

Starting with BREW™

QUALCOMM Proprietary

QUALCOMM Incorporated
5775 Morehouse Drive

San Diego, CA. 92121-1714
U.S.A.

Copyright © 2004 QUALCOMM Incorporated

All Rights Reserved
Printed in the United States of America.

All data and information contained in or disclosed by this document are confidential and proprietary
information of QUALCOMM Incorporated, and all rights therein are expressly reserved. By accepting
this material, the recipient agrees that this material and the information contained therein are held in
confidence and in trust and will not be used, copied, reproduced in whole or in part, nor its contents
revealed in any manner to others without the express written permission of QUALCOMM
Incorporated.

Export of this technology may be controlled by the United States Government. Diversion contrary to
U.S. law prohibited.

BREW, BREWChat, BREW SDK, BREWStone, MSM, MobileShop, Eudora, PureVoice, QPoint, and
the QChat logo are trademarks of QUALCOMM Incorporated.
QUALCOMM, Binary Runtime Environment for Wireless, TRUE BREW, and QChat are registered
trademarks of QUALCOMM Incorporated.
All trademarks and registered trademarks referenced herein are the property of their respective
owners.

Starting with BREW
80-D4725-1 Rev. A
April 27, 2004

iii
QUALCOMM Proprietary

Contents

Introduction 9

About the BREW SDK 10
BREW SDK 1.0 10

API additions in BREW SDK 1.0 10
BREW SDK 1.1 12

API additions 12
SDK utility additions 12

BREW SDK 2.0 13
API additions 13
SDK utility additions 13

BREW SDK 2.1 14
API additions in BREW SDK 2.1 14

BREW SDK 3.0 14
API additions in BREW SDK 3.0 15
API removals in BREW SDK 3.0 15

Installing the BREW SDK 16
Installation Directory 16
BREWDIR 16
SDK core components 16
Documentation 17
Online help 18
Utilities 18
Common issues 19

System requirements 19
Additional resources 19

Writing BREW Applications 20
Creating a new application with the BREW Application Wizard 20
Changing the BREWDIR environment variable 24
Skeletal code generated by the BREW Application Wizard 25

API library includes 29
Class ID file 30
Applet structure 30
AEEClsCreateInstance() method 30
Event handler 31
Applet data init method 31

 Contents

Applet data free method 31
Common issues 32
Additional resources 32

Using the BREW MIF Editor 33
Generating a class ID 33
Application name and icons 34
Setting privileges 36
Additional resources 37

Using the BREW Resource Editor 38
Creating string resources 38
Creating image resources 39
Creating sound resources 40
Compiling resource files for use in BREW 40
Additional resources 41

Using the BCI Authoring Tool 42
Creating BCI images 42
Animating BCI images 42
Additional resources 44

Compiling BREW Applications for Simulation 45
Specifying DLL destination 45
Building an application DLL 46
Running your application 47
Common issues 49

Read the BREW API Reference 49
Include all necessary header files 49
Ensure linking is performed against the proper library versions 50
Close any applications using your DLL 50

Additional resources 50

iv
QUALCOMM Proprietary

 Contents

Running BREW Applications on the Simulator 51
Device skins 51
Modifying device skins 53
Specifying Simulator directories 53
Running your application 55
Advanced Simulator capabilities 56
Common issues 56

ISHELL_CreateInstance() or API methods unexpectedly failing 56
Mixed-case name warning displayed 56
The application’s icon is not displayed 57
Application has been unloaded error message displayed 58
Unknown error (1) message displayed 59
BREW Simulator fails 60

Additional resources 61

Debugging BREW applications on the Simulator 62
DBGPRINTF() 62
Debugging in Visual Studio 62
Additional resources 67

Loading BREW Applications to the Mobile Device 68
Generating ARM makefiles 68
Compiling for ARM 70
GCC compilation 70
Generating test signatures 70

