Document Name: **U5200 User Guide** Version: 1.1 Date: Dec 12th, 2008 Docld: U5200_User_Guide_V1.1 Status: Confidential / Released

LONGCHEER Cellular Engine

U5200 user guide describes interfaces, function and application, which is provided to LONGCHEER's customers for testing, evaluation, integration and information.

LONGCHEER reserves the right to make changes without further notice to any products herein. LONGCHEER makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LONGCHEER assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. LONGCHEER does not convey any license under its patent rights nor the rights of others.

Copyright

The document contains LONGCHEER Proprietary Information; therefore, NOT to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of LONGCHEER Technology.

Copyright © LONGCHEER 2008

VERSION HISTORY

Version	Author	Date	Chapter	What is new
V1.0	Lu Xiangcheng	2008-10-31		New
V1.01	Lu Xiangcheng	2008-11-5		2.2.6 Camera interface: add
				interface logic levels
				2.2.7 UART interface:
				Exchange CTS and RTS of
				MCU
				2.2.8 LED control:
				Change the reference circuit
				of LED control.
V1.1	Bian Shaohui	2008-12-12		Change U5100PLUS
				to U5200
				Modified the camera
				interface.
				Added power on/off
				and reset reference
				circuit

Contents

Copyright	1
VERSION HISTORY	2
Contents	3
1. Introduction	4
1.1 Overview	. 4
1.2 Application scenario	. 4
2. U5200 interfaces	5
2.1 U5200 interface summary	. 5
2.1.1 Board to Board connector	. 5
2.1.2 RF interface	. 8
2.2 Application note of U5200 interfaces	. 9
2.2.1 Power supply and Ground	. 9
2.2.2 USB interface	9
2.2.2.1 Description	. 9
2.2.2.2 Reference circuit	10
2.2.3 USIM interface	11
2.2.3.1 Description	11
2.2.3.2 Reference circuit	11
2.2.4 Micro SD card interface	12
2.2.4.1 Description	12
2.2.4.2 Reference circuit	13
2.2.5 Audio interface	14
2.2.5.1 Description	14
2.2.5.2 The connection between audio I/O and earphone	15
2.2.5.3 The connection between audio I/O and phone handset	16
2.2.5.4 The connection between audio I/O and speaker	17
2.2.6 Camera interface	18
2.2.6.1 Description	18
2.2.6.2 Reference Circuit	19
2.2.7 UART interface	19
2.2.7.1 Description	19
2.2.7.2 Reference circuit	20
2.2.8 LED control	20
2.2.8.1 Description	20
2.2.8.2 Reference circuit	21
2.2.9 Power on/off and Reset	22
2.2.10 Others	23
Appendix A: Mechanical dimensions of U5200	25
Appendix B: Pins description of U5200	26

1. Introduction

1.1 Overview

```
The LONGCHEER HSDPA module U5200, powered by Qualcomm MSM6246 chipset, can be integrated into any devices for 3G mobile applications. It provides Voice Call, SMS, MMS, Video Call and Extended mass memory function as well as high speed internet access to HSDPA and UMTS networks worldwide.
```

The U5200 module complies with the technical standard listed below:

·HSDPA

3GPP R5, up to 3.6 Mbps DL Category 8

·UMTS

Up to 384 Kbps DL and UL

·EDGE

3GPP R4, Class 12, up to 236.8 Kbps DL and 118.4 Kbps UL

·GPRS

Up to 85.6 Kbps DL and 42.8 Kbps UL

It supports the frequency bands: UMTS 850/1900/2100 MHz and GSM/GPRS/EDGE 850/900/1800/1900 MHz.

1.2 Application scenario

The HSDPA module U5200 supports Voice Call, SMS, MMS, Video Call, Extended mass memory and Internet access functions. The application of U5200 is as follows:

2. U5200 interfaces

2.1 U5200 interface summary

The module U5200 supports multimode operation: HSDPA, tri-band UMTS (850/1900/2100 MHz) and quad-band GSM (850/900/1800/1900 MHz). The size of U5200 is 45×33×4.6mm. And the appearance is shown in Figure 2-1 and Figure 2-2.

The 100PIN board to board connector is shown as part 1 in Figure 2-2, which is the main interface for application. An antenna pad and a RF connector is shown as part 2 in Figure 2-1 and Figure 2-2.

2.1.1 Board to Board connector

A 100PIN board to board connector is offered for user, which is a two-piece structure narrow pinch(0.5mm) header (AXK6F00347YJ), and its sketch map is given in figure 2-3. The value of parameter A, B and C is as follow: A=28mm, B=24.5mm, C=1.25mm.

