

AEERingerEvent specifies the different notifications sent by the IRingerMgr Interface.
These are sent using the notification function registered using
IRINGERMGR_RegisterNotify().

Definition:
typedef enum

{
ARE_NONE,
ARE_PLAY,
ARE_CREATE,
ARE_WRITE
} AEERingerEvent;

Members:

Comments:
None

See Also:
PFNRINGEREVENT
IRINGERMGR_RegisterNotify()
Return to the List of data structures

ARE_NONE No notification is sent.
ARE_PLAY Sent when play is done or when IRINGERMGR_Stop() is

called.
ARE_CREATE Sent when creation of the ringer is done or when an error

occurs.
ARE_WRITE Sent any time the ringer file is written to.

827

Data Types

AEERingerID
Description:

Ringer identifier.

Definition:
None

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

828

Data Types

AEERingerInfo
Description:

This data structure contains information about a ringer.

Definition:
typedef struct _AEERingerInfo

{
AEERingerID id;
AEESoundPlayerFile format;
char szFile[MAX_FILE_NAME];
AECHAR szName[MAX_RINGER_NAME];
} AEERingerInfo;

Members:

Comments:
None

See Also:
AEERingerID
AEESoundPlayerFile
Return to the List of data structures

id ID of the ringer.
format Sound format of the ringer.
szFile[MAX_FILE_NAME] Full file path to the ringer file. 0(zero) string, if read-

only.
szName[MAX_RINGER_NAME] Name of the ringer.

829

Data Types

AEERLP3Cfg
Description:

The network layer of some devices may use RLP3 under PPP, which might be able to
be configured. This is the data structure that represents RLP3 configuration. Pass this
struct as pOptVal to OEMNet_SetRLP3Cfg().

Definition:
typedef struct AEERLP3Cfg {

byte ucFwdNakRounds;
byte aucFwdNaksPerRound[3];
byte ucRevNakRounds;
byte aucRevNaksPerRound[3];
}AEERLP3Cfg;

Members:

Comments:
• The Maximum NAK count can be 3 in any round. If it's greater than 3, SetOpt

returns AEE_NET_EBADOPTVAL
• If NakRounds is less than 3, the RLP layer ignores the values in the

NaksPerRound that correspond to those extra rounds.
Example:
if ucFwdNaksPerRound is set to 2, aucFwdNaksPerRound[2] is ignored

• To set CUR RLP (current) option, the data connection must be active.
• if NEG RLP values cannot be modified, SetOpt returns EBADPARM

See Also:
OEMNet_SetRLP3Cfg()
Return to the List of data structures

ucFwdNakRounds number forward NAK rounds (3 max)

aucFwdNaksPerRound NAKs per round, forward

ucRevNakRounds number reverse NAK rounds (3 max)

aucRevNaksPerRound NAKs per round, reverse

830

Data Types

AEESectorInfo
Description:

This structure is used to obtain sector based position location information from the
system.

Definition:
typedef struct _AEESectorInfo

{
uint16 wSysID;
uint16 wNetID;
uint16 wBaseID;
uint16 wBaseClass;
uint16 wBestPN;
uint16 wBestPN;
uint16 wPacketZoneID;
uint16 wMobileCountryCode;
}AEESectorInfo;

Members:

Comments:
None

See Also:
IPOSDET_GetSectorInfo()
Return to the List of data structures

 wSysID System Identification
 wNetID Network Identification
 wBaseStationID Base Station Identification
 wBaseStationClass Base Station Class
 wBestPN Best Pilot
 wPacketZoneID Packet Data Service Zone Identifier
 wMobileCountryCode Mobile country code

831

Data Types

AEESize
Description:

This structure specifies the size.

Definition:
typedef struct AEESize

{
int32 cx;
int32 cy;
} AEESize;

Members:

Comments:
None.

See Also:
None
Return to the List of data structures

cx Width
cy Height

832

Data Types

AEESMSMsg
Description:

This structure is given to the application as a dwParam parameter of the EVT_NOTIFY
event as part of the NMASK_TAPI_SMS_TEXT or the NMASK_TAPI_SMS_TS
notifications. The dwParam is of type AEENotify. The member pData contains the
actual message. Pass this to ITAPI_ExtractSMSText() to extract the formatted text.

Definition:
None

Members:
None

Comments:
None

See Also:
AEENotify
Return to the List of data structures

833

Data Types

AEESMSTextMsg
Description:

This structure is given to the application as a dwParam parameter of the EVT_NOTIFY
event as part of the NMASK_TAPI_SMS_TEXT notification. The dwParam is of type
AEENotify. The member pData contains the actual message. Pass this to
ITAPI_ExtractSMSText() to extract the formatted text.

Definition:
typedef struct

{
uint16 nChars;
char szText[1];
} AEESMSTextMsg;

Members:

Comments:
None

See Also:
ITAPI_ExtractSMSText()
Return to the List of data structures

nChars Number of characters.
szText[1] Size of the Text

834

Data Types

AEESoundPlayerFile
Description:

AEESoundPlayerFile indicates the type of file being played.

Definition:
typedef enum

{
AEE_SOUNDPLAYER_FILE_UNKNOWN,
AEE_SOUNDPLAYER_FILE_MIDI,
AEE_SOUNDPLAYER_FILE_MP3,
AEE_SOUNDPLAYER_FILE_LAST
} AEESoundPlayerFile;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

AEE_SOUNDPLAYER_FILE_UNKNOWN Invalid type.
AEE_SOUNDPLAYER_FILE_MIDI MIDI.
AEE_SOUNDPLAYER_FILE_MP3 MP3.
AEE_SOUNDPLAYER_FILE_LAST Reserved.

835

Data Types

AEETextInputMode
Description:

This enumerated type specifies the text-entry modes that can be used to enter text into
a text control. The function ITEXTCTL_SetInputMode() is used to select the input
mode that is used for a particular text control instance.

Definition:
typedef enum

{
AEE_TM_NONE,
AEE_TM_CURRENT,
AEE_TM_SYMBOLS,
AEE_TM_LETTERS,
AEE_TM_RAPID,
AEE_TM_NUMBERS
} AEETextInputMode;

Members:

Comments:
The available text entry modes differ with each BREW-enabled device.

See Also:
ITEXTCTL_SetInputMode()
Return to the List of data structures

AEE_TM_NONE No input mode is currently specified.The default mode is
AEE_TM_LETTERS.

AEE_TM_CURRENT Designates the currently active input mode.
AEE_TM_SYMBOLS Key presses enter the special symbol (if any) associated with

each key.
AEE_TM_LETTERS Key presses enter the letter of the alphabet associated with

each key.
AEE_TM_RAPID Rapid (T9) mode is to be used.
AEE_TM_NUMBERS Key presses enter the number associated with each key.
AEE_TM_MAX AEE_TM_NUMBERS
AEE_TM_USER AEE_TM_MAX +1
AEE_TM_FIRST_OEM AEE_TM_USER, Oem added modes start at this value.
AEE_TM_RESERVED 0x7000 and up are reserved for BREW

836

Data Types

AEETextInputModeInfo
Description:

This structure contains the an AEETextInputMode and a buffer to hold the string that is
associated with that mode to be filled when using the ITEXTCTL_GetInputMode()
function.

Definition:
typedef structure _AEETextInputModeInfo

{
AEETextInputMode tmMode;
AECHAR modeString[MAX_TEXT_MODE_SIZE];
} AEETextInputModeInfo;

Members:

Comments:
The available text entry modes differ with each BREW-enabled device.

See Also:
ITEXTCTL_GetInputMode()
AEETextInputMode
Return to the List of data structures

tmMode Text Mode enum entry.
modeString String that is associated with the mode.

837

Data Types

AEETileMap
Description:

This struct describes a tile map.

Definition
typedef struct {

uint16 *pMapArray;
uint32 unFlags;
uint32 reserved[4];
int32 x;
int32 y;
uint16 w;
uint16 h;
uint8 unTileSize;
uint8 reserved2[3];
} AEETileMap;

Members:
pMapArray Array of tile indices and properties. This is a one-dimensional representation

of the two-dimensional map. The rows of the map are unwrapped to make this
one-dimensional array. (The first element of the second row follows the last
element of the first row.) The bottom ten bits of each element are used for the
index into the tile buffer. (TILE_INDEX_MASK masks these bits.) The special
index value of TILE_INDEX_NOTHING means “don't draw a tile here.” The
TILE_FLIP_, TILE_ROTATE_, and TILE_TRANSPARENT flags are applied to
the elements of this array. The special value of pMapArray == NULL signifies
that this is the last AEETileMap structure in the array passed to
ISPRITE_DrawTiles(). In this case, the other members of the AEETileMap
structure are ignored.

unFlags Flags that apply to the entire tile map. Currently, only MAP_FLAG_WRAP is
defined.

reserved Reserved for future use. It is VERY important that these be set to zero.

x The screen x-coordinate where the upper left corner of the background will be
drawn.

y The screen y-coordinate where the upper left corner of the background will be
drawn.

w The width dimensions of tile map, specified in units of tiles. These are not the
literal dimensions. Instead, the MAP_SIZE_ values are used here.

h The height dimensions of tile map, specified in units of tiles. These are not the
literal dimensions. Instead, the MAP_SIZE_ values are used here.

unTileSize Size of the tiles. This is one of the TILE_SIZE_ values.

reserved2 Reserved for future use. It is VERY important that these be set to zero.

838

Data Types

Comments:
None

See Also:
ISPRITE_DrawTiles(),
Tile Properties
Tile Map Properties
Return to the List of data structures

839

Data Types

AEETransformMatrix
Description:

This struct describes a 2X2 matrix used for doing complex transformations.

Definition:
typedef struct {

int16 A;
int16 B;
int16 C;
int16 D;
} AEETransformMatrix;

Members:
A, B, C, D: Fixed point values with and 8-bit integer part and an 8-bit fractional part.
(For example, 2.5 would be represented as 2.5 * 256 or 640.) This makes up a 2x2
matrix as follows

[A B
C D]

Comments:
Some example transforms
Scale by 2.5: A = 640, B = 0,
C = 0, D = 640.
Rotate: A = 256 * cos(angle), B = 256 * sin(angle),
C = 256 * -sin(angle), D = 256 * cos(angle).
Note: The above values have already been converted to fixed point.

See Also:
ITRANSFORM_TransformBltComplex()
Return to the List of data structures

840

Data Types

AEEUDPUrgent
Description:

The physical layer of some devices may support various modes of data The physical
layer of some devices may support various modes of data communication. This struct
provides information about whether lower-latency communication is possible when
PPP is asleep instead of waiting for complete wakeup in order to send a user
datagram.

Definition:
typedef struct AEEUDPUrgent

{
boolean bUrgentSupported;
uint16 nUrgentLimit;
} AEEUDPUrgent;

Members:

Comments:
The flag and limit are only advisory. It may be that data will end up blocking for PPP
wakeup anyway even if bUrgentSupported is TRUE. Similarly, the actual supported
urgent payload limit may be smaller than offered, and can be context and environment
dependent.

See Also:
OEMNet_GetUrgent()
Return to the List of data structures

bUrgentSupported TRUE if data may be deliverable while PPP is asleep, FALSE if
not

nUrgentLimit Maximum number of bytes of user data which may be sent per
packet in this mode

841

Data Types

Camera Command codes
Description:

Command code is returned via registered callback function to indicate event type and
to return data to client. AEECameraStatus::nStatus in the GetStatus() function called
from callback function contains the following command codes.

Definition:

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

CAM_CMD_BASE Base used by
IMedia

CAM_CMD_USER_BASE Base for derived
class

CAM_CMD_SETPARM SetParm() nSubCmd = nParmID
CAM_CMD_GETPARM GetParm() nSubCmd = nParmID
CAM_CMD_START Start() nSubCmd =

CAM_MODE_PREVIEW,
CAM_MODE_SNAPSHOT,
CAM_MODE_MOVIE

CAM_CMD_ENCODESNAPSHOT EncodeSnapshot()

842

Data Types

Camera Control Parameters
Description:
CAM_PARM_XXX

These parameters (CAM_PARM_XXX) allow setting/getting the camera parameters.
They are used in ICAMERA_SetParm() and ICAMERA_GetParm() APIs.

Definition:CAM_PARM_MEDIA_DATA
Set: Sets the media data before encoding. This is done in Ready mode before calling
ICAMERA_RecordSnapshot() or ICAMERA_RecordMovie()

p1 = AEEMediaData *
p2 = MIME string (NULL terminated)

Get: Gets the current media data.
p1 = AEEMediaData *
p2 = Pointer to MIME string (const char **)

Note: String p2 should be copied and should not be freed.
CAM_PARM_VIDEO_ENCODE
CAM_PARM_AUDIO_ENCODE

Set: Sets the active video/audio encode type for encoding. This is done in Ready mode
before calling ICAMERA_RecordSnapshot() or ICAMERA_RecordMovie()

p1 = CAM_ENCODE_XXX or AEECLSID of the media format
p2 = Extra info regarding the encoding like sub formats.

Get: Gets the current active encode type.
p1 = Pointer to active encode type.
p2 = Extra info regarding the encoding like sub formats.

CAM_PARM_SIZE
Set: Sets the size of the picture to be recorded. This is done in Ready mode before
calling ICAMERA_RecordSnapshot() or ICAMERA_RecordMovie().

p1 = AEESize *
Get: Gets the current picture size.

p1 = AEESize *
CAM_PARM_DISPLAY_SIZE

Set: Sets the frame display size for preview and movie modes.
p1 = AEESize *

Get: Gets the current frame display size.
p1 = AEESize *

CAM_PARM_DEFER_ENCODE
Set: This parm enables/disables deferring of the frame (snapshot) encoding done by
ICAMERA_RecordSnapshot() API.

p1 = boolean. TRUE => Defer enabled.
Get: Gets the current value

843

Data Types

p1 = boolean *
CAM_PARM_MODE

Get: Gets the camera mode.
p1 = Pointer to CAM_MODE_XXX
p2 = Pointer to boolean: TRUE/FALSE: Paused/Resumed.

CAM_PARM_IS_SUPPORT
Get: Checks if specified parm is supported.
p1[in] = ParmID
p2[out] = Pointer to boolean: TRUE/FALSE => Supported/Unsupported.

CAM_PARM_IS_MOVIE
Get: Checks if camera records movie.
p1[out] = Pointer to boolean: TRUE/FALSE => Supported/Unsupported.

CAM_PARM_PIXEL_COUNT
Get: Returns camera pixel count.
p1[out] = AEESize *

CAM_PARM_VIDEO_ENCODE_LIST
CAM_PARM_AUDIO_ENCODE_LIST

Get: Returns list of supported video/audio encoding formats.
Output:

p1 = Pointer to NULL-terminated list of AEECLSID (AEECLSID **)
Note: The list should be copied and should not be freed.

CAM_PARM_SIZE_LIST
Get: Returns list of discrete sizes supported or continuos range (e.g. any size between
10x10 to 100x150) for specified mode.

Input:
p1 = CAM_MODE_SNAPSHOT/CAM_MODE_MOVIE (*ppList must contain
this value)

Output:
p1 = Pointer to NULL-size terminated list of AEESize (ppList of type AEESize
**)
If NULL, indicates that any value is supported.
p2 = Pointer to boolean, bRange, when TRUE indicates the passed list
is a NULL-terminated paired list (i.e. multiple of 2) of ranges

Note: The list should be copied and should not be freed.
CAM_PARM_DISPLAY_SIZE_LIST

Get: Returns list of discrete display sizes (typically for preview or movie mode)
supported or continuos range (e.g. any size between 10x10 to 100x150) for specified
mode.