About the BREW Tools Suite 71
Contents 71
Connecting to a device 71
BREW AppLoader 72
BREW AppSigner 75
BREW Logger 75
The Grinder 77
Common issues 77
Using BREW Tools Suite 2.1.2+ for non-3.0 BREW devices 77
Connecting with USB cables 77
Setting COM port 78
Non-MSM chipsets 79
Killing OEMServerLayer.exe 80
Additional resources 81

v
QUALCOMM Proprietary

 Contents

Running BREW Applications on the Mobile Device 82
Watchdog timer 82
Memory alignment 82
Heap usage 83
Stack usage 83
DBGPRINTF()/File logging 83
Common issues 84

Application removed when handset power-cycled 84
Signature failures 84
Interpreting error codes 85
Unexpected behavior on a particular device 85

Where to go for help 86

vi
QUALCOMM Proprietary

vii
QUALCOMM Proprietary

Figures

Figure 1 Invoking the BREW Application Wizard 21
Figure 2. BREW Application Wizard step 1 22
Figure 3. BREW Application Wizard step 2 22
Figure 4. New Project Information window 23
Figure 5. New project workspace 24
Figure 7. Local Class ID generation 33
Figure 8. Sample Class ID file 34
Figure 9. Specifying the application title and icons 35
Figure 10. Specifying privileges 36
Figure 11. BREW directory structure 37
Figure 12. Adding string resources 39
Figure 13. Adding image resources 39
Figure 14. Compiling a BRI file 41
Figure 15. Sample resource header file 41
Figure 16. Opening image files 42
Figure 17. BCI animation frames 43
Figure 18. Modifying frame durations 43
Figure 19. Previewing animation 44
Figure 20. Changing DLL output 46
Figure 21. Building the DLL 47
Figure 22. Running the DLL 48
Figure 23. Specifying the executable 49
Figure 24. Checking library versions 50
Figure 25. Changing device skins 52
Figure 26. Sample directory structure 53
Figure 27. Changing the applet directory 54
Figure 28. Changing the MIF directory 54
Figure 29. Changing the MIF and application directories in the Simulator 55
Figure 30. Application menu 56
Figure 31. Mixed case naming warning 57
Figure 32. Resolving naming violations 57
Figure 33. Emulator with incorrect MIF directory 58
Figure 34. Emulator unable to find DLL 59
Figure 35. Application initialization code failure 60
Figure 36. Memory access violation 61
Figure 37. DBGPRINTF() output 62
Figure 38. Starting a debug session 63
Figure 39. Debugging information warning 63

 Figures

Figure 40. Memory access violation 64
Figure 41. Adding breakpoints 65
Figure 42. Displaying debug windows 66
Figure 43. Advancing program execution 67
Figure 44. Enabling the BREW Add-ins toolbar 69
Figure 45. BREW Add-ins toolbar 70
Figure 46. BREW Tools connection window 72
Figure 47. BREW file system 72
Figure 48. Creating the application directory 73
Figure 49. Application directory contents 74
Figure 50. MIF location 74
Figure 51. Resetting the device 75
Figure 52. Connecting to the BREW device 76
Figure 53. Starting logging operations 76
Figure 54. Changing COM settings 79
Figure 55. Selecting an OEM layer DLL for non-MSM devices 80
Figure 56. Terminating the OEM layer server process 81

viii
QUALCOMM Proprietary

Introduction

QUALCOMM’s Binary Runtime for Wireless Environment® (BREW™) provides a powerful
framework for creating exciting applications on a wide variety of mobile devices. By using
this guide, you will become familiar with the BREW development environment. The guide
walks you through the steps necessary to install the BREW SDK™, develop BREW
applications, and load those applications into a handset. Solutions are presented for the
most common problems encountered during each step of the process; additional resources
for solving other issues pertinent to each phase of development are also listed.