It is recommended to use the AXK5F00547YJ, which is produced by NAIS, as the socket on the daughterboard.

Figure 2-3 The sketch map of board to board connector

For protecting the connector from electro-static, it is better to use the ESD element. And the ESD element should be as close as possible to connector. The definition of the PINs in board to board connector is listed in table 2.1 below.

Figure 2-4 The 100 PINs board to board connector of U5200

GND	1
MIC1 P	3
 MIC1 N	5
GND	7
MIC2 P	9
MIC2 N	11
GND	13
EAR1ON	15
EAR1OP	17
GND	19
USB_HS_DP	21
USB_HS_DM	23
GND	25
USB_VBUS	27
NC	29
UART1_RTS	31
UART1_CTS	33
UART1_RX	35
UART1_TX	37
KPD_PWR_N	39
EXT_RST_IN	41
CAMIF_RESET	43
SPI_INT	45
SPI_CS	47
SPI_DIN	49
SPI_DOUT	51
GND	53
HKADC1	55
GND	57
PCM_CLK	59
GND	61
PCM_DIN	63
PCM_DOUT	65
PCM_SYNC	67
KYBD_BACKLIGHT	69
LCD_BACKLIGHT_CTRL	71
VREG_EXTUSIM	73
GND	75
USIM_CLK	77
GND	79
USIM_DATA	81
USIM_RESET	83

Table 2.1 The	e definition	of board t	o board	connector

2	HPH_L
4	HPH_R
6	GND
8	I2C_SDA
10	GND
12	I2C_SCL
14	GND
16	HOST_WAKE
18	GPIO_1.8V
20	CAMIF_VSYNC
22	CAMIF_EN
24	CAMIF_HSYNC
26	VREG_MSME
28	VREG_MSMP
30	GND
32	CAMIF_PO
34	GND
36	CAMIF_PCLK
38	CAMIF_DATA[9]
40	CAMIF_DATA[8]
42	CAMIF_DATA[7]
44	CAMIF_DATA[6]
46	CAMIF_DATA[5]
48	CAMIF_DATA[4]
50	CAMIF_DATA[3]
52	CAMIF_DATA[2]
54	CAMIF_DATA[1]
56	CAMIF_DATA[0]
58	VCOIN
60	BT_PWR_EN
62	NC
64	EXT_WAKE
66	32K_CLK_BT
68	VREG_GP2
70	VREG_MMC
72	SDCC1_DATA3
74	SDCC1_DATA2
76	SDCC1_DATA1
78	SDCC1_DATA0
80	SDCC1_CMD
82	GND
84	SDCC1_CLK

Confidential

GND	85	86	GND
PMIC_SPKR_OUT_M	87	88	UICC_USB_DAT
PMIC_SPKR_OUT_P	89	90	UICC_USB_VM
GND	91	92	GND
VBATT_INT	93	94	VCHG_IN
VBATT_INT	95	96	VCHG_IN
VBATT_INT	97	98	VBATT_INT
VBATT_INT	99	100	VBATT_INT

2.1.2 RF interface

The U5200 module provides an interface for RF antenna which has two different modes for connection: Connector mode: U5200 uses MURATA's MM9329-2700RA1 RF connector on the rear side, it is recommend to use MURATA's MXTK92XXXXX as matching connector. Please refer to MURATA's MXTK92XXXXX documents for more information.

Solder pad mode: The antenna can also be soldered to the pad on the module which has a ground pad close to the antenna pad.

The ground impedance of RF antenna is 50Ω . The RF connector is shown in Figure 2-5.

Figure 2-5 The sketch map of RF connector

It's required to use RF cable of which the insertion loss should comply with:

- GSM850/900<1dB
- DCS1800/PCS1900<1.5dB
- UMTS2100/ UMTS1900/ UMTS850<1.5dB

2.2 Application note of U5200 interfaces

U5200 provides rich interfaces for secondary development by the 100PIN board to board connector, such as Camera interface, Micro SD/T-Flash card interface (Compatible for MMC card), USIM card interface, USB interface, audio interface, UART interface, PCM (Pulse Code Modulation) interface, SPI (Serial Peripheral interface) interface, power supply interface and so on. The detailed information will be described in the following sections.

2.2.1 Power supply and Ground

The power supply input for U5200 module is listed as follows:

DC +3.8V \sim +4.15V, for U5200 working voltage;

The description of U5200 Power supply and GND pins is shown in Table 2-2 below.