Input:

844

Data Types

p1 = CAM_MODE_PREVIEW/CAM_MODE_MOVIE (*ppList must contain this
value)

Output:
p1 = Pointer to NULL-size terminated list of AEESize (ppList of type AEESize
**) If NULL, indicates that any value is supported.
p2 = Pointer to boolean, bRange, when TRUE indicates the passed list is a
NULL-terminated paired list (i.e. multiple of 2) of ranges

Note: The list should be copied and should not be freed.
CAM_PARM_FPS_LIST

Get: Returns list of supported discrete frames per second(FPS) or continuos range
(e.g. any size between 5 to 30) for specified mode.

Input:
p1 = CAM_MODE_PREVIEW/CAM_MODE_MOVIE (*ppList must contain this
value)

Output:
p1 = Pointer to NULL-terminated list of uint32 dwFPS (ppList of type uint32 **).
See dwFPS format in CAM_PARM_FPS documentation. If NULL, indicates
that any value is supported.
p2 = Pointer to boolean, bRange, when TRUE indicates the passed list is a
NULL-terminated paired list (i.e. multiple of 2) of ranges

Note: The list should be copied and should not be freed.
CAM_PARM_OVERLAY

Set: Sets the overlay image that will be part of the recorded picture. This operation is
done any camera mode.

p1 = IBitmap *
Note: You can add overlays on top of another image by calling this function repeatedly
with different images. To clear ALL overlays, call this function with p1 = 0, p2 = NULL.
Get: Gets the current overlay info.

p1 = IBitmap *
CAM_PARM_GPSINFO

Set: Sets AEEGPSInfo to be encoded in the image. This has to be set for each
recording.

p1 = AEEGPSInfo *
CAM_PARM_EXIF_IFDTAG

Set: Set Exchangeable Image File Format (EXIF 2.2+) tags to be encoded in the
image. This has to be set for each recording.

p1 = CameraExifTagInfo *
CAM_PARM_QUALITY

Set: Sets the quality of the picture to be recorded. This is done in Ready mode before
calling ICAMERA_RecordSnapshot() or ICAMERA_RecordMovie().

p1 = int32 value

845

Data Types

Get: Gets the current value.
p1 = Pointer to current value
p2 = AEEParmInfo *

CAM_PARM_FPS
Set: Sets the frames per second of the camera preview and movie modes. This is done
in Ready mode before calling ICAMERA_Preview() or ICAMERA_RecordMovie().

p1 = uint32 dwFPS value. dwFPS format: Lower 16 bits is Numerator. Upper
16 bits is Denominator. Zero denominator is treated as 1.

Get: Gets the current FPS.
p1 = Pointer to FPS value

CAM_PARM_CONTRAST
Set: Sets the contrast of the picture to be recorded. This operation is done in any of the
camera modes.

p1 = int32 value
Get: Gets the current value.

p1 = Pointer to current value
p2 = AEEParmInfo *

CAM_PARM_BRIGHTNESS
Set: Sets the brightness of the picture to be recorded. This operation is done in any of
the camera modes.

p1 = int32 value
Get: Gets the current value.

p1 = Pointer to current value
p2 = AEEParmInfo *

CAM_PARM_SHARPNESS
Set: Sets the sharpness of the picture to be recorded. Sharpness, typically, specifies
the number of adjacent pixels to be used, by camera sensor, to compose the each
pixel.
This operation is done in any of the camera modes.

p1 = int32 value
Get: Gets the current value.

p1 = Pointer to current value
p2 = AEEParmInfo *

CAM_PARM_ZOOM
Set: Sets the zoom level of the picture to be recorded. This operation is done in any of
the camera modes.

p1 = int32 value
Get: Gets the current value.

p1 = Pointer to current value
p2 = AEEParmInfo *

846

Data Types

CAM_PARM_ROTATE_PREVIEW
Set: Sets the rotation angle of the picture to be previewed. This operation is done only
in preview modes. It affects preview mode only.

p1 = int32 value
Get: Gets the current value.

p1 = Pointer to current value
p2 = AEEParmInfo *

CAM_PARM_ROTATE_ENCODE
Set: Sets the rotation angle of the picture to be recorded and encoded. This operation
is done in snapshot or movie mode. It affects snapshot/movie modes only.

p1 = int32 value
Get: Gets the current value.

p1 = Pointer to current value
p2 = AEEParmInfo *

CAM_PARM_EXPOSURE
Info: Exposure is the amount of light on the subject. For example when recording a
backlighted subject
or a subject in snow, increase the exposure, and when recording a subject with
extremely bright illumination such as spotlight, decrease the exposure.
Following exposure modes are defined to automatically adjust the exposure based on
the scene:

CAM_EXPOSURE_AUTO: Auto setting
CAM_EXPOSURE_DAY: For subjects under day light
CAM_EXPOSURE_NIGHT: For subjects in dark environments
CAM_EXPOSURE_LANDSCAPE: For distant subjects
CAM_EXPOSURE_STRONG_LIGHT: For subjects in strong or reflected light
CAM_EXPOSURE_SPOTLIGHT: For subjects in spotlight
CAM_EXPOSURE_PORTRAIT: For subjects behind an obstacle

CAM_EXPOSURE_MOVING: For moving subjects
Set: Sets the exposure. This operation is done in any of the camera modes.

p1 = CAM_EXPOSURE_XXX
Get: Gets the current value.

p1 = Pointer to current value
CAM_PARM_WHITE_BALANCE

Info: White Balance adjustment is adjusting the perception of light by the camera. For
example, the image looks blue under sunlight, and looks red under mercury lamps.
Human eyes can resolve these problems but camera cannot resolve without making
adjustments.
Following white balance modes are supported.

CAM_WB_AUTO: Auto
CAM_WB_CUSTOM: Custom value provided by user

847

Data Types

CAM_WB_INCANDESCENT: For subjects under incandescent lighting
CAM_WB_TWILIGHT: For subjects under low light or dark conditions
CAM_WB_FLUORESCENT: For subjects under fluorescent lighting
CAM_WB_DAYLIGHT: For subjects under sunlight, strong or varying light
conditions or under sodium/mercury lamps
CAM_WB_CLOUDY_DAYLIGHT: For subjects under cloudy daylight
conditions
CAM_WB_SHADE: For subjects under shade

Set: Sets the white balance. This operation is done in any of the camera modes.
p1 = CAM_WB_XXX

Get: Gets the current value.
Input:

p1 = CAM_WB_CUSTOM or any
Output:

p1 = Pointer to current value
p2 = AEEParmInfo *, if p1 (as input) is CAM_WB_CUSTOM

CAM_PARM_EFFECT
Info: Effect parameter allows you process the image to obtain special effects.

Following effect types are defined:
CAM_EFFECT_OFF: No special effect
CAM_EFFECT_MONO: Black and white
CAM_EFFECT_NEGATIVE: Color and brightness reversed
CAM_EFFECT_SOLARIZE: Light intensity emphasized
CAM_EFFECT_PASTEL: Contrast emphasized
CAM_EFFECT_MOSAIC: Mosaic
CAM_EFFECT_RESIZE: Stretch along x or y. Aspect ratio not preserved.
CAM_EFFECT_SEPIA: Sepia effect

Set: Sets the camera effect mode.
This operation is done in any of the camera modes.

p1 = CAM_EFFECT_XXX
p2 = Destination AEESize *, if p1 is CAM_EFFECT_RESIZE

Get: Gets the current value.
p1 = Pointer to current value
p2 = AEESize *, if p1 is CAM_EFFECT_RESIZE

CAM_PARM_FLASH
Info: Allows flash control. Following flash control options are supported:

CAM_FLASH_AUTO: Auto
CAM_FLASH_OFF: Off
CAM_FLASH_LOW: Low intensity
CAM_FLASH_MEDIUM: Medium intensity

848

Data Types

CAM_FLASH_HIGH: High intensity
CAM_FLASH_CUSTOM: Custom value provided by user

Set: Sets the flash control mode. This operation is done in any of the camera modes.
p1 = CAM_FLASH_XXX
p2 = uint32 value for CAM_FLASH_CUSTOM

Get: Gets the current value.
Input:

p1 = CAM_FLASH_CUSTOM or any
Output:

p1 = Pointer to current value
p2 = AEEParmInfo *, if p1 (as input) is CAM_FLASH_CUSTOM

CAM_PARM_RED_EYE_REDUCTION
Info: Enables/Disables red-eye reduction capability.
Set: Sets red-eye enable/disable parameter

p1 = boolean: TRUE/FALSE => Enable/Disable
Get: Gets the current value.

Input:
p1 = boolean *

Members:
None

Comments:
None

See Also:
Return to the List of data structures

849

Data Types

Camera Status codes
Description:

Status code is returned via registered callback function to indicate event status and to
return data to client. AEECameraStatus::nStatus sent via callback function contains the
following status codes.

Definition:

Members:
None

Comments:
None

See Also:
Return to the List of data structures

CAM_STATUS_BASE Base used by ICamera
CAM_STATUS_USER_BASE Base for extension

CAM_STATUS_START [Preview, Record] Operation started
successfully

CAM_STATUS_DONE [Preview, Record, SetParm, GetParm,
EncodeSnapshot] Operation completed
successfully
For RecordSnapShot, pData = TRUE/FALSE =>
Defered encode enabled/disabled

CAM_STATUS_FAIL [Preview, Record, SetParm, GetParm,
EncodeSnapshot] Operation failed, pData =
CAM_EXXX error code.

CAM_STATUS_ABORT [Any] Current operation aborted: Camera
entered ready state

CAM_STATUS_FRAME [Any] Frame captured by camera.
CAM_STATUS_PAUSE [Preview, Record] Record movie paused
CAM_STATUS_RESUME [Preview, Record] Record movie resumed.
CAM_STATUS_DATA_IO_DELAY [Preview, Record] Operation being delayed by

data i/o access
CAM_STATUS_SPACE_WARNING [Record] Memory available to store recording

running low

850

Data Types

CameraExifTagInfo
Description:

This structure specifies Exchangeable Image File Format (EXIF 2.2+) tag info to be
encoded in the image.

Definition:
typedef struct CameraExifTagInfo

{
uint16 wTagID;
uint16 wTagType;
void * pTagData;
uint32 dwBytes;
uint16 wIFDID;
uint16 wReserved;
} CameraExifTagInfo;

Members:

Comments:
None.

See Also:
ICAMERA_SetParm()
Return to the List of data structures

wTagID [Mandatory] TagID
wTagType [Mandatory] Tag data type
pTagData [Mandatory] Tag data
dwBytes [Mandatory] Number of bytes in pTagData
wIFDID [Optional] IFD ID. Use Default for most cases
wReserved Reserved

851

Data Types

CMediaFormat
Description:

This structure contains the common data members for all IMedia-based objects.
It is derived from AEEMedia structure.

Definition:
OBJECT(CMediaFormat)
{
INHERIT_CMediaFormat(IMediaMIDI);
};

Members:
INHERIT_CMediaFormat(IMediaMIDI): Inherits members from AEEMedia and
contains
pointer to CMediaMMLayer.

Comments:
None

See Also:
AEEMedia
Return to the List of data structures

852

Data Types

CMediaMIDI
Description:

This structure contains the data members for IMediaMIDI interface
implementation.

Definition:
OBJECT(CMediaMIDI)

{
INHERIT_CMediaFormat(IMediaMIDI);
};

Members:
INHERIT_CMediaFormat(IMediaMIDI): Inherits members from AEEMedia and
contains
pointer to CMediaMMLayer.

Comments:
None

See Also:
AEEMedia structure, CMediaFormat structure.
Return to the List of data structures

853

Data Types

CMediaMIDIOutMsg
Description:

This structure contains the data members for IMediaMIDIOutMsg interface
implementation.

Definition:
OBJECT(CMediaMIDIOutMsg)
{
INHERIT_CMediaFormat(IMediaMIDIOutMsg);
};

Members:
INHERIT_CMediaFormat(IMediaMIDIOutMsg): Inherits members from AEEMedia and
contains
pointer to CMediaMMLayer.

Comments:
None

See Also:
AEEMedia structure, CMediaFormat structure.
Return to the List of data structures

854

Data Types

CMediaMIDIOutQCP
Description:

This structure contains the data members for IMediaMIDIOutQCP interface
implementation.

Definition:
OBJECT(CMediaMIDIOutQCP)
{
INHERIT_CMediaFormat(IMediaMIDIOutQCP);
};

Members:
INHERIT_CMediaFormat(IMediaMIDIOutQCP): Inherits members from AEEMedia
and contains
pointer to CMediaMMLayer.

Comments:
None

See Also:
AEEMedia structure, CMediaFormat structure.
Return to the List of data structures

855

Data Types

CMediaMP3
Description:

This structure contains the data members for IMediaMP3 interface
implementation.

Definition:
OBJECT(CMediaMP3)
{
INHERIT_CMediaFormat(IMediaMP3);
};

Members:
INHERIT_CMediaFormat(IMediaMP3): Inherits members from AEEMedia and
contains
pointer to CMediaMMLayer.

Comments:
None

See Also:
AEEMedia structure, CMediaFormat structure
Return to the List of data structures

856

Data Types

CMediaPMD
Description:

This structure contains the data members for IMediaPMD interface
implementation.

Definition:
OBJECT(CMediaPMD)
{
INHERIT_CMediaFormat(IMediaPMD);
};

Members:
INHERIT_CMediaFormat(IMediaPMD): Inherits members from AEEMedia and
contains
pointer to CMediaMMLayer.

Comments:
None

See Also:
AEEMedia structure, CMediaFormat structure.
Return to the List of data structures

857

Data Types

CMediaQCP
Description:

This structure contains the data members for IMediaQCP interface
implementation.

Definition:
OBJECT(CMediaQCP)
{
INHERIT_CMediaFormat(IMediaQCP);
};

Members:
INHERIT_CMediaFormat(IMediaQCP): Inherits members from AEEMedia and
contains
pointer to CMediaMMLayer.

Comments:
None

See Also:
AEEMedia structure, CMediaFormat structure.
Return to the List of data structures

858

Data Types

Configuation Parameters
Description:

Following are the values for the configuration parameters used in OEM_GetConfig() and
OEM_SetConfig()

Definition:
CFGI_DNS_IP1

 32-bit main Domain Name Server (DNS) IP Addresss in network byte-order
CFGI_DNS_IP2

 32-bit backup Domain Name Server (DNS) IP Address in network byte-order
CFGI_DOWNLOAD

 information pertinent to the download service with the following information:
+ dwCarrierID: 32-bit carrier ID
+ dwPlatformID: 32-bit handset platform ID
+ bBKey: string of OEM programmed B-Key or all zeros
+ bAKey: string of SSD_A derived from A-Key or all zeros
+ szServer: string of server name
+ wFlags: 16-bit download related flags which can have one or more of the following
values set:

* DIF_USE_A_KEY: if set, use A-Key; otherwise use B-Key
* DIF_TEST_ALLOWED: if set, the handset can be used to test local apps
* DIF_MIN_FOR_SID: if set, use the MIN for the SID
* DIF_PREPAY: if set, it is a prepay phone
* DIF_EULA: if set, check for End-User-License-Agreement
* DIF_NO_AUTO_ACK: if set, do not force ACKs until user runs MobileShop
* DIF_SID_VALIDATE_ALL if set, validates all apps rather than just SSN apps
* DIF_RUIM_DEL_OVERRIDE if set, allows one RUIM user to delete apps owned by
another

+ nAuth: download authentication policy which can be one of the following values:
* APOLICY_NONE: No authentication required
* APOLICY_SID: User's "subscriber ID" is passed to ADS before any set of
transactions started
* APOLICY_TEXT: User should be prompted for text "key" and this sent to ADS
* APOLICY_NUM- User should be prompted for numeric "key" and this sent to ADS

+ nPolicy: privacy policy which determines the type of certification required to run applet
on the handset:

* PPOLICY_BREW: TRUE-BREW-signed applet only
* PPOLICY_CARRIER: carrier-signed applet only
* PPOLICY_BREW_AND_CARRIER: TRUE-BREW- and carrier-signed applet only
* PPOLICY_BREW_OR_CARRIER: TRUE-BREW- or carrier-signed applet

CFGI_SUBSCRIBERID

859

Data Types

 32-byte subscriber ID in ASCII
CFGI_MOBILEINFO

 information about the handset which include the following:
+ nCurrNAM: 8-bit handset's NAM
+ dwESN: 32-bit handset's ESN
+ szMobileID: 16-byte mobile number which consists of the following components:

* mcc: 3-digit mobile coutry code
* mnc: 2-digit mobile network code
* min2: 3-digit mobile area code
* min1: 7-digit mobile phone number

CFGI_AUTOSTART
 class ID of the applet to be auto-started when AEE is initialized through AEE_Init().