9
QUALCOMM Proprietary

10
QUALCOMM Proprietary

About the BREW SDK

As of this article’s publication, five versions of the BREW SDK are currently available for
download: 1.0, 1.1, 2.0, 2.1, and 3.0. Depending on your targeted platform and the
capabilities required by your application, you may need to download and install multiple
versions of the SDK. Patches for many of the SDK installations are available for download
on the same page as the SDK, and you should install them as appropriate. Note that devices
may not support all interfaces included with the SDK. By inspecting the appropriate Device
Data Sheets (DDS), ensure that the desired device supports all APIs necessary for the
application under development. To ensure compatibility with the mobile device, you should
perform all development in the same or lower SDK release as the version of BREW used by
the device.. BREW devices are backwards compatible; that is, any applications written in a
previous version of the SDK function on later versions of BREW.

This section provides a brief overview of the features of each version of the SDK, including
any major changes made to the API collection. For more information on the specific API
additions, consult the Release Notes for the desired SDK, which are available on the
installation page. Many APIs are enhanced with additional functionality with each new
release; the BREW SDK APIs by Version guide gives a complete listing of the methods
available under a given version of an interface, including the general SDK helper functions
provided. Detailed method usage information for each API is available through the BREW
API Reference, included in the SDK download package.

After you identify the SDK versions necessary to develop the desired platforms, you install
them from the SDK download page along with the corresponding patches. Obtain a CD-
ROM containing the SDK installation packages free of charge by contacting brew-
support@qualcomm.com be sure to include full shipping information in your request.

BREW SDK 1.0
No BREW 1.0 devices are currently available commercially. Previously available handsets
implementing BREW 1.0 include the Motorola V731 and Sharp Z800.

API additions in BREW SDK 1.0
IApplet Provides event-handling routine. All BREW applications must

implement this interface

IAStream Provides an abstract interface to read data from an asynchronous
stream

IBase Provides the base interface for all other BREW AEE interfaces,

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
mailto:brew-support@qualcomm.com
mailto:brew-support@qualcomm.com

 About the BREW SDK

provides object reference counting mechanism

IControl Provides an abstract interface implemented by all BREW control
interfaces

IDatabase Allows access and modification of database records from database
files opened or created by IDBMgr

IDateCtl Provides a control interface for choosing and displaying dates in
several formats

IDBMgr Opens or creates database files for modification through IDatabase

IDBRecord Accesses and modifies the fields of database records

IDialog Manipulates dialogs created through IShell

IDisplay Modifies the device display with text, bitmaps, and simple geometric
shapes

IFile Allows access and modification of files opened or created by
IFileMgr

IFileMgr Opens or creates files for modification though IFile

IGraphics Adds the ability to draw more complex lines and shapes than those
supported through IDisplay

IHeap Manages device memory and provides allocation/deallocation
routines and memory usage information

IImage Implements support for drawing various image formats to the screen

IMemAStream Creates an asynchronous stream resource from a section of
memory

IMenuCtl Provides access to a variety of customizable generic menu controls

IModule Supplies a mechanism for controlling access to a group of
associated applets or components

INetMgr Configures parameters associated with the network subsystem of a
mobile device

INotifier Used by applets to register for notification of events occurring in
other classes

IShell Permits access to a wide variety of lower-level services provided by
the phone

ISocket Grants control to manage and use TCP and UDP sockets opened
through INetMgr

ISound Allows access to basic sound services, such as beeps and
vibrations

ISoundPlayer Supports playback of advanced audio formats

IStatic Used to create and display static text controls with unmodifiable text

ITAPI Interfaces with the device telephony layer for access to voice and
SMS services

ITextCtl Provides text entry and editing capabilities

ITimeCtl Control for several formats of time value input

11
QUALCOMM Proprietary

 About the BREW SDK

IViewer Provides functionality identical to the IImage interface

BREW SDK 1.1
BREW 1.1 has a widely established user base, with the continued commercial availability
devices of BREW 1.1 devices. Some of the more prominent examples in this category are
the Motorola T-720 and LGE VX4400.