Power input	The correlative pins in B to B connector	SN. of the B to B
		connector
DC:	νραττ τητ	93、95、97、98、99、100
+3.8V~+4.15V input	VDAT1_INI	
GND	GND	1、6、7、10、13、14、19、
		25、30、34、53、57、61、75、
		79、82、85、86、91、92

Table 2-2 The description of U5200 Power supply and GND pins

2.2.2 USB interface

2.2.2.1 Description

U5200 provides a high-speed USB interface by 100PIN board to board connector, which supports USB 2.0 protocol. The detailed information is given in Table 2-3.

Signals of	The correlative pins in	SN. of 100pin board to	Description
USB interface	board to board connector	board connector	

USB_VBUS	USB_VBUS	27	USB power
DM	USB_HS_DM	23	USB Data-
DP	USB_HS_DP	21	USB Data+
GND	GND	1, 6, 7, 10, 13, 14, 19,	GND
		25, 30, 34, 53, 57, 61,	
		75, 79, 82, 85, 86, 91,	
		92	

2.2.2.2 Reference circuit

The reference circuit of USB interface is shown in Figure 2-6 below.

- 1) To get the reliable USB power supply, it is recommended to use a 10uF (C406) filter capacitor and a 22pF (C407) filter capacitor which need to be grounded.
- 2) To reduce the reflection caused by the high frequency alternating signal in the transmission, it is recommended to add a resistor with value below 10 Ω to the DM and DP in USB interface to ensure correct transmission for USB data. Just like the resistors R408 and R409 in Figure 2-6.
- 3) To avoid static electricity in USB interface, it is recommended to use the ESD protection device. Just like the varistor RV406, RV407 and RV408 with capacitor values below 3pF.
- 4) To ensure USB working reliably, it is recommended to use additional protection device.

Figure 2-6 The reference circuit of USB interface

2.2.3 USIM interface

U5200 supports USIM card in UMTS mode as well as SIM card in GSM/GPRS/EDGE mode.

2.2.3.1 Description

U5200 provides USIM card interface by 100 pin board to board connector which can be used in both UMTS and GSM/GPRS/EDGE networks. The Table 2-4 gives more detailed information.

Signals offered	The name of the correlative	SN. of the board to	Description
by	pins in	board connector	
USIM interface	board to board connector		
DATA	USIM_DATA	81	USIM card data
CLK	USIM_CLK	77	USIM card CLK
RST	USIM_RESET	83	Reset signal
VCC	VREG_EXTUSIM	73	USIM card power
GND	GND	1, 6, 7, 10, 13, 14,	GND
		19、25、30、34、53、57、	
		61、75、79、82、	
		85、86、91、92	

Table 2-4 U5200 USIM card interface description

2.2.3.2 Reference circuit

The reference circuit of USIM interface is shown in Figure 2-7 below.

- 1) The DATA line of USIM is connected to SIM power supply by a pull-up resistor with reference value $15K \Omega$.
- 2) To avoid the instantaneous voltage overflowing, the resistor with reference value 22Ω can be used for the DATA, CLK and RST line. Just like the resistors R307, R308 and R309 in Figure 2-7.
- 3) To avoid the static electricity in USIM socket, it is recommended to use the ESD protection device for the DATA,

CLK and VCC line. Just like the varistors RV301, RV302, RV303 and RV304 in figure 2-7 which should be close to the USIM socket as possible.

- 4) To get more flat USIM power supply, it is recommended to use the filter capacitors. Just like C311 and C312 in Figure 2-7 with reference value 33pF and 100nF.
- 5) To eliminate the peak interference and high frequency interference signal on RST and CLK line, the filter capacities (C310, C309) can be placed in RST and CLK line, the reference value is 33pF.

Figure 2-7 The reference circuit of USIM interface

2.2.4 Micro SD card interface

U5200 provides a Micro SD card interface for extended mass memory. The Micro SD card interface can also be used for T-Flash card and MMC card.