CFGI_BUSY_CURSOR_OFFSET
 offset position of the hourglass from the center of the screen. It is of the type AEERect
which has the following fields:

+ x: x-offset from the center of the screen
+ y: y-offset from the center of the screen
+ dx: ignored
+ dy: ignored

CFGI_DOWNLOAD_BUFFER
32-bit unsigned integer value for the download buffer size, in bytes. The default is 10
kilobytes.

CFGI_HTTP_BUFFER
 32-bit unsigned integer value for the HTTP read buffer size, in bytes. The default is 4
kilobytes.

CFGI_NET_CONNTIMEOUT
 32-bit unsigned integer value for the network connection timeout, in milliseconds. The
default is 30 seconds.

CFGI_SUBSCRIBERID_LEN
 32-bit signed integer value for size in bytes of subscriber ID The default length is 32.

CFGI_MAX_DISPATCH_TIME
 32-bit unsigned integer value for the maximum time BREW should spend in the dispatcher
before relinquishing control. The default is 250 msecs.

CFGI_MIN_IDLE_TIME
 32-bit unsigned integer value for the minimum time BREW must relinquish from dispatcher.
The default is 35 msecs.

CFGI_SLEEP_TIMER_RESOLUTION
 32-bit unsigned integer value for timer resolution during when processor/os is in SLEEP
mode. The default is 1.2 seconds.

CFGI_SYSMEM_SIZE
 32-bit unsigned integer value for size in bytes reserved to the system in low-memory. The
default is 2K bytes.

CFGI_DOWNLOAD_FS_INFO

860

Data Types

 Available FS size for use and total FS size. (Fill dwFSAvail, dwFSSize in DLItemSize *)
CFGI_SCREEN_SAVER

 AEEScreenSaverInfo *
CFGI_DISALLOW_DORMANCY

 boolean, if TRUE, disallow dormancy,
CFGI_DORMANCY_NO_SOCKETS

 boolean, whether to hold PPP (go dormant) even if no sockets are open
CFGI_CLOSE_KEYS

 Information about the close keys which include the following
 + wCloseApp: Virtual key of AVKType to close current app. The default is AVK_CLR.
 + evtCloseApp: AEEEvent

EVT_KEY_PRESS,
EVT_KEY_RELEASE,
EVT_KEY or
EVT_KEY_HELD.

The default is EVT_KEY
 + wCloseAllApps: Virtual key of AVKType to close all apps. The default is AVK_END.
 + evtCloseAllApps: AEEEvent

EVT_KEY_PRESS,
EVT_KEY_RELEASE,
EVT_KEY or
EVT_KEY_HELD.
The default is EVT_KEY

CFGI_FILE_CACHE_INFO
 Information about the file cache info which include the following

+ nCacheDefault: 32 bit signed integer value for the default cache size. The default is
4K bytes.
+ nCacheMin: 32 bit signed integer value for the minimum cache size. The default is 512
bytes.
+ nCacheMax: 32 bit signed integer value for the maximum cache size.
The default is 10K bytes.

CFGI_MODULE_FSLIMIT
 MIFFSLimit * (wMaxFiles and dwMaxSpace for the module)

CFGI_DATA_NETWORK,
OEM_NET_DEFAULT - Default data network
OEM_NET_DOWNLOAD - Download data network
OEM_NET_DATA - Normal data connections
These values are passed to the OEM to allow them to switch data network parameters
without revealing those parameters to the caller.

CFGI_CARDID_LEN
 32-bit signed integer value for size in bytes of CFGI_CARDID

CFGI_CARDID

861

Data Types

 byte * of size returned by CFGI_CARDID_LEN
CFGI_DEBUG_KEY

 OEMDebugKey * below
CFGI_DEBUG_KEY

 This denotes the key sequence that BREW shall use for diagnostics information. The
structure OEMDebugKey must be filled.

Here is the description of this structure:
typedef struct

{
AVKType key;
int16 nRepeat;
} OEMDebugKey;

key: The key to use for debug. By Default, its AVK_POUND
nRepeat: The number of times the above key must be pressed for BREW to enter into
the debug mode. By default, this is set to 3
BREW has a pre-defined set of debug commands. These are:

CFGI_PROVISION_FIRST=0x1000
 Offset to build dependent items

CFGI_PROVISION_LAST=0x2000
 End of build dependent items

CFGI_MAX
 Holds max AEE value, not a function.

CFGI_FIRST_OEM=CFGI_MAX
 OEM added config items should start at this value.

CFGI_HTTP_BUFFER
 Size in bytes of HTTP read buffer (default 4K)

CFGI_MAX_DISPATCH_TIME
 Maximum time BREW should spend in the dispatcher before relinquishing control (default
= 250 msecs)

DBG_MEM_KEY AVK_1 Checks pointers, run on new stack
DBG_NET_KEY AVK_2 Prints Network diagnostics information on

the screen
DBG_MEM_AVAIL_KEY AVK_3 Displays memory available
DBG_PRIV_KEY AVK_4 Throws exception on priv violation
DBG_MALLOC_KEY AVK_5 Throws exception on malloc failure
DBG_MALLOC_TEST_KEY AVK_6 Fails every N mallocs (ex: 100 Mallocs)
DBG_DBGPRINTF_KEY AVK_7 Toggle "synchronous" dbgprintf. Toggles

between making dbgprintf synchronous or
asynchronous

DBG_DUMP_MODULES AVK_8 Not Supported
DBG_DUMP_HEAP AVK_9 Dumps the heap
DBG_RESET_KEY AVK_0 Resets (disables) all of the debug

operations described above

862

Data Types

CFGI_NET_CONNTIMEOUT
 time in milliseconds! to wait for connect()

CFGI_ALLOW_3GTO2G_FAILOVER
 boolean value that allows the 3G to 2G fail over to take place. By default it is not allowed.

Members:
None

Comments:
None

See Also:
OEM_GetConfig()
OEM_SetConfig()
Return to the List of data structures

863

Data Types

CtlAddItem
Description:

An encapsulation for a control item added to the control.

Definition:
typedef structure _CtlAddItem

{
const AECHAR * pText;
IImage * pImage;
const char * pszResImage;
const char * pszResText;
uint16 wText;
uint16 wFont;
uint16 wImage;
uint16 wItemID;
uint32 dwData;
} CtlAddItem;

Members:

Comments:
pText and pImage are used by default. If they are not set (NULL), the pszResImage
and pszResText are used with wText and wImage to load the text or image,
respectively.

See Also:
None
Return to the List of data structures

pText Text in the item.
pImage Image in the item.
pszResImage Name of the resource file.
pszResText Name of the resource file.
wText Resource ID of the text string.
wFont 0 (zero). The default.
wImage Resource ID of the Image.
wItemID Control item ID.
dwData Data value associated with menu item.

864

Data Types

CtlValChange
Description:

This data structure is passed as dwParam along with the event
EVT_CTL_CHANGING. This event is sent to the application when a specific control is
changing. This allows the application to re-draw any portions of the screen.

Definition:
typedef struct _CtlValChange

{
IControl * pc;
uint32 dwParam;
boolean bValid;
} CtlValChange;

Members:

Comments:
This event is sent by specific controls only. For ex:TimeCtl. See the specific controls
for more information on this event

See Also:
None
Return to the List of data structures

pc Pointer to the control that is changing

dwParam This is control-specific data. In the case of the ITimeCtl Interface, this specifies
the current time in milliseconds

bValid Parameter that can be set by the application on returning from this event. If
bValid is set to FALSE by the app, the control will not be re-drawn based on
the new value

865

Data Types

FileAttrib
Description:

FileAttrib specifies the type of a file.

Definition:
typedef enum

{
_FA_NORMAL=0,
_FA_HIDDEN=0x0001,
_FA_DIR=0x0002,
_FA_READONLY=0x0004,
_FA_SYSTEM=0x0008
} FileAttrib;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

_FA_NORMAL File is normal file.
_FA_HIDDEN File is a hidden file (reserved).
_FA_DIR File is directory (reserved).
_FA_READONLY File is read only file.
_FA_SYSTEM File is system file.

866

Data Types

FileInfo
Description:

FileInfo is used to contain information associated with a file.

Definition:
typedef structure _FileInfo

{
FileAttrib attrib;
uint32 dwCreationDate;
uint32 dwSize;
char szName[MAX_FILE_NAME];
} FileInfo;

Members:

Comments:
None

See Also:
FileAttrib
Return to the List of data structures

attrib File attributes specified by FileAttrib.
dwCreationDate File creation date. Elapsed time in seconds since January 6, 1980

00:00:00 GMT.
dwSize File size.
szName File name.

867

Data Types

GSMSMSEncodingType
Description:

GSMSMSEncodingType defines the GSM message encoding, 7bit, 8bit, or unicode
(UCS2).

Definition:
typedef byte GSMSMSEncodingType;

GSMSMS_ENCODING_7BIT
GSMSMS_ENCODING_8BIT
GSMSMS_ENCODING_UCS2

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

868

Data Types

GSMSMSMsg
Description:
GSMSMSMsg contains a decoded GSM message. The msgType field determines
which element of the union to use. See GSMSMSMsgType for a description of the valid
values for msgType.

Definition:
typedef struct

{
GSMSMSMsgType msgType;
union {

GSMSMSSubmitType SMSSubmit;
GSMSMSDeliverType SMSDeliver;
GSMSMSSubmitReportType SMSSubmitReport;
GSMSMSDeliverReportType SMSDeliverReport;
GSMSMSStatusReportType SMSStatusReport;
} msg;

} GSMSMSMsg;

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

869

Data Types

GSMSMSMsgType
Description:

GSMSMSMsgType indicates the message type class in a GSMSMSMsg. This is used
to determine which field of the GSMSMSMsg union to use.

Definition:
typedef byte GSMSMSMsgType;

GSMSMS_MSG_SMS_SUBMIT
GSMSMS_MSG_SMS_SUBMIT_REPORT
GSMSMS_MSG_SMS_DELIVER
GSMSMS_MSG_SMS_DELIVER_REPORT
GSMSMS_MSG_SMS_STATUS_REPORT
GSMSMS_MSG_SMS_COMMAND
GSMSMS_MSG_SMS_UNKNOWN

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

870

Data Types

GSMSMSRawMsg
Description:

GSMSMSRawMsg uses 2 raw message formats. The format field is set to either of the
following:

GSMSMS_RAW_FORMAT_GSM for incoming messages, or
GSMSMS_RAW_FORMAT_SIM for messages retrieved from the SIM.

The format is based on the setting of the format field and the appropriate union element
is used.

Definition:
typedef struct {

GSMSMSRawFormat format;
union {
GSMSMSRawData gsm;
GSMSMSSIMData sim;
} msg;
} GSMSMSRawMsg;

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

871

Data Types

GSMSMSStatusType
Description:

GSMSMSStatusType indicates the status byte value of the GSM message stored in
a particulat slot in the SIM.

Definition:
typedef byte GSMSMSStatusType;

GSMSMS_STATUS_NONE
GSMSMS_STATUS_MT_READ
GSMSMS_STATUS_MT_NOT_READ
GSMSMS_STATUS_MO_SENT
GSMSMS_STATUS_MO_NOT_SENT
GSMSMS_STATUS_MO_SENT_ST_NOT_RECEIVED
GSMSMS_STATUS_MO_SENT_ST_NOT_STORED
GSMSMS_STATUS_MO_SENT_ST_STORED

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

872

Data Types

GSMSMSStorageType
Description:

GSMSMSStorageType indicates the desired message store: NVRAM, Voicemail
(NVRAM_VM), or the SIM.

Definition:
typedef byte GSMSMSStorageType;

GSMSMS_STORE_NVRAM
GSMSMS_STORE_NVRAM_VM
GSMSMS_STORE_SIM

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

873

Data Types

I3D_Events
3D events are returned via registered event notify callback functions to indicate 3D
rendering state and to return data to the client.
Based off event type the user will know when it is okay to update the display.
AEE3DEventNotify::EventType sent via notify callback function contains the following
event types.

#define AEE3D_EVENT_FRAME_STARTED 0x1
#define AEE3D_EVENT_FRAME_COMPLETED 0x2
#define AEE3D_EVENT_FRAME_UPDATE_DISPLAY 0x3
#define AEE3D_EVENT_FRAME_ERROR 0x4

AEE3D_EVENT_FRAME_STARTED
This event will indicate that processing and rendering for the current frame has started.

AEE3D_EVENT_FRAME_COMPLETED
This event will indicate that the current frame has completed the rendering process and
it is okay to start working on that next frame.

AEE3D_EVENT_FRAME_UPDATE_DISPLAY
This event will indicate that the current frame is now ready to display. Call
UpdateDisplayEX() now. You may wish to modify the final frame buffer before you call
update display. For example, you could add overlaying 2D text then call
UpdateDisplayEX().

AEE3D_EVENT_FRAME_ERROR
This event will indicate that the frame had an error when rendering. The error code will
be placed in the ErrorCode field of the AEE3DNotifyEvent.

Comments:
None

See Also:
None
Return to the List of data structures

874

Data Types

IDC_COMMAND_RESERVED
Description:

This is a placeholder to indicate that all command IDs above this are reserved for
internal BREW use

Definition:
#define IDC_COMMAND_RESERVED (0xff00)

Members:
None

Comments:
This is used in conjunction with the EVT_COMMAND sent by controls

See Also:
EVT_COMMAND
Return to the List of data structures

875

Data Types

IDIB
Description:

This structure defines the BREW device-independent bitmap format.

Definition:
OBJECT(IDIB) {

AEEVTBL(IDIB) *pvt;
IQueryInterface * pPaletteMap;
byte * pBmp;
uint32 * pRGB;
NativeColor ncTransparent;
uint16 cx;
uint16 cy;
int16 nPitch;
uint16 cntRGB;
uint8 nDepth;
uint8 nColorScheme ;
uint8 reserved[6];
}

Members:
pvt Pointer to the v-table. Users should not access this directly; macros

are provided for all the member functions (IDIB_AddRef(),
IDIB_Release(), and IDIB_QueryInterface()).

pPaletteMap Cache for computed palette mapping data.Generally, developers
can ignore this field. This member provided for graphics operations
that read from or write to the DIB. Some algorithms, like optimized
DIB to native blits, involve complicated initialization steps that
transform palette data to a more readily accessible foramt. Such an
algorithm can store the initialization data in pPaletteMap to avoid the
need for recomputing the next time it runs. Anyone replacing a non-
NULL pointer must release the pre-existing pointer (with
IQI_Release()), and when the DIB is deleted any non-NULL pointer
is released.

pBmp Pointer to the top row of the pixel array.
pRGB Pointer to the color palette. The color palette is an array of 32-bit

color values. The size of the palette array is given in the cntRGB
member. A palette defines the meaning of pixel values in the bitmap
data. A pixel value of N corresponds to the color at index N in the
palette. Any pixel value greater than the size of the palette is
undefined. Palette color values are not RGBVAL values. Palette
values are specified in terms of memory layout. The first byte is blue,
the second byte is green, the third bute is red, and the fourth byte is
ignored. On a little-endian processor, a palette value is the same as
NTOHL(rgb). On a big-endian processor, it is compatible with
RGBVAL.

876

Data Types

Comments:
R-G-B intensity values correlate with actual perceived color, but the precise
relationship is complex and dependent upon the display hardware. IBitmap and IDIB
are unconcerned with such issues.

See Also:
NativeColor
IBitmap Interface, List of functions
IDIB_QueryInterface()
IDIB_TO_IBITMAP()
Return to the List of data structures

ncTransparent Transparent color for the DIB. Note that this is not in RGB form; it is
specified as a NativeColor, which corresponds directly to values in
the pixel array.

cx Width of bitmap in pixels. Reading or writing pixels at or above this
indexn must be avoided.

cy Height of bitmap in pixels. Reading or writing pixels at or above this
index must be avoided.

nPitch Offset from any row to the row below it.
cntRGB Number of entries in the palette. If this is zero, the bitmap contains

no palette. If this is non-zero, then pRGB points to an array of palette
entries.

nDepth Size of each pixel, in bits.
nColorScheme If non-zero, describes mapping from pixel values to R-G-B values.

The following currently defined values for nColorScheme describe
how bit fields within each pixel value represent red, green, and blue
intenstiy

values The following values are color schemes:
IDIB_COLORSCHEME_332

3 bits red, 3 bits green, 2 bits blue
IDIB_COLORSCHEME_444

4 red, 4 green, 4 blue
IDIB_COLORSCHEME_555

5 red, 5 green, 5 blue
IDIB_COLORSCHEME_565

5 red, 6 green, 5 blue
IDIB_COLORSCHEME_888:

8 red, 8 green, 8 blue
In each case, the blue bits occupy the least significant bits of the pixel
value, the green bits the next most significant, and then the red bits.
Any leftover most significant bits are unused.

reserved Reserved bytes for future version. Initialize these bits to zeros when
constructing a DIB; ingnore the value when parsing a DIB.

877

Data Types

INAddr
Description:

The parts of an internet IP endpoint, address and port. INAddr and INPort denote
network byte-order values for the IP address and port of an IP socket or endpoint.

Definition:
typedef uint32 INAddr;

Members:
None

Comments:
None

See Also:
OEMNet_MyIPAddr()
INPort
Return to the List of data structures

878

Data Types

INPort
Description:

The parts of an internet IP endpoint, address and port. INAddr and INPort denote
network byte-order values for the IP address and port of an IP socket or endpoint.

Definition:
typedef uint16 INPort;

Members:
None

Comments:
None

See Also:
INAddr
Return to the List of data structures

879

Data Types

ITransform Properties
Description:

These properties are used for various paramters of ITransform functions.

Definition:
Flags for unTransform parameter of ITRANSFORM_TransformBltSimple

TRANSFORM_FLIP_X Flip over x axis.
TRANSFORM_ROTATE_90 Rotate 90 degrees counter-clockwise.
TRANSFORM_ROTATE_180 Rotate 180 degrees counter-clockwise.
TRANSFORM_ROTATE_270 Rotate 270 degrees counter-clockwise.
TRANSFORM_SCALE_2 Scale by a factor of 2.
TRANSFORM_SCALE_4 Scale by a factor of 4.
TRANSFORM_SCALE_8 Scale by a factor of 8.
TRANSFORM_SCALE_EIGHTH Scale by a factor of 1/8.
TRANSFORM_SCALE_QUARTER Scale by a factor of 1/4.
TRANSFORM_SCALE_HALF Scale by a factor of 1/2.

Values for unComposite parameter of ITRANSFORM_TransformBltSimple and
ITRANSFORM_TransformBltComplex

COMPOSITE_KEYCOLOR Do transparent blit. This means that pixels that the
transparency color of the source bitmap will not be drawn.
COMPOSITE_OPAQUE Do no (opaque) blit.

Members:
None

Comments:
Note: All transformation use the source bitmap's center as the origin.

See Also:
ITRANSFORM_TransformBltComplex()
ITRANSFORM_TransformBltSimple()
IBITMAP_SetTransparencyColor()
Return to the List of data structures

880

Data Types

NativeColor
Description:

The NativeColor type is used to represent the value of a single pixel in the bitmap. The
interpretation of this value as a color is dependent of the format of the bitmap. You
should not rely on this being in a particular format. Instead, you should use
IBITMAP_NativeToRGB() and IBITMAP_RGBToNative() to access a NativeColor.

Definition:
typedef uint32 NativeColor;

Comments:
None.

See Also:
IBITMAP_RGBToNative()
IBITMAP_NativeToRGB()
Return to the List of data structures

881

Data Types

NetSocket
Description:

NetSocket is an enumeration of the types of sockets that can be created with INetMgr
Interface.

Definition:
typedef enum {AEE_SOCK_STREAM=0, AEE_SOCK_DGRAM} NetSocket;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

AEE_SOCK_STREAM TCP: streaming socket.
AEE_SOCK_DGRAM UDP: datagram socket .

882

Data Types

NetState
Description:

NetState is an enumeration of the states of the device's PPP connection to the Internet.
A NetState value is returned by the OEMNet_PPPState() call.

Definition:
typedef enum {

NET_INVALID_STATE,
NET_PPP_OPENING,
NET_PPP_OPEN,
NET_PPP_CLOSING,
NET_PPP_CLOSED,
NET_PPP_SLEEPING,
NET_PPP_ASLEEP,
NET_PPP_WAKING,
} NetState;

Members:

Comments:
None

See Also:
OEMNet_PPPState()
Return to the List of data structures

NET_INVALID_STATE Not an actual state; this value is not returned by
INETMGR_NetStatus().

NET_PPP_OPENING The PPP connection is being established.
NET_PPP_OPEN The PPP connection is active.
NET_PPP_CLOSING The PPP connection is closing.
NET_PPP_CLOSED The PPP connection is inactive.
NET_PPP_SLEEPING The PPP connection is "up", but non-PPP related network

resources (e.g. CDMA traffic channel) are being released
NET_PPP_ASLEEP The PPP connection is "up", but non-PPP related network

resources have been released
NET_PPP_WAKING The PPP connection is "up", and non-PPP related network

resources are being re-acquired

883

Data Types

OEMAppEvent
Description:

This structure contains all of the elements of the event passed to the app.
NOTE: No OEM modification of the parameters is supported.
The app context of the target application has been asserted when this notification is
made. Any calls to BREW will appear to come from the application. Moreover, access
to system functions is limited based upon the rights of the app.

Definition:
typedef struct _OEMAppEvent

{
AEECLSID cls,
AEEEvent evt:
uint16 wp:
uint32 dwp:
} OEMAppEvent;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

cls ClassID of the app to which the event is being sent.
evt Event Code of the event being sent to the app
wp wParam of the event being sent to the app
dwp dwParam of the event being sent to the app.

884

Data Types

oemLogType
Description:

This structure type is defined in either log.h or log_dmss.h depending on the target
handset. This memberwill contain the standard DMSS log header (which
contains the log code, length, and a timestamp), a standard brew header, and the log
data send bythe BREW application.

Definition:
typedef logBinType oemLogType;

Comments:
None

See Also:
None
Return to the List of data structures

885

Data Types

PFNCBCANCEL
Description:

This data structure specifies the prototype of the Cancel Function that can be used to
cancel a callback

Definition:
typedef void (*PFNCBCANCEL)(AEECallback * pcb);

Members:

Comments:
This is used in conjunction with AEECallback

See Also:
AEECallback
Return to the List of data structures

pcb Pointer to the AEECallback that must be cancelled using this function

886

Data Types

PFNDLTEXT
Description:

Calback Function that is invoked when the EULA text is obtained from the server

Definition:
typedef void (*PFNDLTEXT)(void * pcxt, int nErr, const AECHAR *
pszText);

Members:

Comments:
None

See Also:
IDOWNLOAD_GetEULA()

Return to the List of data structures

pcxt User Data passed when registering thic callback function(using
IDOWNLOAD_GetEULA())

nErr Error code (if any) in obtaining the EULA text. If successful, it returns
AEE_SUCCESS. if failed, it could return one of the following Errors

EFAILED

ENOMEMORY

EUNSUPPORTED

887

Data Types

PFNMEDIANOTIFY
Description:

PFNMEDIANOTIFY is the type specification for callback function that user must
register with the IMedia object. IMedia object sends all the events and data to user via
the registered callback function.

Definition:
typedef void (*PFNMEDIANOTIFY)

(
void * pUser,
AEEMediaCmdNotify * pCmdNotify
)

Members:

Comments:
None.

See Also:
AEEMediaCmdNotify
Return to the List of data structures

pUser User specified data pointer

pCmdNotify Callback event-specific information

888

Data Types

Q12 Fixed Point Format
Description:

Q12 means the Q-factor for fixed point is 12, i.e., any floating point number is
converted into an integer using the formula:
int32 int_x = (int)(float_x * 2^12)

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

889

Data Types

Q14 Fixed Point Format
Description:

Q14 means the Q-factor for fixed point is 14, i.e., any floating point number is
converted into integer using the formula:
int32 int_x = (int)(float_x * 2^14)

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

890

Data Types

Q16 Fixed Point Format
Description:

Q16 means the Q-factor for fixed point is 16, i.e., any floating point number is
converted into an integer using the formula:
int32 int_x = (int)(float_x * 2^16)

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

891

Data Types

Q3D File Format
Description:

This is QUALCOMM's file format for 3D models.

Definition:
The .q3D file has the following format:
uint16 magic_num;
uint8 version;
uint8 num_seg;
uint8 num_color;
uint8 num_texture;
uint16 num_vert;
uint16 num_st_coord;
uint16 num_poly;
int32 vert_array;
int16 vert_norm_array;
uint8 texture_coord_array
AEE3DModelPoly polygon_array
AEE3DModelSegment segment_array
uint8 color_map

Members:
magic_num: a magic number identifying the file format; it should have the character
QB.
version: version number for the file, currently 1.
num_seg: number of segments.
num_color: number of colors.
num_texture: number of texture images.
num_vert: number of vertices.
num_st_coord: number of texture coordinates.
num_poly: number of polygons (triangles).
vert_array: array of vertex (size = 3 x num_vert).
vert_norm_array: array of vertex norms (size = 3 x num_vert).
texture_coord_array: array of texture coordinates (size = 2 x num_st_coord).
polygon_array: array of polygons (size = num_poly).
segment_array: array of segments (size = num_seg).
color_map: color map (size = num_color*4). Each entry in the color map is 4 bytes
(RGBA).

892

Data Types

Comments:
The Q3D file format uses the .q3d extension.

See Also:
User's guide on 3D file converter
Return to the List of data structures

893

Data Types

PFNNOTIFY
Description:

PFNNOTIFY specifies a data type which is a function pointer to a function type
void foo(void * pData)..

Definition:
typedef void (* PFNNOTIFY)(void * pData);

Members:
None

Comments:
None

See Also:
None
Return to the List of data structures

894

Data Types

PFNPOSITIONCB
Description:

PFNPOSITIONCB specifies the type of the callback function passed to
ISHELL_GetPosition().

Definition:
typedef void (* PFNPOSITIONCB)

(
void * pUser,
AEEPositionInfo * pli,
int nErr
);

Members:

Comments:
None.

See Also:
AEEPositionInfo
ISHELL_GetPosition()
Return to the List of data structures

pUser User data .
pli Position location information.
nErr Error code.

895

Data Types

PFNRINGEREVENT
Description:

PFNRINGEREVENT specifies the type of notification function registered using
IRINGERMGR_RegisterNotify().

Definition:
typedef void (* PFNRINGEREVENT)

(
void * pUser,
AEERingerEvent evt,
uint32 dwParm,
int nErr
);

Members:

Here are the different notifications sent and their event specific parameters:
ARE_PLAY: Sent when play is done or when IRINGERMGR_stop is called.

dwparam = 0.
nErr is EINCOMPLETEITEM if play was still going on,
nErr is 0 if play is done

ARE_CREATE: Sent when creation of the ringer is done or error.
dwParam contains id of Ringer.
nErr: AEE_SUCCESS or EFAILED

ARE_WRITE: Sent any time a write occurs to the Ringer File.
dwParam: number of bytes written to file.
nErr is set to AEE_SUCCESS

Comments:
None

See Also:
AEERingerEvent
IRINGERMGR_RegisterNotify()
Return to the List of data structures

pUser User data.
evt The event that specifies the reason for the notification.
dwParm Contains event-specific information.
nErr Error codes:

AEE_SUCCESS, if successful.
Error code, if otherwise

896

Data Types

PFNSIONOTIFY
Description:

This function is called by the OEM layer to notify BREW of certain state transitions.
Typically, this function must be called to notifiy BREW of any changes to the state flags
described below. However, transitions of OEMBTSIO_ST_READABLE and
OEMBTSIO_ST_WRITEABLE flags from TRUE to FALSE shall *not* result in a call to
this function.
When OEMBTSIO_Init() is called, BREW will assume the current state is 0 (zero), so
if any state flags are TRUE, PFNSIONOTIFY should be called at that point.

Prototype:
void (*PFNBTSIONOTIFY)(uint32 nPort, uint32 unState);

Parameters:

Comments:
None

See Also:
None
Return to the List of data structures

nPort The ID of the BT port (0, when only one BT port is supported).
unState One of the following events:

OEMBTSIO_ST_READABLE: this flag is TRUE when the receive
queue is ready for reading. The precise meaning of “ready" is defined
in the description of the OEMSIO_SetTriggers() function.
OEMBTSIO_ST_WRITEABLE: this flag is TRUE when the transmit
queue is ready for writing. The precise meaning of "ready" is defined
in the description of the OEMSIO_SetTriggers() function.
OEMBTSIO_ST_DISCONNECTED: this flag is TRUE when the Port is
Closed
OEMBTSIO_ST_CONNECTED: This flags is set when the Port is
connected to a remote device
OEMBTSIO_ST_CONNECTFAILED: This flag is set when device fails
to connect to remote unit.

897

Data Types

PhoneState
Description:

PhoneState is used in ITAPI_GetStatus() to get the current state of the device. This is
one of the members in the TAPIStatus data structure that is filled by the
ITAPI_GetStatus() function.

Definition:
typedef enum

{
PS_OFFLINE,
PS_IDLE,
PS_INCOMING,
PS_ORIG,
PS_CONVERSATION
} PhoneState;

Members:

Comments:
None

See Also:
TAPIStatus
Return to the List of data structures

PS_OFFLINE Device is in offline state.
PS_IDLE Device is in Idle state.
PS_INCOMING There is an incoming call to the device.
PS_ORIG Device is in the process of originating a call.
PS_CONVERSATION Device is in the middle of a call.

898

Data Types

RGBVAL
Description:

The RGB value for a color is defined using this data type. The eight-bit values for red,
green, blue are stored in 32-bits as follows:

The reserved bits are filled with zeros.

Definition:
typedef uint32 RGBVAL

Members:
None

Comments:
The user can create their own colors using the MAKE_RGB macro with their values for
red, green, and blue to get the corresponding RGBVAL.