2.2.4.1 Description

U5200 provides Micro SD card interface by 100 pin board to board connector. The Table 2-5 gives the more detailed information.

tion	
)	otion

Signals of	The correlative pins	SN. of 100Pin board		Description
Micro SD	in board to board	to board connector	Volt	
interface	connector			

Confidential

DATA2	SDCC1_DATA2	74	2.6	Micro SD card data2
DATA3	SDCC1_DATA3	72	2.6	Micro SD card data3
CMD	SDCC1_CMD	80	2.6	The signal for command,
				reading or writing
VCC	VREG_MMC	70	Analog output 3.0	Power
CLK	SDCC1_CLK	84	2.6	CLK
DATA0	SDCC1_DATA0	78	2.6	Micro SD card data0
DATA1	SDCC1_DATA1	76	2.6	Micro SD card data1
GND	GND	1, 6, 7, 10, 13, 14,		GND
		19、25、30、34、53、57、		
		61, 75, 79, 82, 85, 86,		
		91, 92		

2.2.4.2 Reference circuit

The reference circuit of Micro SD card interface is shown in Figure 2-8.

- The data line of Micro SD such as SDCC_DATA0, SDCC_DATA1, SDCC_DATA2, SDCC_DATA3 and SDCC_CMD, should be connected to Micro SD card power supply by pull-up resistors with reference value 10K Ω. Just like R304, R305, R301, R302 and R303 in Figure 2-8.
- To get more flat Micro SD card power supply, it is recommended to use filter capacitors. Just like C307 and C308 in Figure 2-9, and the reference values are 33pF and 100nF.
- 3) To eliminate high-frequency interference, it is recommended to use capacitors for Micro SD card data line, such as SDCC_DATA0, SDCC_DATA1, SDCC_DATA2, SDCC_DATA3 and SDCC_CMD、SDCC_CLK. Just like C301, C302, C303, C304, C305 and C306 in Figure 2-8.
- 4) To avoid static electricity in Micro SD card socket, it is recommended to use the ESD protection device which should be close to the Micro SD card socket as possible.

Figure 2-8 The reference circuit of Micro SD card interface

2.2.5 Audio interface

The audio signals here include two pairs of input difference signals (MIC1_P, MIC1_N, MIC2_P, MIC2_N) a pair of output difference signals (EAR10P, EAR10N) a pair of stereo output difference signals (HPH_L, HPH_R) and a pair of output difference signals with PA(PMIC_SPKR_OUT_P, PMIC_SPKR_OUT_M).

2.2.5.1 Description

The audio signals provided by U5200 are described in Table 2-6 below.

	8 1	
The name of the correlative	SN. of the board to board	Description
pins in	connector	
board to board connector		
MIC1_P	3	Audio input 1 data+
MIC1_N	5	Audio input 1 data-
MIC2_P	9	Audio input data+
MIC2_N	11	Audio input data-
EAR10P	17	Audio output data+
EAR1ON	15	Audio output data-

Table 2.6 U5200 audio signal description

HPH_L	2	Headset stereo output_Left
HPH_R	4	Headset stereo output_Right
PMIC_SPKR_OUT_P	89	Speaker output+
PMIC_SPKR_OUT_M	87	Speaker output-

2.2.5.2 The connection between audio I/O and earphone

The audio I/O signals provided by U5200 can be connected to a stereo earphone jack which is shown in Table 2-7.

PIN name of	the correlative pins in board to	SN. of 100 pin board to	Description
earphone jack	board connector	board connector	
Left Speaker	HPH_L	2	The left output of stereo
Right Speaker	HPH_R	4	The right output of stereo
MIC+	MIC2_P	9	The microphone input+
MIC-	MIC2_N	11	The microphone input-

Table 2.7 The connection between earphone jack and the board to board connector

Figure 2-9 The reference circuit of earphone jack

- 1) It is recommended to use the smoothing capacitor or smoothing circuit for reducing the undesired signal between different frequency bands. Just like what is shown in figure 2-9.
- 2) For avoiding the electro-static, it is recommended to use the ESD element.

2.2.5.3 The connection between audio I/O and phone handset

The audio I/O signals offered by U5200 can be connected to a phone handset. The more detailed information about connection between phone handset and the board to board connector is shown in table 2.8 below.

Signals	The correlative pins in	SN. of 100 Pin board to board	Description
phone handle	board to board connector	connector	
EAR_P	EAR1OP	17	Audio output data+
EAR_N	EAR1ON	15	Audio output data-
MIC_P	MIC1_P	3	Audio input data+
MIC_N	MIC1_N	5	Audio input data-

Table 2.8 The connec	tion hotwoon nhono	handle and the h	oard to board connector
Table 2.0 The connec	aon between phone	nanuic and the p	varu to boaru connector

Note: Place both caps close to J702

Figure 2-10 The reference circuit of audio interface

1) It is recommended to use the smoothing capacitor or smoothing circuit for reducing the undesired signal between

different frequency bands. Just like what is shown in figure 2-10.