See Also:
None
Return to the List of data structures

Blue Green Red Reserved

32 ---------- 24 ---------- 16 ---------- 8 ---------- 0

899

Data Types

SockIOBlock
Description:

A single structure describes an individual block of memory from which data is read or
to which data is written.
Arrays of SockIOBlock structures are used in calls to ISOCKET_ReadV() and
ISOCKET_WriteV() to describe data that is sent/received as a continuous stream even
when, in memory, it is scattered among several blocks.

Definition:
typedef structure

{
byte * pbBuffer;
uint16 wLen;
} SockIOBlock;

Members:

Comments:
None

See Also:
None
Return to the List of data structures

pbBuffer Data buffer.
wLen Length of buffer.

900

Data Types

Sprite Properties
Description:

These properties apply to each sprite in the AEESpriteCmd structure.

Definition:

Members:
None

SPRITE_SIZE_8X8
SPRITE_SIZE_16X16
SPRITE_SIZE_32X32
SPRITE_SIZE_64x64
SPRITE_SIZE_MAX Sprite sizes, for unSpriteSize field.
SPRITE_SIZE_END Special value for unSpriteSize signaling end of

command array.
SPRITE_FLIP_X
SPRITE_FLIP_Y
SPRITE_ROTATE_90
SPRITE_ROTATE_180
SPRITE_ROTATE_270
SPRITE_SCALE_2
SPRITE_SCALE_4
SPRITE_SCALE_8
SPRITE_SCALE_EIGHTH
SPRITE_SCALE_QUARTER
SPRITE_SCALE_HALF Simple transformation flags for unTransform field.

These may be combined. To combine a flip with a
rotate, xor the two values. (This is to accommodate
SPRITE_FLIP_Y which is SPRITE_FLIP_X |
SPRITE_ROTATE_180.)

SPRITE_MATRIX_TRANSFOR
M

This flags goes in unTransform, and specifies that a
complex transform should be performed using the
unMatrixTransform field. When this flag is set, all
other flags in unTransform are ignored.

SPRITE_LAYER_0
SPRITE_LAYER_1
SPRITE_LAYER_2
SPRITE_LAYER_3
SPRITE_LAYER_HIDDEN Valid layers for unLayer field.

901

Data Types

Comments:
Note: All transformation use the sprite's center as the origin.

See Also:
AEESpriteCmd
Return to the List of data structures

902

Data Types

TAPIStatus
Description:

TAPIStatus is used in ITAPI_GetStatus() to get the current TAPI status on the device.
This is also sent as dwParam member of the EVT_NOTIFY event when applications
have registered for TAPI Status notifications.

Definition:
typedef structure

{
char szMobileID[MOBILE_ID_LEN +1];
PhoneState state;
flg bData:1;
flg bDigital:1;
flg bRoaming:1;
flg bCallEnded:1;
flg bE911CallbackMode:1;
flg bRestricted:1;
flg bRegistered:1;
flg bDormancy:1;
} TAPIStatus;

Members:

Comments:
None

See Also:
PhoneState
ITAPI_GetStatus()

szMobileID Mobile ID (digits).
state Current device state. This is an enum of type PhoneState.
bdata Indicates if the device is in a data call.
bDigital Indicates if the device is in digital service.
bRoaming Indicates if the device is in a roaming state.
bCallEnded Indicates if this notification was sent as part of a call-end. This

flag is useful when applications have registered to be notified
with updated TAPIStatus information for any changes.
Registrations for notifications are done through the
ISHELL_RegisterNotify() function.

bE911CallbackMode Indicates if the device is in the E911 callback mode.
bRestricted This member is not used.
bRegistered System registration accomplished, set to TRUE if not

applicable.
bDormancy Network fully supports dormancy, FALSE is not applicable.

903

Data Types

Return to the List of data structures

904

Data Types

Tile Map Properties
Description:

These properties apply to each tile map, in the AEETileMap structure.

Definition:

Comments:
None

See Also:
AEETileMap
Return to the List of data structures

TILE_SIZE_8X8
TILE_SIZE_16X16
TILE_SIZE_32X32
TILE_SIZE_64X64 Values for unTileSize field.
MAP_FLAG_WRA
P

Flag for unFlags field. (Currently the only flag.) If
MAP_FLAG_WRAP is set, map should wrap around. For
instance, if a map is 16 tiles wide, column 0 would be displayed
after column 15.

MAP_SIZE_1
MAP_SIZE_2
MAP_SIZE_4
MAP_SIZE_8
MAP_SIZE_16
MAP_SIZE_32
MAP_SIZE_64
MAP_SIZE_128
MAP_SIZE_256
MAP_SIZE_512
MAP_SIZE_1024 Values for w and h fields.

905

Data Types

Tile Properties
Description:

These flags apply to each tile, in the elements of the pMapArray array field of
AEETileMap.

Definition:

Members:
None

Comments:
None

See Also:
AEETileMap
Return to the List of data structures

TILE_FLIP_X Flip tile over X axis.

TILE_FLIP_Y Flip tile over Y axis. (Note:this is a composite of FLIP_X and
ROTATE_180.)

TILE_ROTATE_90 Rotate tile 90 degrees counter clockwise.

TILE_ROTATE_180 Rotate tile 180 degrees counter clockwise.

TILE_ROTATE_270 Rotate tile 270 degrees counter clockwise.

TILE_TRANSPARENT Tile should be drawn transparently.

TILE_INDEX_MASK Mask of bits used for tile index.

TILE_INDEX_NOTHING This special index value means don't draw anything for this tile.
This is funtionally equivalent to blitting a tile that is completely
transparent, but this is faster.

906

Functions and Data Types

AECHAR 732
AEE Events 733
AEE ITextCtl Properties 737
AEE Static Properties 738
AEE_Active() 438
AEE_ADDR_RECID_NULL 739
AEE_AutoInstall() 439
AEE_BuildPath() 440
AEE_CheckPtr() 441
AEE_CheckStack() 442
AEE_CreateControl() 443
AEE_DBError 767
AEE_DBRecInfo 769
AEE_Dispatch() 444
AEE_EnumRegHandlers() 445
AEE_Event() 447
AEE_Exception() 448
AEE_Exit() 449
AEE_FreeMemory() 450
AEE_GetAppContext() 451
AEE_GetClassInfo() 452
AEE_GetShell() 453
AEE_Init() 454
AEE_IsInitialized() 455
AEE_IsTestDevice() 456
AEE_Key() 457
AEE_KeyHeld() 458
AEE_KeyPress() 459
AEE_KeyRelease() 460
AEE_LinkSysObject() 461
AEE_NetEventOccurred() 462
AEE_RegisterForDataService() 463
AEE_RegisterForValidTime() 464
AEE_Resume() 465
AEE_ResumeEx() 466
AEE_SetAppContext() 467
AEE_SetEventHandler() 468
AEE_SetSysTimer() 469
AEE_SocketEventOccurred() 470

907

Functions and Data Types

AEE_Suspend() 471
AEE_TimerExpired() 472
AEE_UnlinkSysObject() 473
AEE3DColor 740
AEE3DCoordinateTransformType 741
AEE3DCullingType 742
AEE3DEventNotify 743
AEE3DLight 744
AEE3DLightingMode 745
AEE3DLightType 746
AEE3DMaterial 747
AEE3DMatrixMode 748
AEE3DModelData 749
AEE3DModelPoly 751
AEE3DModelSegment 752
AEE3DPoint 754
AEE3DPoint16 755
AEE3DPrimitiveType 756
AEE3DRenderType 757
AEE3DRotateType 758
AEE3DTexture 759
AEE3DTextureSamplingType 760
AEE3DTextureType 761
AEE3DTextureWrapType 762
AEE3DTLVertex 763
AEE3DTransformMatrix 764
AEE3DVertex 766
AEEAppStart 770
AEEBitFont_NewFromBBF() 28
AEEBitmapInfo 771
AEECallback 772
AEECallHistoryEntry 773
AEECallHistoryField 774
AEECameraNotify 775
AEEDeviceInfo 776
AEEDeviceItem 778
AEEDNSClass 780
AEEDNSItem 781
AEEDNSResponse 782
AEEDNSType 783
AEEFileInfoEx 784
AEEFileUseInfo 785
AEEFontInfo 786
AEEGPSConfig 788
AEEGPSInfo 790
AEEGSM1xControl_statusType 795

908

Functions and Data Types

AEEGSM1xSig_NotifyMessageType 792
AEEGSM1xSig_RejectMessageType 793
AEEGSM1xSig_SignalingMessageType 794
AEELogBinMsgType 796
AEELogBucketType 797
AEELogItemType 798
AEELogParamType 799
AEELogRcdHdrType 802
AEELogVerHdrType 803
AEEMedia 804
AEEMedia_AddRef() 32
AEEMedia_CallbackNotify() 33
AEEMedia_Delete() 34
AEEMedia_GetMediaParm() 35
AEEMedia_GetState() 36
AEEMedia_GetTotalTime() 37
AEEMedia_Init() 38
AEEMedia_New() 39
AEEMedia_Pause() 40
AEEMedia_Play() 41
AEEMedia_QueryInterface() 42
AEEMedia_Record() 43
AEEMedia_RegisterNotify() 44
AEEMedia_Release() 45
AEEMedia_Resume 46
AEEMedia_Seek() 47
AEEMedia_SetMediaParm() 48
AEEMedia_Stop() 49
AEEMediaCallback 805
AEEMediaCmdNotify 806
AEEMediaData 809
AEEMediaMIDISpec 810
AEEMediaMP3Spec 811
AEEMediaSeek 813
AEENotify 814
AEENotifyStatus 815
AEEObjectHandle 817
AEEObjectMgr_GetObject() 54
AEEObjectMgr_Register() 55
AEEObjectMgr_Unregister() 56
AEEOrientationInfo 816
AEEParmInfo 818
AEEPosAccuracy 819
AEEPositionInfo 820
AEERasterOp 821
AEERect 823

909

Functions and Data Types

AEERingerCat 824
AEERingerCatID 825
AEERingerEvent 826
AEERingerID 827
AEERingerInfo 828
AEERLP3Cfg 829
AEESectorInfo 830
AEESize 831
AEESMSMsg 832
AEESMSTextMsg 833
AEESoundPlayerFile 834
AEETextInputMode 835
AEETextInputModeInfo 836
AEETileMap 837
AEETransformMatrix 839
AEEUDPUrgent 840
Camera Command codes 841
Camera Control Parameters 842
Camera Status codes 849
CameraExifTagInfo 850
CMediaFormat 851
CMediaMIDI 852
CMediaMIDIOutMsg 853
CMediaMIDIOutQCP 854
CMediaMP3 855
CMediaPMD 856
CMediaQCP 857
Configuation Parameters 858
CtlAddItem 863
CtlValChange 864
FileAttrib 865
FileInfo 866
GSMSMSEncodingType 867
GSMSMSMsg 868
GSMSMSMsgType 869
GSMSMSRawMsg 870
GSMSMSStatusType 871
GSMSMSStorageType 872
I3D_AddRef() 59
I3D_ApplyModelViewTransform() 60
I3D_CalcVertexArrayColor() 62
I3D_CalcVertexArrayNormal() 61
I3D_ClearFrameBuf() 63
I3D_Events 873
I3D_GetClipRect() 64
I3D_GetCoordTransformMode() 65

910

Functions and Data Types

I3D_GetCullingMode() 66
I3D_GetDestination() 67
I3D_GetFocalLength() 68
I3D_GetLight() 69
I3D_GetLightingMode() 70
I3D_GetMaterial() 71
I3D_GetModelViewTransform() 72
I3D_GetRenderMode() 73
I3D_GetScreenMapping() 74
I3D_GetTexture() 75
I3D_GetViewDepth() 76
I3D_PopMatrix() 77
I3D_PushMatrix() 78
I3D_QueryInterface() 79
I3D_RegisterEventNotify() 80
I3D_Release() 81
I3D_RenderTriangleFan() 82
I3D_RenderTriangles() 83
I3D_RenderTriangleStrip() 84
I3D_ResetZBuf() 85
I3D_SetClipRect() 86
I3D_SetCoordTransformMode() 87
I3D_SetCullingMode() 88
I3D_SetDestination() 89
I3D_SetFocalLength() 90
I3D_SetLight() 95
I3D_SetLightingMode() 96
I3D_SetMaterial() 97
I3D_SetModelViewTransform() 98
I3D_SetRenderMode() 91
I3D_SetScreenMapping() 92
I3D_SetTexture() 93
I3D_SetViewDepth() 94
I3D_StartFrame() 99
I3DModel_AddRef() 115
I3DModel_Draw() 116
I3DModel_GetModelData() 117
I3DModel_GetModelVertexList() 118
I3DModel_Load() 119
I3DModel_QueryInterface() 120
I3DModel_Release() 121
I3DModel_SetSegmentMVT() 123
I3DModel_SetTextureTbl() 122
I3DUtil_AddRef() 101
I3DUtil_cos() 102
I3DUtil_GetRotateMatrix() 103

911

Functions and Data Types

I3DUtil_GetRotateVMatrix() 104
I3DUtil_GetUnitVector() 106
I3DUtil_GetViewTransformMatrix() 105
I3DUtil_MatrixMultiply() 107
I3DUtil_QueryInterface() 108
I3DUtil_Release() 109
I3DUtil_SetIdentityMatrix() 110
I3DUtil_SetTranslationMatrix() 111
I3DUtil_sin() 112
I3DUtil_sqrt() 113
IBITMAP_AddRef() 125
IBITMAP_BltIn() 126
IBITMAP_BltOut() 128
IBITMAP_CreateCompatibleBitmap() 130
IBITMAP_DrawHScanline() 131
IBITMAP_DrawPixel() 132
IBITMAP_FillRect() 133
IBITMAP_GetInfo() 134
IBITMAP_GetPixel() 135
IBITMAP_GetTransparencyColor() 136
IBITMAP_NativeToRGB() 137
IBITMAP_QueryInterface() 138
IBITMAP_Release() 139
IBITMAP_RGBToNative() 140
IBITMAP_SetPixels() 141
IBITMAP_SetTransparencyColor() 142
IBITMAPCTL_AddRef() 144
IBITMAPCTL_Enable() 145
IBITMAPCTL_NotifyRelease() 146
IBITMAPCTL_QueryInterface() 147
IBITMAPCTL_Release() 148
IBITMAPCTL_Restrict() 149
ICALLHISTORY_AddEntry() 153
ICALLHISTORY_Clear() 152
ICALLHISTORY_EnumInit() 154
ICALLHISTORY_EnumNext() 155
ICALLHISTORY_UpdateEntry() 156
ICAMERA_AddOverlay() 166
ICAMERA_AddRef() 167
ICAMERA_ClearOverlay() 168
ICAMERA_DeferEncode() 169
ICAMERA_EncodeSnapshot() 170
ICAMERA_GetDisplaySizeList() 171
ICAMERA_GetFrame() 172
ICAMERA_GetMode() 173
ICAMERA_GetParm() 174

912

Functions and Data Types

ICAMERA_GetSizeList() 175
ICAMERA_IsBrightness() 176
ICAMERA_IsContrast() 177
ICAMERA_IsMovie() 178
ICAMERA_IsSharpness() 179
ICAMERA_IsSupport() 180
ICAMERA_IsZoom() 181
ICAMERA_Pause() 182
ICAMERA_Preview() 183
ICAMERA_QueryInterface() 184
ICAMERA_RecordMovie() 185
ICAMERA_RecordSnapshot() 186
ICAMERA_RegisterNotify() 187
ICAMERA_Release() 188
ICAMERA_Resume() 189
ICAMERA_RotateEncode() 190
ICAMERA_RotatePreview() 191
ICAMERA_SetAudioEncode() 192
ICAMERA_SetBrightness() 193
ICAMERA_SetContrast() 194
ICAMERA_SetDisplaySize() 195
ICAMERA_SetFramesPerSecond() 196
ICAMERA_SetMediaData() 197
ICAMERA_SetParm() 198
ICAMERA_SetQuality() 199
ICAMERA_SetSharpness() 200
ICAMERA_SetSize() 201
ICAMERA_SetVideoEncode() 202
ICAMERA_SetZoom() 203
ICAMERA_Start() 204
ICAMERA_Stop() 206
IDC_COMMAND_RESERVED 874
IDIB 875
IDIB_AddRef() 211
IDIB_FlushPalette() 212
IDIB_QueryInterface() 213
IDIB_Release() 214
IDIB_TO_IBITMAP() 215
IDNS_AddQuestion() 217
IDNS_AddRef() 218
IDNS_GetResponse() 219
IDNS_ParseDomain() 220
IDNS_QueryInterface() 221
IDNS_Release() 222
IDNS_Start() 223
IDOWNLOAD_Acquire() 226

913

Functions and Data Types

IDOWNLOAD_AutoDisable() 227
IDOWNLOAD_Cancel() 228
IDOWNLOAD_CheckItemUpgrade() 229
IDOWNLOAD_CheckUpgrades() 230
IDOWNLOAD_Continue() 231
IDOWNLOAD_Credit() 232
IDOWNLOAD_Delete() 233
IDOWNLOAD_Enum() 234
IDOWNLOAD_EnumRaw() 235
IDOWNLOAD_Get() 236
IDOWNLOAD_GetADSCapabilities() 237
IDOWNLOAD_GetADSList() 238
IDOWNLOAD_GetAllApps() 239
IDOWNLOAD_GetAppIDList() 240
IDOWNLOAD_GetAppIDListEx() 241
IDOWNLOAD_GetAutoDisableList() 242
IDOWNLOAD_GetAvailable() 243
IDOWNLOAD_GetCategory() 244
IDOWNLOAD_GetCategoryList() 245
IDOWNLOAD_GetConfigItem() 246
IDOWNLOAD_GetEULA() 249
IDOWNLOAD_GetHeaders() 250
IDOWNLOAD_GetItemInfo() 251
IDOWNLOAD_GetItemList() 252
IDOWNLOAD_GetModInfo() 253
IDOWNLOAD_GetSize() 254
IDOWNLOAD_GetSizeEx() 255
IDOWNLOAD_Lock() 256
IDOWNLOAD_LogEnumInit() 257
IDOWNLOAD_LogEnumNext() 258
IDOWNLOAD_OnStatus() 259
IDOWNLOAD_Restore() 260
IDOWNLOAD_Search() 261
IDOWNLOAD_SetADS() 262
IDOWNLOAD_SetHeaders() 263
IDOWNLOAD_SetSubscriberID() 264
IFONT_AddRef() 266
IFONT_DrawText() 267
IFONT_GetInfo() 269
IFONT_MeasureText() 270
IFONT_QueryInterface() 271
IFONT_Release() 272
IGSM1xControl_ActivateNonGSM1xMode() 276
IGSM1xControl_EnableGSM1xMode() 277
IGSM1xControl_GetAvailableModes() 278
IGSM1xControl_GetCurrentMode() 279

914

Functions and Data Types

IGSM1xControl_GetDFPresence() 280
IGSM1xControl_GetGSM1xPRL() 281
IGSM1xControl_GetGSM1xSIDNIDPairs() 282
IGSM1xControl_GetPLMN() 284
IGSM1xControl_GetSupportedProvisioningModes() 286
IGSM1xControl_GetUIMUniqueId() 287
IGSM1xControl_ProvisionGSM1xParameters() 288
IGSM1xControl_SetGSM1xPRL() 289
IGSM1xControl_SetGSM1xSIDNIDPairs() 290
IGSM1xControl_SetPLMN() 291
IGSM1xControl_ValidatePRL() 292
IGSM1xSig_GetStatus() 295
IGSM1xSig_SendSignalingMessage() 296
IGSM1xSig_SendSignalingReject() 297
IGSMSMS_CreateDefaultMessage() 300
IGSMSMS_DecodeMessage() 302
IGSMSMS_DecodeUserData() 303
IGSMSMS_DeleteAllMessages() 304
IGSMSMS_DeleteMessage() 305
IGSMSMS_EncodeUserData() 306
IGSMSMS_GetMemoryCapExceededFlag() 309
IGSMSMS_GetMessage() 307
IGSMSMS_GetMessageStatus() 308
IGSMSMS_GetSCAddress() 310
IGSMSMS_GetStatusReport() 311
IGSMSMS_GetStoreSize() 312
IGSMSMS_GetTPMR() 313
IGSMSMS_IsInit() 314
IGSMSMS_MoveMessage() 315
IGSMSMS_SendMoreMemoryAvailable() 316
IGSMSMS_SendSMSDeliverReport() 317
IGSMSMS_SendSMSSubmit() 318
IGSMSMS_SetMemoryCapExceededFlag() 320
IGSMSMS_SetMessageStatus() 321
IGSMSMS_SetSCAddress() 319
IGSMSMS_SetTPMR() 322
IGSMSMS_StoreMessage() 323
IGSMSMS_StoreStatusReport() 324
ILOGGER_AddRef() 328
ILOGGER_GetParam() 329
ILOGGER_Printf() 330
ILOGGER_PutItem() 334
ILOGGER_PutMsg() 332
ILOGGER_Release() 336
ILOGGER_SetParam() 337
INAddr 877

915

Functions and Data Types

INPort 878
IOEMDISP_Backlight() 550
IOEMDISP_GetDefaultColor() 551
IOEMDISP_GetDeviceBitmap() 552
IOEMDISP_GetPaletteEntry() 553
IOEMDISP_GetSymbol() 554
IOEMDISP_GetSystemFont() 555
IOEMDISP_MapPalette() 556
IOEMDISP_SetAnnunciators() 558
IOEMDISP_SetPaletteEntry() 559
IOEMDISP_Update() 560
IPOSDET_AddRef() 340
IPOSDET_GetGPSConfig() 341
IPOSDET_GetGPSInfo() 342
IPOSDET_GetOrientation() 344
IPOSDET_GetSectorInfo() 345
IPOSDET_QueryInterface() 346
IPOSDET_Release() 347
IPOSDET_SetGPSConfig() 348
IRINGERMGR_AddRef() 351
IRINGERMGR_Create() 352
IRINGERMGR_EnumCategoryInit() 353
IRINGERMGR_EnumNextCategory() 354
IRINGERMGR_EnumNextRinger() 355
IRINGERMGR_EnumRingerInit() 356
IRINGERMGR_GetFormats() 357
IRINGERMGR_GetNumberFormats() 358
IRINGERMGR_GetRingerID() 359
IRINGERMGR_GetRingerInfo() 360
IRINGERMGR_Play() 361
IRINGERMGR_PlayEx() 362
IRINGERMGR_PlayFile() 363
IRINGERMGR_PlayStream() 364
IRINGERMGR_RegisterNotify() 365
IRINGERMGR_Release() 366
IRINGERMGR_Remove() 367
IRINGERMGR_SetRinger() 368
IRINGERMGR_Stop() 369
IRUIM_AddRef() 371
IRUIM_CHVDisable() 372
IRUIM_CHVEnable() 373
IRUIM_GetCHVStatus() 374
IRUIM_GetId() 375
IRUIM_GetPrefLang() 376
IRUIM_IsCardConnected 377
IRUIM_PINChange() 378

916

Functions and Data Types

IRUIM_PINCheck() 379
IRUIM_QueryInterface() 380
IRUIM_Release() 381
IRUIM_UnblockCHV() 382
IRUIM_VirtualPINCheck() 383
ITAPI_AddRef() 388
ITAPI_ExtractSMSText() 389
ITAPI_GetCallerID() 390
ITAPI_GetStatus() 391
ITAPI_IsDataSupported() 392
ITAPI_IsVoiceCall() 393
ITAPI_MakeVoiceCall() 394
ITAPI_OnCallEnd() 396
ITAPI_OnCallStatus() 397
ITAPI_Release() 399
ITAPI_SendSMS() 400
ITEXTCTL_AddRef() 405
ITEXTCTL_EnumModeInit() 406
ITEXTCTL_EnumNextMode() 407
ITEXTCTL_GetCursorPos() 408
ITEXTCTL_GetInputMode() 409
ITEXTCTL_GetProperties() 410
ITEXTCTL_GetRect() 411
ITEXTCTL_GetText() 412
ITEXTCTL_GetTextPtr() 413
ITEXTCTL_HandleEvent() 414
ITEXTCTL_IsActive() 415
ITEXTCTL_Redraw() 416
ITEXTCTL_Release() 417
ITEXTCTL_Reset() 418
ITEXTCTL_SetActive() 419
ITEXTCTL_SetCursorPos() 420
ITEXTCTL_SetInputMode() 421
ITEXTCTL_SetMaxSize() 422
ITEXTCTL_SetProperties() 423
ITEXTCTL_SetRect() 424
ITEXTCTL_SetSoftKeyMenu() 425
ITEXTCTL_SetText() 426
ITEXTCTL_SetTitle() 427
ITransform Properties 879
ITRANSFORM_AddRef() 429
ITRANSFORM_QueryInterface() 430
ITRANSFORM_Release() 431
ITRANSFORM_TransformBltComplex() 432
ITRANSFORM_TransformBltSimple() 434
NativeColor 880

917

Functions and Data Types

NetSocket 881
NetState 882
OEM_AuthorizeDownload() 492
OEM_CheckMemAvail() 584
OEM_CheckPrivacy() 493
OEM_DBClose() 533
OEM_DBCreate() 534
OEM_DBDelete() 535
OEM_DBFree() 536
OEM_DBInit() 537
OEM_DBMakeReadOnly() 538
OEM_DBOpen() 539
OEM_DBRecordAdd() 540
OEM_DBRecordCount() 541
OEM_DBRecordDelete() 542
OEM_DBRecordGet() 543
OEM_DBRecordNext() 544
OEM_DBRecordUpdate() 545
OEM_extract_SMS_text() 646
OEM_FloatToWStr() 694
OEM_format_SMS_msg() 647
OEM_format_SMS_text() 648
OEM_Free() 585
OEM_GetAddrBookPath() 519
OEM_GetAppPath() 520
OEM_GetCHType() 695
OEM_GetConfig() 521
OEM_GetDeviceInfo() 522
OEM_GetDeviceInfoEx() 523
OEM_GetItemStyle() 494
OEM_GetLogoPath() 524
OEM_GetMIFPath() 525
OEM_GetPath() 526
OEM_GetRAMFree() 586
OEM_GetRingerPath() 527
OEM_GetSharedPath() 528
OEM_InitHeap() 587
OEM_LockMem() 496
OEM_Malloc() 588
OEM_Notify() 497
OEM_Realloc() 589
OEM_SetConfig() 529
OEM_SimpleBeep() 499
OEM_TextAddChar() 703
OEM_TextCreate() 704
OEM_TextDelete() 705

918

Functions and Data Types

OEM_TextDraw() 706
OEM_TextEnumMode() 707
OEM_TextEnumModesInit() 708
OEM_TextGet() 709
OEM_TextGetCurrentMode() 710
OEM_TextGetCursorPos() 711
OEM_TextGetMaxChars() 712
OEM_TextGetModeString() 713
OEM_TextGetProperties() 714
OEM_TextGetRect() 715
OEM_TextGetSel() 716
OEM_TextKeyPress() 717
OEM_TextQueryModes() 718
OEM_TextQuerySymbols() 719
OEM_TextSet() 720
OEM_TextSetCursorPos() 721
OEM_TextSetEdit() 722
OEM_TextSetMaxChars() 723
OEM_TextSetProperties() 724
OEM_TextSetRect() 725
OEM_TextSetSel() 726
OEM_TextUpdate() 727
OEM_uasms_config_listeners() 649
OEM_UnlockMem() 500
OEM_UTF8ToWStr() 696
OEM_vxprintf() 697
OEM_WStrLower() 698
OEM_WStrToFloat() 699
OEM_WStrToUTF8() 700
OEM_WStrUpper() 701
OEMAddr_EnumNextRec() 475
OEMAddr_EnumRecInit() 476
OEMAddr_GetCatCount() 477
OEMAddr_GetCatList() 478
OEMAddr_GetFieldInfo() 479
OEMAddr_GetFieldInfoCount() 480
OEMAddr_GetNumRecs() 481
OEMAddr_RecordAdd() 482
OEMAddr_RecordDelete() 483
OEMAddr_RecordGetByID() 484
OEMAddr_RecordUpdate() 485
OEMAddr_RemoveAllRecs() 486
OEMAddrBook_CommonExit() 487
OEMAddrBook_CommonInit() 488
OEMAddrBook_Exit() 489
OEMAddrBook_Init() 490

919

Functions and Data Types

OEMAppEvent 883
OEMBTSDP_CancelDiscovery() 502
OEMBTSDP_CloseLib() 503
OEMBTSDP_DiscoverDevices() 504
OEMBTSDP_GetDeviceName() 505
OEMBTSDP_GetServerChannel() 506
OEMBTSDP_Init() 507
OEMBTSDP_OpenLib() 508
OEMBTSDP_Shutdown() 509
OEMBTSIO_Close() 511
OEMBTSIO_DataAvailable() 512
OEMBTSIO_Init() 513
OEMBTSIO_Open() 514
OEMBTSIO_ProcessEvents() 515
OEMBTSIO_Read() 516
OEMBTSIO_Write() 517
OEMCRC_16_step() 531
OEMDebug_Printf() 547
OEMDebug_VPrintf() 548
OEMDisp_New() 557
OEMFS_Close() 562
OEMFS_EnumNext() 563
OEMFS_EnumStart() 564
OEMFS_EnumStop() 565
OEMFS_GetDirInfo() 566
OEMFS_GetFileAttributes() 567
OEMFS_GetLastError() 568
OEMFS_GetOpenFileAttributes() 569
OEMFS_Mkdir() 570
OEMFS_Open() 571
OEMFS_Read() 572
OEMFS_Remove() 573
OEMFS_Rename() 574
OEMFS_Rmdir() 575
OEMFS_Seek() 576
OEMFS_SpaceAvail() 577
OEMFS_SpaceUsed() 578
OEMFS_Tell() 579
OEMFS_Test() 580
OEMFS_Truncate() 581
OEMFS_Write() 582
OEMLogger_Printf() 594
OEMLogger_PutItem() 596
OEMLogger_PutMsg() 598
OEMLoggerDMSS_GetParam() 599
OEMLoggerDMSS_PutRecord() 600