2) For avoiding the electro-static, it is recommended to use the ESD element.

2.2.5.4 The connection between audio I/O and speaker

The audio I/O signals offered by U5200 can be connected to a speaker, which signal is already amplified by a class D amplifier in U5200 module, with a rated output of 500 mW into an 8 ohm speaker. The detailed information about the connection between audio I/O and speaker is described in table 2-9 below.

Signals of	The correlative pins in	SN. of 100pin board to	Description
Speaker	board to board connector	board connector	
SPKR_P	PMIC_SPKR_OUT_P	89	Speaker output+
SPKR_M	PMIC_SPKR_OUT_M	87	Speaker output-

Figure 2-11 The reference circuit of speaker interface

- 1) It is recommended to use the smoothing capacitor or smoothing circuit for reducing the undesired signal between different frequency bands. Just like what is shown in figure 2-11.
- 2) For avoiding the electro-static, it is recommended to use the ESD element.

2.2.6 Camera interface

U5200 offers the camera interface by 100PIN board to board connector, and most of the camera interface is simulated by GPIO PIN.

2.2.6.1 Description

The camera interface offered by U5200 are described in the table 2.10 below.

Table 2.10The connection between camera and the board to board connector

Signals of	The correlative pins in	SN. of 100 Pin board	Volt	Description
Camera	board to board connector	to board connector	von	Description
SIO_D	I2C_SDA	8	2.6	I2C Interface
SIO_C	I2C_SCL	12	2.6	I2C Interface
Reset	CAMIF_RESET	43	2.6	Reset signal
Vsync	CAMIF_VSYNC	20	2.6	VSYNC signal
PWDN	CAMIF_EN	22	2.6	Camera Enable signal
Hsync	CAMIF_HSYNC	24	2.6	Hsync signal
DVDD	VREG_MSME	26	Analog Output,1.8	Vcore
DOVDD	VREG_MSMP	28	Analog Output,2.6	Vio
AVDD	VREG_GP2	68	Analog Output,2.6	V analog
PCLK	CAMIF_PCLK	36	2.6	P_clock
XCLK	CAMIF_PO	32	2.6	Master Clock
D9	CAMIF_DATA[9]	38	2.6	Camera Data 9
D8	CAMIF_DATA[8]	40	2.6	Camera Data 8
D7	CAMIF_DATA[7]	42	2.6	Camera Data 7
D6	CAMIF_DATA[6]	44	2.6	Camera Data 6
D5	CAMIF_DATA[5]	46	2.6	Camera Data 5
D4	CAMIF_DATA[4]	48	2.6	Camera Data 4
D3	CAMIF_DATA[3]	50	2.6	Camera Data 3
D2	CAMIF_DATA[2]	52	2.6	Camera Data 2

2.2.6.2 Reference Circuit

- The reference circuit is based on Camera IC OV7670. If the camera is not the one we recommended, the power supplier of it need to be replaced with LDOs on daughterboard. Because we are not sure that if UMTS module output current can meet your camera requirement.
- 2) The I2C line must be connected to VREG_MSMP by pull-up resistor with reference value $4.7K\Omega$.
- 3) CAMIF_PO and CAMIF_PCLK need to be protected by GND.
- 4) D [9:2] 8 MSB bits of the output data bus from the camera module for a 10-bit I/F.
 D [1:0] 2 LSB bits of the output data bus from the camera module for a 10-bit I/F.
 In case of a camera module with 8-bit output capability, these bit positions are idle and will not be connected. Bit 9:2 will provide the 8-bit bus.

2.2.7 UART interface

U5200 provides a UART interface by 100 pin board to board connector for debugging.

2.2.7.1 Description

The information about UART interface provided by U5200 is described in Table 2-11.

Signals of	Pins	inboard	to	SN. of 100pin	Volt	Description
UART	board	connector		board to board		

Confidential

		connector		
Rx	UART1_RX	35	2.6	Rx in UART
Тх	UART1_TX	37	2.6	Tx in UART
CTS	UART1_CTS	33	2.6	CTS in UART
RTS	UART1_RTS	31	2.6	RTS in UART
GND	CND	1, 6, 7, 10, 13, 14,		CND
	GND	19、25、30、34、53、		GND
		57、61、75、79、82、		
		85、86、91、92		

2.2.7.2 Reference circuit

The reference circuit of UART interface is shown in Figure 2-13.

- 1) The UART interface can only supports TTL level.
- To avoid static electricity, it is recommended to use the ESD protection device for the signal line of the UART socket.
- 3) If the UART1_RTS and the UART1_CTS are not necessary for your design, you can left them open.

Figure 2-13 The reference circuit of UART interface

2.2.8 LED control

2.2.8.1 Description

There are three pins for LEDs control in the 100 PINs board to board connector. And the detailed information is given in table 2.12 below.

Table 2.12 U5200 LED control interface description

Signals of requirment	Pins in	SN. of the board	Volt	Description
	board to board	to board		
	connector	connector		
LED_CTL_R	SPI_DOUT	51	2.6	The Red LED control
LED_CTL_G	SPI_DIN	49	2.6	The Green LED control
LED_CTL_B	SPI_CS	47	2.6	The Blue LED control

2.2.8.2 Reference circuit

The reference circuit for LED is shown in Figure 2-14.

Figure 2-14 The reference circuit of LED control

1) The LED control pin (GPIO) controls the LED through a transistor, as is shown in Figure 2-14.

2) The reference value is 5mA. So the current-limiting resistor may be used. Just like the resistor R201, R208, R209 in

Figure 2-14.

2.2.9 Power on/off and Reset

KPD_PWR_N is used for power on U5200 module. And U5200 will be start-up just by putting the KPD_PWR_N to earth.

EXT_RST_IN is used for reset the U5200 module. And U5200 will be reseted just by putting the EXT_RST_IN to earth.

Table 2.13 U5200 power on/off and	reset interface description
-----------------------------------	-----------------------------

KPD_PWR_N	39	Analog input	Power on key
EXT_RST_IN	41	2.6	Module Reset Signal

The reference circuit for Power on/off and reset is shown in Figure 2-15.

Figure 2-15 The reference circuit of Power on/off and Reset

2.2.10 Others

U5200 also provides some other interfaces listed in Table 2-13.

pins in	SN. of the board to	Volt	Description
board to board connector	board connector		
SPI INT	45	2.6	GPIO, can be used as an interrupt
	-		from MCU to U5200 Module
PCM_SYNC	67	2.6	PCM interface.
			alternative functions: GPIO, can be
			used as Motor control.
PCM_CLK	59	2.6	PCM interface.
			alternative functions: GPIO, can be
			used as Motor control.
PCM_DIN	63	2.6	PCM interface.
			alternative functions: GPIO, can be
			used as Motor control.
PCM_DOUT	65	2.6	PCM interface.
			alternative functions: GPIO, can be
			used as Motor control.
32K_CLK_BT	66	2.6	32K clock output
EXT_WAKE	64	2.6	GPIO
NC	62	2.6	NC
BT_PWR_EN	60	2.6	GPIO
HOST_WAKE	16	2.6	GPIO
NC	29	2.6	NC
GPIO_1.8	18	1.8	GPIO
VCOIN	58	Analog input	Backup Battery Input
VCHARGE	94、96	Analog input	5V Charger in
HKADC1	55	Analog input	ADC Input

Table 2.13 The other signals offered by U5200

1) The Charger voltage should be 5V, and the current should be more than 500mA.

2) U5200 offers a power input pin named VCOIN for backup battery. The anode of the battery connects to VCOIN, and the cathode puts to earth. While U5200 being powered off, the backup battery will power the real time clock, the Crystal Oscillator Circuit and the SMPL timer. And while U5200 being powered on, the battery will be charged up. The voltage offered by battery must be less than 3.6V. For keeping the SMPL timer while Sudden momentary

power losing, a capacitor can be used besides battery. And the correlativity between the capacitance and the holding time is listed in table 2.14.

The capacitance	The Packaging (X5R)	The holding
		time(s)
1.5uF	0805	0.5
3.3uF	0805	1.0
4.7uF	0805	1.5
6.8uF	1206	2.0

Table 2.14 the correlativity between the capacitance and the holding time

3) U5200 provides one ADC channel HKADC1, which can be used to detect some analog signal, such as battery voltage, temperature and so on. The voltage range of the HKADC1 is : $0\sim 2.6V_{\circ}$

4) All GPIOs above can be used as a special signal, but should be customized.