920

Functions and Data Types

OEMLoggerDMSS_SetParam() 601
OEMLoggerFile_GetParam() 602
OEMLoggerFile_PutRecord() 603
OEMLoggerFile_SetParam() 604
OEMLoggerWin_GetParam() 605
OEMLoggerWin_PutRecord() 606
OEMLoggerWin_SetParam() 607
oemLogType 884
OEMMD5_Final() 609
OEMMD5_Init() 610
OEMMD5_Update() 611
OEMMedia_DetectType() 50
OEMNet_CloseNetlib() 613
OEMNet_GetPPPAuth() 614
OEMNet_GetRLP3Cfg() 615
OEMNet_GetUrgent() 616
OEMNet_MyIPAddr() 617
OEMNet_NameServers() 618
OEMNet_OpenNetlib() 619
OEMNet_PPPClose() 620
OEMNet_PPPOpen() 621
OEMNet_PPPSleep() 622
OEMNet_PPPState() 623
OEMNet_SetPPPAuth() 624
OEMNet_SetRLP3Cfg() 625
OEMOS_ActiveTaskID() 630
OEMOS_BrewHighPriority() 631
OEMOS_BrewNormalPriority() 632
OEMOS_CancelDispatch() 633
OEMOS_GetLocalTime() 634
OEMOS_GetTimeMS() 635
OEMOS_GetUptime() 636
OEMOS_LocalTimeOffset() 637
OEMOS_SetTimer() 638
OEMOS_SignalDispatch() 639
OEMOS_Sleep() 640
OEMRan_GetNonPseudoRandomBytes() 642
OEMRan_Next() 643
OEMRan_Seed() 644
OEMRegistry_DetectType() 627
OEMRUIMAddr_GetFuncs() 384
OEMSocket_Accept() 651
OEMSocket_AsyncSelect() 652
OEMSocket_Bind() 653
OEMSocket_Close() 654
OEMSocket_Connect() 655

921

Functions and Data Types

OEMSocket_GetNextEvent() 656
OEMSocket_GetPeerName() 657
OEMSocket_GetSockName() 658
OEMSocket_Listen() 659
OEMSocket_Open() 660
OEMSocket_Read() 661
OEMSocket_Readv() 662
OEMSocket_RecvFrom() 663
OEMSocket_SendTo() 664
OEMSocket_Shutdown() 665
OEMSocket_Write() 666
OEMSocket_Writev() 667
OEMSound_DeleteInstance() 669
OEMSound_GetLevels() 670
OEMSound_GetVolume() 671
OEMSound_Init() 672
OEMSound_NewInstance() 673
OEMSound_PlayFreqTone() 674
OEMSound_PlayTone() 675
OEMSound_PlayToneList() 676
OEMSound_SetDevice() 677
OEMSound_SetVolume() 678
OEMSound_StopTone() 679
OEMSound_StopVibrate() 680
OEMSound_Vibrate() 681
OEMSoundPlayer_FastForward() 683
OEMSoundPlayer_GetTotalTime() 684
OEMSoundPlayer_Pause() 685
OEMSoundPlayer_Play() 686
OEMSoundPlayer_PlayRinger() 687
OEMSoundPlayer_Resume() 688
OEMSoundPlayer_Rewind() 689
OEMSoundPlayer_Stop() 690
OEMSoundPlayer_Tempo() 691
OEMSoundPlayer_Tune() 692
PFNCBCANCEL 885
PFNDLTEXT 886
PFNMEDIANOTIFY 887
PFNNOTIFY 893
PFNPOSITIONCB 894
PFNRINGEREVENT 895
PFNSIONOTIFY 896
PhoneState 897
Q12 Fixed Point Format 888
Q14 Fixed Point Format 889
Q16 Fixed Point Format 890

922

Functions and Data Types

Q3D File Format 891
RGBVAL 898
SockIOBlock 899
Sprite Properties 900
TAPIStatus 902
Tile Map Properties 904
Tile Properties 905

	Introducing the BREW OEM API Reference for MSM™ Platform
	In this reference
	BREW SDK™ documentation set
	BREW OEM documentation set
	BREW OEM acronyms
	BREW architecture
	For more information

	AEEBitFont Interface
	AEEBitFont_NewFromBBF()

	AEE Media Interface
	AEEMedia_AddRef()
	AEEMedia_CallbackNotify()
	AEEMedia_Delete()
	AEEMedia_GetMediaParm()
	AEEMedia_GetState()
	AEEMedia_GetTotalTime()
	AEEMedia_Init()
	AEEMedia_New()
	AEEMedia_Pause()
	AEEMedia_Play()
	AEEMedia_QueryInterface()
	AEEMedia_Record()
	AEEMedia_RegisterNotify()
	AEEMedia_Release()
	AEEMedia_Resume
	AEEMedia_Seek()
	AEEMedia_SetMediaParm()
	AEEMedia_Stop()
	OEMMedia_DetectType()

	AEE Object Manager Interface
	Why is ObjectMgr needed?
	ObjectMgr solves the problem
	AEEObjectMgr_GetObject()
	AEEObjectMgr_Register()
	AEEObjectMgr_Unregister()

	I3D Interface
	I3D_AddRef()
	I3D_ApplyModelViewTransform()
	I3D_CalcVertexArrayNormal()
	I3D_CalcVertexArrayColor()
	I3D_ClearFrameBuf()
	I3D_GetClipRect()
	I3D_GetCoordTransformMode()
	I3D_GetCullingMode()
	I3D_GetDestination()
	I3D_GetFocalLength()
	I3D_GetLight()
	I3D_GetLightingMode()
	I3D_GetMaterial()
	I3D_GetModelViewTransform()
	I3D_GetRenderMode()
	I3D_GetScreenMapping()
	I3D_GetTexture()
	I3D_GetViewDepth()
	I3D_PopMatrix()
	I3D_PushMatrix()
	I3D_QueryInterface()
	I3D_RegisterEventNotify()
	I3D_Release()
	I3D_RenderTriangleFan()
	I3D_RenderTriangles()
	I3D_RenderTriangleStrip()
	I3D_ResetZBuf()
	I3D_SetClipRect()
	I3D_SetCoordTransformMode()
	I3D_SetCullingMode()
	I3D_SetDestination()
	I3D_SetFocalLength()
	I3D_SetRenderMode()
	I3D_SetScreenMapping()
	I3D_SetTexture()
	I3D_SetViewDepth()
	I3D_SetLight()
	I3D_SetLightingMode()
	I3D_SetMaterial()
	I3D_SetModelViewTransform()
	I3D_StartFrame()

	I3DUtil Interface
	I3DUtil_AddRef()
	I3DUtil_cos()
	I3DUtil_GetRotateMatrix()
	I3DUtil_GetRotateVMatrix()
	I3DUtil_GetViewTransformMatrix()
	I3DUtil_GetUnitVector()
	I3DUtil_MatrixMultiply()
	I3DUtil_QueryInterface()
	I3DUtil_Release()
	I3DUtil_SetIdentityMatrix()
	I3DUtil_SetTranslationMatrix()
	I3DUtil_sin()
	I3DUtil_sqrt()

	I3DModel Interface
	I3DModel_AddRef()
	I3DModel_Draw()
	I3DModel_GetModelData()
	I3DModel_GetModelVertexList()
	I3DModel_Load()
	I3DModel_QueryInterface()
	I3DModel_Release()
	I3DModel_SetTextureTbl()
	I3DModel_SetSegmentMVT()

	IBitmap Interface
	IBITMAP_AddRef()
	IBITMAP_BltIn()
	IBITMAP_BltOut()
	IBITMAP_CreateCompatibleBitmap()
	IBITMAP_DrawHScanline()
	IBITMAP_DrawPixel()
	IBITMAP_FillRect()
	IBITMAP_GetInfo()
	IBITMAP_GetPixel()
	IBITMAP_GetTransparencyColor()
	IBITMAP_NativeToRGB()
	IBITMAP_QueryInterface()
	IBITMAP_Release()
	IBITMAP_RGBToNative()
	IBITMAP_SetPixels()
	IBITMAP_SetTransparencyColor()

	IBitmapCtl Interface
	IBITMAPCTL_AddRef()
	IBITMAPCTL_Enable()
	IBITMAPCTL_NotifyRelease()
	IBITMAPCTL_QueryInterface()
	IBITMAPCTL_Release()
	IBITMAPCTL_Restrict()

	ICallHistory Interface
	ICALLHISTORY_Clear()
	ICALLHISTORY_AddEntry()
	ICALLHISTORY_EnumInit()
	ICALLHISTORY_EnumNext()
	ICALLHISTORY_UpdateEntry()

	ICamera Interface
	ICAMERA_AddOverlay()
	ICAMERA_AddRef()
	ICAMERA_ClearOverlay()
	ICAMERA_DeferEncode()
	ICAMERA_EncodeSnapshot()
	ICAMERA_GetDisplaySizeList()
	ICAMERA_GetFrame()
	ICAMERA_GetMode()
	ICAMERA_GetParm()
	ICAMERA_GetSizeList()
	ICAMERA_IsBrightness()
	ICAMERA_IsContrast()
	ICAMERA_IsMovie()
	ICAMERA_IsSharpness()
	ICAMERA_IsSupport()
	ICAMERA_IsZoom()
	ICAMERA_Pause()
	ICAMERA_Preview()
	ICAMERA_QueryInterface()
	ICAMERA_RecordMovie()
	ICAMERA_RecordSnapshot()
	ICAMERA_RegisterNotify()
	ICAMERA_Release()
	ICAMERA_Resume()
	ICAMERA_RotateEncode()
	ICAMERA_RotatePreview()
	ICAMERA_SetAudioEncode()
	ICAMERA_SetBrightness()
	ICAMERA_SetContrast()
	ICAMERA_SetDisplaySize()
	ICAMERA_SetFramesPerSecond()
	ICAMERA_SetMediaData()
	ICAMERA_SetParm()
	ICAMERA_SetQuality()
	ICAMERA_SetSharpness()
	ICAMERA_SetSize()
	ICAMERA_SetVideoEncode()
	ICAMERA_SetZoom()
	ICAMERA_Start()
	ICAMERA_Stop()

	IDIB Interface
	Pixel array structure
	Usage example:
	Pixel values

	Palette Map
	Software Support
	IDIB_AddRef()
	IDIB_FlushPalette()
	IDIB_QueryInterface()
	IDIB_Release()
	IDIB_TO_IBITMAP()

	IDNS Interface
	IDNS_AddQuestion()
	IDNS_AddRef()
	IDNS_GetResponse()
	IDNS_ParseDomain()
	IDNS_QueryInterface()
	IDNS_Release()
	IDNS_Start()

	IDownload Interface
	IDOWNLOAD_Acquire()
	IDOWNLOAD_AutoDisable()
	IDOWNLOAD_Cancel()
	IDOWNLOAD_CheckItemUpgrade()
	IDOWNLOAD_CheckUpgrades()
	IDOWNLOAD_Continue()
	IDOWNLOAD_Credit()
	IDOWNLOAD_Delete()
	IDOWNLOAD_Enum()
	IDOWNLOAD_EnumRaw()
	IDOWNLOAD_Get()
	IDOWNLOAD_GetADSCapabilities()
	IDOWNLOAD_GetADSList()
	IDOWNLOAD_GetAllApps()
	IDOWNLOAD_GetAppIDList()
	IDOWNLOAD_GetAppIDListEx()
	IDOWNLOAD_GetAutoDisableList()
	IDOWNLOAD_GetAvailable()
	IDOWNLOAD_GetCategory()
	IDOWNLOAD_GetCategoryList()
	IDOWNLOAD_GetConfigItem()
	IDOWNLOAD_GetEULA()
	IDOWNLOAD_GetHeaders()
	IDOWNLOAD_GetItemInfo()
	IDOWNLOAD_GetItemList()
	IDOWNLOAD_GetModInfo()
	IDOWNLOAD_GetSize()
	IDOWNLOAD_GetSizeEx()
	IDOWNLOAD_Lock()
	IDOWNLOAD_LogEnumInit()
	IDOWNLOAD_LogEnumNext()
	IDOWNLOAD_OnStatus()
	IDOWNLOAD_Restore()
	IDOWNLOAD_Search()
	IDOWNLOAD_SetADS()
	IDOWNLOAD_SetHeaders()
	IDOWNLOAD_SetSubscriberID()

	IFont Interface
	IFONT_AddRef()
	IFONT_DrawText()
	IFONT_GetInfo()
	IFONT_MeasureText()
	IFONT_QueryInterface()
	IFONT_Release()

	IGSM1xControl Interface
	IGSM1xControl_ActivateNonGSM1xMode()
	IGSM1xControl_EnableGSM1xMode()
	IGSM1xControl_GetAvailableModes()
	IGSM1xControl_GetCurrentMode()
	IGSM1xControl_GetDFPresence()
	IGSM1xControl_GetGSM1xPRL()
	IGSM1xControl_GetGSM1xSIDNIDPairs()
	IGSM1xControl_GetPLMN()
	IGSM1xControl_GetSupportedProvisioningModes()
	IGSM1xControl_GetUIMUniqueId()
	IGSM1xControl_ProvisionGSM1xParameters()
	IGSM1xControl_SetGSM1xPRL()
	IGSM1xControl_SetGSM1xSIDNIDPairs()
	IGSM1xControl_SetPLMN()
	IGSM1xControl_ValidatePRL()

	IGSM1xSig Interface
	IGSM1xSig_GetStatus()
	IGSM1xSig_SendSignalingMessage()
	IGSM1xSig_SendSignalingReject()

	IGSMSMS
	IGSMSMS_CreateDefaultMessage()
	IGSMSMS_DecodeMessage()
	IGSMSMS_DecodeUserData()
	IGSMSMS_DeleteAllMessages()
	IGSMSMS_DeleteMessage()
	IGSMSMS_EncodeUserData()
	IGSMSMS_GetMessage()
	IGSMSMS_GetMessageStatus()
	IGSMSMS_GetMemoryCapExceededFlag()
	IGSMSMS_GetSCAddress()
	IGSMSMS_GetStatusReport()
	IGSMSMS_GetStoreSize()
	IGSMSMS_GetTPMR()
	IGSMSMS_IsInit()
	IGSMSMS_MoveMessage()
	IGSMSMS_SendMoreMemoryAvailable()
	IGSMSMS_SendSMSDeliverReport()
	IGSMSMS_SendSMSSubmit()
	IGSMSMS_SetSCAddress()
	IGSMSMS_SetMemoryCapExceededFlag()
	IGSMSMS_SetMessageStatus()
	IGSMSMS_SetTPMR()
	IGSMSMS_StoreMessage()
	IGSMSMS_StoreStatusReport()

	ILogger Interface
	ILOGGER_AddRef()
	ILOGGER_GetParam()
	ILOGGER_Printf()
	ILOGGER_PutMsg()
	ILOGGER_PutItem()
	ILOGGER_Release()
	ILOGGER_SetParam()

	IPosDet Interface
	IPOSDET_AddRef()
	IPOSDET_GetGPSConfig()
	IPOSDET_GetGPSInfo()
	IPOSDET_GetOrientation()
	IPOSDET_GetSectorInfo()
	IPOSDET_QueryInterface()
	IPOSDET_Release()
	IPOSDET_SetGPSConfig()

	IRingerMgr Interface
	IRINGERMGR_AddRef()
	IRINGERMGR_Create()
	IRINGERMGR_EnumCategoryInit()
	IRINGERMGR_EnumNextCategory()
	IRINGERMGR_EnumNextRinger()
	IRINGERMGR_EnumRingerInit()
	IRINGERMGR_GetFormats()
	IRINGERMGR_GetNumberFormats()
	IRINGERMGR_GetRingerID()
	IRINGERMGR_GetRingerInfo()
	IRINGERMGR_Play()
	IRINGERMGR_PlayEx()
	IRINGERMGR_PlayFile()
	IRINGERMGR_PlayStream()
	IRINGERMGR_RegisterNotify()
	IRINGERMGR_Release()
	IRINGERMGR_Remove()
	IRINGERMGR_SetRinger()
	IRINGERMGR_Stop()

	IRUIM Interface
	IRUIM_AddRef()
	IRUIM_CHVDisable()
	IRUIM_CHVEnable()
	IRUIM_GetCHVStatus()
	IRUIM_GetId()
	IRUIM_GetPrefLang()
	IRUIM_IsCardConnected
	IRUIM_PINChange()
	IRUIM_PINCheck()
	IRUIM_QueryInterface()
	IRUIM_Release()
	IRUIM_UnblockCHV()
	IRUIM_VirtualPINCheck()
	OEMRUIMAddr_GetFuncs()