Appendix A: Mechanical dimensions of U5200

The following are Mechanical dimensions of U5200 bottom view (Unit: mm)

Appendix B: Pins description of U5200

SN	Definition	Description	Volt	Remark
1	GND	Ground		
3	MIC1_P	MIC1 Data+	Analog input	MIC1 Interface
5	MIC1 N	MIC1 Data-	Analog	MIC1 Interface
	MICI_N		circuit	
7	GND	Ground		
9	MIC2 P	MIC2 Data+	Analog	MIC2 Interface
			circuit	
11	MIC2 N	MIC2 Data-	Analog	MIC2 Interface
			circuit	
13	GND	Ground		
15	EAR1ON	Earphone Data+-	Analog	Earphone Interface
			circuit	
17	EAR1OP	Earphone Data+	Analog	Earphone Interface
10	CNE		circuit	
19	GND	Ground		
21	USB_HS_DP	USB Data+		
23	USB_HS_DM	USB Data-		USB Interface
25	GND	Ground		
27	088_0808	USB Power		
29	NC	SPI_Clock	2.6	NC
21	LIADTI DTS	PTS in LIAPT	2.0	LIAPT could also be used as CPIO, which should be
51	UART_RIS	KIS III OAKI	2.0	customized
33				LIART could also be used as GPIO, which should be
	UART1_CTS	CTS in UART	2.6	customized.
35				UART, could also be used as GPIO, which should be
	UART1_RX	RX in UART	2.6	customized.
37				UART, could also be used as GPIO, which should be
	UART1_TX	TX in UART	2.6	customized.
39	KPD_PWR_N	Power On		Key on
41	EXT_RST_IN	Reset	2.6	Reset module
43	CAMIF_RESET	Camera RESET	2.6	Camera interface, could also be used as GPIO, which
				should be customized.
45	SPI INT	INT signal		Could also be used as GPIO, which should be customized.
	511_1111	nvi signai.	2.6	
47	SPL CS	SPI_CS		SPI Interface, could also be used as GPIO, which should be
	511_05		2.6	customized.
49	SPI DIN	SPI Data Input		SPI Interface, could also be used as GPIO, which should be
		STI Dum Input	2.6	customized.
51	SPI_DOUT	SPI Data Output		SPI Interface, could also be used as GPIO, which should be
			2.6	customized.

Confidential

		I		
53	GND	Ground		
55		External analog		
	HKADC1	signal	Analog	
		detecting	circuit	
57	GND			
59	PCM_CLK	PCM_Clock		PCM Interface, could also be used as GPIO, which should
			2.6	be customized.
61	GND	Ground		
63	DOM DIN	DCM Data Issuet		PCM Interface, could also be used as GPIO, which should
	PCM_DIN	PCM Data Input	2.6	be customized.
65	DOM DOUT	DCM Data Output		PCM Interface, could also be used as GPIO, which should
	PCM_DOUT	PCM Data Output	2.6	be customized.
67	DCM SVNC	PCM Synchronous		PCM Interface, could also be used as GPIO, which should
	PCM_SINC	Signal	2.6	be customized.
69	KARD BACKLIGHT	Keypad Backlight		
	KIDD_DACKLIOIII	control		
71	LCD_BACKLIGHT_CTRL	LCD Backlight		
		control		
73	VREG_EXTUSIM	USIM Power		
75	GND	Ground		
77	USIM_CLK	USIM CLK		USIM Interface
79	GND	Ground		
81	USIM_DATA	USIM_DATA		USIM Interface
83	USIM_RESET	USIM_RESET		USIM Interface
85	GND	Ground		
87	DMIC SDVD OUT M	Spaakar Data	Analog	Speaker Interface
	PMIC_SPKK_001_M	Speaker Data-	circuit	
89	DMIC SDVD OUT D	Speaker Date	Analog	Speaker Interface
	FMIC_SFKK_001_F	Speaker Data+	circuit	
91	GND	Ground		
93	VBATT_INT	Power Supply		
95	VBATT_INT	Power Supply		
97	VBATT_INT	Power Supply		
99	VBATT_INT	Power Supply		
2	НРН Г	Headset Output	Analog	Headset Interface
		Interface	circuit	
4	нрн в	Headset Output	Analog	Headset Interface
	······_·K	Interface	circuit	
6	GND	Ground		
8	I2C_SDA	I2C Data	2.6	I2C Interface
10	GND	Ground		
12	I2C_SCL	I2C Clock	2.6	I2C Interface
14	GND	Ground		
16	HOST_WAKE	GPIO	2.6	

Confidential

18	GPIO_1.8V	GPIO 1.8V	1.8	GPIO
20		<i>a</i>		Camera interface, could also be used as GPIO, which
	CAMIF_VSYNC	Camera Vsync	2.6	should be customized.
			2.6	Camera interface, could also be used as GPIO, which
22	CAMIF_EN	Camera Enable		should be customized.
			2.6	Camera interface could also be used as GPIO, which
24	CAMIF_HSYNC	Camera Hsync		should be customized
		MSME Output	Analog	MSME Output Power
26	VREG_MSME	Power	output 1.8	Nome Output Power,
20		MSMD Output	Analog	MSMD Output Dowor
20	VREG_MSMP	NISIMIF Output	Allalog	MSMF Output Fower,
28		Power	output 2.0	
•	GND	Ground		
30				
	CAMIF PO	Camera PCLK	2.6	Camera interface, which is from Module to camera
32		_		
	GND	Ground		
34				
	CAMIF PCLK	Camera MCLK	2.6	Camera interface, which is from camera to Module
36				
	CAMIE DATA[9]	Camera Data 9		Camera interface, could also be used as GPIO, which
38	CAMIF_DATA[9] Camera Data 9	Camera Data y	2.6	should be customized.
		Comore Data 9		Camera interface, could also be used as GPIO, which
40	CAMIF_DAIA[8]	Camera Data 8	2.6	should be customized.
				Camera interface, could also be used as GPIO, which
42	CAMIF_DATA[/] Camera Data /	Camera Data /	2.6	should be customized.
		~ ~ .		Camera interface, could also be used as GPIO, which
44	CAMIF_DATA[6]	Camera Data 6	2.6	should be customized.
			Camera interface, could also be used as GPIO, which	
46	CAMIF_DATA[5]	Camera Data 5	2.6	should be customized.
				Camera interface, could also be used as GPIO, which
48	CAMIF_DATA[4]	Camera Data 4	2.6	should be customized.
				Camera interface, could also be used as GPIO, which
50	CAMIF_DATA[3]	Camera Data 3	2.6	should be customized.
		Camera Data 2		Camera interface, could also be used as GPIO, which
52	CAMIF_DATA[2]		2.6	should be customized.
				Camera interface could also be used as GPIO, which
54	CAMIF_DATA[1]	Camera Data 1	2.6	should be customized
			2.0	Camera interface could also be used as CDIO which
56	CAMIF_DATA[0]	Camera Data 0	26	should be customized
50			4 nolog inter	shourd be customized.
50	VCOIN	VRTC	Analog input	
58			0 (
	BT_PWR_EN	GPIO	2.6	
60				
	NC	GPIO		NC
62			2.6	

Confidential

64	EXT_WAKE	GPIO	2.6	
66	32K_CLK_BT			
68	VREG_GP2	GP2 Output Power	Analog output 2.8	GP2 Output Power,
70	VREG_MMC	Micro SD Power	Analog output 3.0	SDCC1_CMD and VREG_MMC are compatible for MMC card too.
72	SDCC1_DATA3	Micro SD Data 3	2.6	Micro SD Interface, could also be used as GPIO, which should be customized.
74	SDCC1_DATA2	Micro SD Data 2	2.6	Micro SD Interface, could also be used as GPIO, which should be customized.
76	SDCC1_DATA1	Micro SD Data 1	2.6	Micro SD Interface, could also be used as GPIO, which should be customized.
78	SDCC1_DATA0	Micro SD Data 0	2.6	Micro SD Interface, could also be used as GPIO, which should be customized. And SDCC1_DATA0, SDCC1_CLK, SDCC1_CMD and VREG_MMC are compatible for MMC card too.
80	SDCC1_CMD	Micro SD Command	2.6	Micro SD Interface, could also be used as GPIO, which should be customized. And SDCC1_DATA0, SDCC1_CLK, SDCC1_CMD and VREG_MMC are compatible for MMC card too.
82	GND	Ground		
84	SDCC1_CLK	Micro SD Clock	2.6	Micro SD Interface, could also be used as GPIO, which should be customized. And SDCC1_DATA0, SDCC1_CLK, SDCC1_CMD and VREG_MMC are compatible for MMC card too.
86	GND	Ground		
88	UICC_USB_DAT	USB UICC DAT		Supports only USB UICC application in host mode.
90	UICC_USB_VM	USB UICC VM		Supports only USB UICC application in host mode.
92	GND	Ground		
94	VCHG_IN	Charge In Power		Charge In Power,5V
96	VCHG_IN	Charge In Power		Charge In Power,5V
98	VBATT_INT	Power Supply		
	VBATT_INT	Power Supply		

Confidential

龙旗控股