	ITAPI Interface
	Notifications Sent by this Class:
	Receiving SMS Messages:
	Registering for Device Status Change:
	ITAPI_AddRef()
	ITAPI_ExtractSMSText()
	ITAPI_GetCallerID()
	ITAPI_GetStatus()
	ITAPI_IsDataSupported()
	ITAPI_IsVoiceCall()
	ITAPI_MakeVoiceCall()
	ITAPI_OnCallEnd()
	ITAPI_OnCallStatus()
	ITAPI_Release()
	ITAPI_SendSMS()

	ITextCtl Interface
	ITEXTCTL_AddRef()
	ITEXTCTL_EnumModeInit()
	ITEXTCTL_EnumNextMode()
	ITEXTCTL_GetCursorPos()
	ITEXTCTL_GetInputMode()
	ITEXTCTL_GetProperties()
	ITEXTCTL_GetRect()
	ITEXTCTL_GetText()
	ITEXTCTL_GetTextPtr()
	ITEXTCTL_HandleEvent()
	ITEXTCTL_IsActive()
	ITEXTCTL_Redraw()
	ITEXTCTL_Release()
	ITEXTCTL_Reset()
	ITEXTCTL_SetActive()
	ITEXTCTL_SetCursorPos()
	ITEXTCTL_SetInputMode()
	ITEXTCTL_SetMaxSize()
	ITEXTCTL_SetProperties()
	ITEXTCTL_SetRect()
	ITEXTCTL_SetSoftKeyMenu()
	ITEXTCTL_SetText()
	ITEXTCTL_SetTitle()

	ITransform Interface
	ITRANSFORM_AddRef()
	ITRANSFORM_QueryInterface()
	ITRANSFORM_Release()
	ITRANSFORM_TransformBltComplex()
	ITRANSFORM_TransformBltSimple()

	OEM AEE Interface
	AEE_Active()
	AEE_AutoInstall()
	AEE_BuildPath()
	AEE_CheckPtr()
	AEE_CheckStack()
	AEE_CreateControl()
	AEE_Dispatch()
	AEE_EnumRegHandlers()
	AEE_Event()
	AEE_Exception()
	AEE_Exit()
	AEE_FreeMemory()
	AEE_GetAppContext()
	AEE_GetClassInfo()
	AEE_GetShell()
	AEE_Init()
	AEE_IsInitialized()
	AEE_IsTestDevice()
	AEE_Key()
	AEE_KeyHeld()
	AEE_KeyPress()
	AEE_KeyRelease()
	AEE_LinkSysObject()
	AEE_NetEventOccurred()
	AEE_RegisterForDataService()
	AEE_RegisterForValidTime()
	AEE_Resume()
	AEE_ResumeEx()
	AEE_SetAppContext()
	AEE_SetEventHandler()
	AEE_SetSysTimer()
	AEE_SocketEventOccurred()
	AEE_Suspend()
	AEE_TimerExpired()
	AEE_UnlinkSysObject()

	OEM Address Book Interface
	OEMAddr_EnumNextRec()
	OEMAddr_EnumRecInit()
	OEMAddr_GetCatCount()
	OEMAddr_GetCatList()
	OEMAddr_GetFieldInfo()
	OEMAddr_GetFieldInfoCount()
	OEMAddr_GetNumRecs()
	OEMAddr_RecordAdd()
	OEMAddr_RecordDelete()
	OEMAddr_RecordGetByID()
	OEMAddr_RecordUpdate()
	OEMAddr_RemoveAllRecs()
	OEMAddrBook_CommonExit()
	OEMAddrBook_CommonInit()
	OEMAddrBook_Exit()
	OEMAddrBook_Init()

	OEM Application Interface
	OEM_AuthorizeDownload()
	OEM_CheckPrivacy()
	OEM_GetItemStyle()
	OEM_LockMem()
	OEM_Notify()
	OEM_SimpleBeep()
	OEM_UnlockMem()

	OEMBTSDP Interface
	OEMBTSDP_CancelDiscovery()
	OEMBTSDP_CloseLib()
	OEMBTSDP_DiscoverDevices()
	OEMBTSDP_GetDeviceName()
	OEMBTSDP_GetServerChannel()
	OEMBTSDP_Init()
	OEMBTSDP_OpenLib()
	OEMBTSDP_Shutdown()

	OEMBTSIO Interface
	OEMBTSIO_Close()
	OEMBTSIO_DataAvailable()
	OEMBTSIO_Init()
	OEMBTSIO_Open()
	OEMBTSIO_ProcessEvents()
	OEMBTSIO_Read()
	OEMBTSIO_Write()

	OEM Configuration Interface
	OEM_GetAddrBookPath()
	OEM_GetAppPath()
	OEM_GetConfig()
	OEM_GetDeviceInfo()
	OEM_GetDeviceInfoEx()
	OEM_GetLogoPath()
	OEM_GetMIFPath()
	OEM_GetPath()
	OEM_GetRingerPath()
	OEM_GetSharedPath()
	OEM_SetConfig()

	OEM Cyclic Redundancy Check�Interface
	OEMCRC_16_step()

	OEM Database Interface
	OEM_DBClose()
	OEM_DBCreate()
	OEM_DBDelete()
	OEM_DBFree()
	OEM_DBInit()
	OEM_DBMakeReadOnly()
	OEM_DBOpen()
	OEM_DBRecordAdd()
	OEM_DBRecordCount()
	OEM_DBRecordDelete()
	OEM_DBRecordGet()
	OEM_DBRecordNext()
	OEM_DBRecordUpdate()

	OEM Debug Interface
	OEMDebug_Printf()
	OEMDebug_VPrintf()

	OEM Display Interface
	IOEMDISP_Backlight()
	IOEMDISP_GetDefaultColor()
	IOEMDISP_GetDeviceBitmap()
	IOEMDISP_GetPaletteEntry()
	IOEMDISP_GetSymbol()
	IOEMDISP_GetSystemFont()
	IOEMDISP_MapPalette()
	OEMDisp_New()
	IOEMDISP_SetAnnunciators()
	IOEMDISP_SetPaletteEntry()
	IOEMDISP_Update()

	OEM File System Interface
	OEMFS_Close()
	OEMFS_EnumNext()
	OEMFS_EnumStart()
	OEMFS_EnumStop()
	OEMFS_GetDirInfo()
	OEMFS_GetFileAttributes()
	OEMFS_GetLastError()
	OEMFS_GetOpenFileAttributes()
	OEMFS_Mkdir()
	OEMFS_Open()
	OEMFS_Read()
	OEMFS_Remove()
	OEMFS_Rename()
	OEMFS_Rmdir()
	OEMFS_Seek()
	OEMFS_SpaceAvail()
	OEMFS_SpaceUsed()
	OEMFS_Tell()
	OEMFS_Test()
	OEMFS_Truncate()
	OEMFS_Write()

	OEM Heap Interface
	OEM_CheckMemAvail()
	OEM_Free()
	OEM_GetRAMFree()
	OEM_InitHeap()
	OEM_Malloc()
	OEM_Realloc()

	OEMLogger Interface
	OEMLogger_Printf()
	OEMLogger_PutItem()
	OEMLogger_PutMsg()
	OEMLoggerDMSS_GetParam()
	OEMLoggerDMSS_PutRecord()
	OEMLoggerDMSS_SetParam()
	OEMLoggerFile_GetParam()
	OEMLoggerFile_PutRecord()
	OEMLoggerFile_SetParam()
	OEMLoggerWin_GetParam()
	OEMLoggerWin_PutRecord()
	OEMLoggerWin_SetParam()

	OEM MD5 Interface
	OEMMD5_Final()
	OEMMD5_Init()
	OEMMD5_Update()

	OEM Net Interface
	OEMNet_CloseNetlib()
	OEMNet_GetPPPAuth()
	OEMNet_GetRLP3Cfg()
	OEMNet_GetUrgent()
	OEMNet_MyIPAddr()
	OEMNet_NameServers()
	OEMNet_OpenNetlib()
	OEMNet_PPPClose()
	OEMNet_PPPOpen()
	OEMNet_PPPSleep()
	OEMNet_PPPState()
	OEMNet_SetPPPAuth()
	OEMNet_SetRLP3Cfg()

	OEM Registry Interface
	OEMRegistry_DetectType()

	OEM Operating System Interface
	OEMOS_ActiveTaskID()
	OEMOS_BrewHighPriority()
	OEMOS_BrewNormalPriority()
	OEMOS_CancelDispatch()
	OEMOS_GetLocalTime()
	OEMOS_GetTimeMS()
	OEMOS_GetUptime()
	OEMOS_LocalTimeOffset()
	OEMOS_SetTimer()
	OEMOS_SignalDispatch()
	OEMOS_Sleep()

	OEM Random Number Generator Interface
	OEMRan_GetNonPseudoRandomBytes()
	OEMRan_Next()
	OEMRan_Seed()

	OEM SMS Interface
	OEM_extract_SMS_text()
	OEM_format_SMS_msg()
	OEM_format_SMS_text()
	OEM_uasms_config_listeners()

	OEM Socket Interface
	OEMSocket_Accept()
	OEMSocket_AsyncSelect()
	OEMSocket_Bind()
	OEMSocket_Close()
	OEMSocket_Connect()
	OEMSocket_GetNextEvent()
	OEMSocket_GetPeerName()
	OEMSocket_GetSockName()
	OEMSocket_Listen()
	OEMSocket_Open()
	OEMSocket_Read()
	OEMSocket_Readv()
	OEMSocket_RecvFrom()
	OEMSocket_SendTo()
	OEMSocket_Shutdown()
	OEMSocket_Write()
	OEMSocket_Writev()

	OEM Sound Interface
	OEMSound_DeleteInstance()
	OEMSound_GetLevels()
	OEMSound_GetVolume()
	OEMSound_Init()
	OEMSound_NewInstance()
	OEMSound_PlayFreqTone()
	OEMSound_PlayTone()
	OEMSound_PlayToneList()
	OEMSound_SetDevice()
	OEMSound_SetVolume()
	OEMSound_StopTone()
	OEMSound_StopVibrate()
	OEMSound_Vibrate()

	OEM SoundPlayer Interface
	OEMSoundPlayer_FastForward()
	OEMSoundPlayer_GetTotalTime()
	OEMSoundPlayer_Pause()
	OEMSoundPlayer_Play()
	OEMSoundPlayer_PlayRinger()
	OEMSoundPlayer_Resume()
	OEMSoundPlayer_Rewind()
	OEMSoundPlayer_Stop()
	OEMSoundPlayer_Tempo()
	OEMSoundPlayer_Tune()

	OEM String Interface
	OEM_FloatToWStr()
	OEM_GetCHType()
	OEM_UTF8ToWStr()
	OEM_vxprintf()
	OEM_WStrLower()
	OEM_WStrToFloat()
	OEM_WStrToUTF8()
	OEM_WStrUpper()

	OEM Text Interface
	OEM_TextAddChar()
	OEM_TextCreate()
	OEM_TextDelete()
	OEM_TextDraw()
	OEM_TextEnumMode()
	OEM_TextEnumModesInit()
	OEM_TextGet()
	OEM_TextGetCurrentMode()
	OEM_TextGetCursorPos()
	OEM_TextGetMaxChars()
	OEM_TextGetModeString()
	OEM_TextGetProperties()
	OEM_TextGetRect()
	OEM_TextGetSel()
	OEM_TextKeyPress()
	OEM_TextQueryModes()
	OEM_TextQuerySymbols()
	OEM_TextSet()
	OEM_TextSetCursorPos()
	OEM_TextSetEdit()
	OEM_TextSetMaxChars()
	OEM_TextSetProperties()
	OEM_TextSetRect()
	OEM_TextSetSel()
	OEM_TextUpdate()

	Data Types
	AECHAR
	AEE Events
	Event codes

	AEE ITextCtl Properties
	AEE Static Properties
	AEE_ADDR_RECID_NULL
	AEE3DColor
	AEE3DCoordinateTransformType
	AEE3DCullingType
	AEE3DEventNotify
	AEE3DLight
	AEE3DLightingMode
	AEE3DLightType
	AEE3DMaterial
	AEE3DMatrixMode
	AEE3DModelData
	AEE3DModelPoly
	AEE3DModelSegment
	AEE3DPoint
	AEE3DPoint16
	AEE3DPrimitiveType
	AEE3DRenderType
	AEE3DRotateType
	AEE3DTexture
	AEE3DTextureSamplingType
	AEE3DTextureType
	AEE3DTextureWrapType
	AEE3DTLVertex
	AEE3DTransformMatrix
	AEE3DVertex
	AEE_DBError
	AEE_DBRecInfo
	AEEAppStart
	AEEBitmapInfo
	AEECallback
	AEECallHistoryEntry
	AEECallHistoryField
	AEECameraNotify
	AEEDeviceInfo
	AEEDeviceItem
	AEEDNSClass
	AEEDNSItem
	AEEDNSResponse
	AEEDNSType
	AEEFileInfoEx
	AEEFileUseInfo
	AEEFontInfo
	AEEGPSConfig
	AEEGPSInfo
	AEEGSM1xSig_NotifyMessageType
	AEEGSM1xSig_RejectMessageType
	AEEGSM1xSig_SignalingMessageType
	AEEGSM1xControl_statusType
	AEELogBinMsgType
	AEELogBucketType
	AEELogItemType
	AEELogParamType
	AEELogRcdHdrType
	AEELogVerHdrType
	AEEMedia
	AEEMediaCallback
	AEEMediaCmdNotify
	AEEMediaData
	AEEMediaMIDISpec
	AEEMediaMP3Spec
	AEEMediaSeek
	AEENotify
	AEENotifyStatus
	AEEOrientationInfo
	AEEObjectHandle
	AEEParmInfo
	AEEPosAccuracy
	AEEPositionInfo
	AEERasterOp
	AEERect
	AEERingerCat
	AEERingerCatID
	AEERingerEvent
	AEERingerID
	AEERingerInfo
	AEERLP3Cfg
	AEESectorInfo
	AEESize
	AEESMSMsg
	AEESMSTextMsg
	AEESoundPlayerFile
	AEETextInputMode
	AEETextInputModeInfo
	AEETileMap
	AEETransformMatrix
	AEEUDPUrgent
	Camera Command codes
	Camera Control Parameters
	Camera Status codes
	CameraExifTagInfo
	CMediaFormat
	CMediaMIDI
	CMediaMIDIOutMsg
	CMediaMIDIOutQCP
	CMediaMP3
	CMediaPMD
	CMediaQCP
	Configuation Parameters
	CtlAddItem
	CtlValChange
	FileAttrib
	FileInfo
	GSMSMSEncodingType
	GSMSMSMsg
	GSMSMSMsgType
	GSMSMSRawMsg
	GSMSMSStatusType
	GSMSMSStorageType
	I3D_Events
	IDC_COMMAND_RESERVED
	IDIB
	INAddr
	INPort
	ITransform Properties
	NativeColor
	NetSocket
	NetState
	OEMAppEvent
	oemLogType
	PFNCBCANCEL
	PFNDLTEXT
	PFNMEDIANOTIFY
	Q12 Fixed Point Format
	Q14 Fixed Point Format
	Q16 Fixed Point Format
	Q3D File Format
	PFNNOTIFY
	PFNPOSITIONCB
	PFNRINGEREVENT
	PFNSIONOTIFY
	PhoneState
	RGBVAL
	SockIOBlock
	Sprite Properties
	TAPIStatus
	Tile Map Properties
	Tile Properties

	Functions and Data Types