API additions
IAddrBook Provides an interface for interacting with the OEM address book

capabilities of the handset

IAddrRec Facilitates the access and modification of fields within the address
records retrieved through IAddrBook

ICipher Enables applications to easily encrypt and decrypt information

IGetLine Supplies methods allowing line parsing of data from sources

IHash Provides access to data hashing routines

IHtmlViewer Supports rendering a subset of HTML 3.2

ILicense Allows applications to query for their respective license information,
and modify usage-based license counts

IPeek Implements a Peek/Advance functionality for accumulating data in a
buffer

IPosDet Grants access to position-determination services using sector or GPS
information

IQueryInterface Base level object class for deriving extensible API object classes

IRingerMgr Manipulates the handset ringer folder, allowing creation and deletion
of ringer files

IRSA Supports encryption of data using the RSA algorithm

ISource An abstract data source providing a Read/Readable interface

ISourceUtil Used to construct an ISource from commonly-used sources

IWeb Facilitates conducting web transactions using a variety of protocols

IWebOpts Allows for configuration options affecting IWeb transactions to be
specified

SDK utility additions
Purevoice Converter This application allows conversion of audio files from WAV to

Qualcomm’s Purevoice (QCP) format. For usage specifics, consult
the BREW Utilities Guide, included as part of the BREW SDK User
document in BREW SDK 3.0 and greater, and as a standalone
document in previous SDK versions.

12
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

 About the BREW SDK

BREW SDK 2.0
Example devices in this category are the LGE VX6000, Kyocera SE47 (Slider), and
Samsung SCH-A670.

API additions
IBitmap Manipulates in-memory bitmaps, facilitating simple draw operations

and bit blitting

IBTAG Used to open, close, and manage Bluetooth Audio Gateway with a
device (removed in SDK 3.0)

IBTSDP Allows discovering Bluetooth devices and querying for device
information (removed in SDK 3.0)

IBTSIOPORT Provides Bluetooth serial interface connection management and
data transfer services (removed in SDK 3.0)

IClipboard Provides access to standard clipboard cut and paste features

IDIB Implements a device-independent bitmap structure, inheriting from
IBitmap (removed in SDK 3.0)

IDNS Permits DNS queries

IFont Adds functions for drawing and measuring text

IHashCTX Enables greater functionality in hashing data

IImageCtl Permits displaying an image within a scrollable view frame

IMedia Abstract base class for all BREW multimedia objects

IRamCache Provides an LRU caching with TTL mechanism for heap storage

ISprite Contains methods for rendering sprites and tile maps

ISSL Supports SSL/TLS security for network connection

ITransform Provides functions for performing bit blitting operations with
transforms using a bitmap

IUnzipAStream Implements support for decompressing and reading compressed
IAStreams

IVocoder Interfaces with the handset vocoder to capture and play vocoder
frames

IX509Chain Used for managing and verifying a chain of X.509 certificates

SDK utility additions
2Bit Tool Facilitates conversion between 4-bit and 2-bit BMP formats for

editing purposes. For usage specifics, consult the BREW Utilities
Guide in SDK User documents in BREW SDK 3.0 and greater, and
as a standalone document in previous SDK versions.

NMEA Logger Allows retrieving recorded GPS activity from a GPS or GNSS device
for use in the Emulator. For usage specifics, consult the BREW

13
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 About the BREW SDK

Utilities Guide, included as part of the BREW SDK User documents
in BREW SDK 3.0 and greater, and as a standalone document in
previous SDK versions.

BREW SDK 2.1
The example device in this category is the Toshiba CDM-9900.

API additions in BREW SDK 2.1
I3D Provides the definitions of a 3D graphics engine for rendering

triangles (removed in SDK 3.0)

I3DModel Supports drawing structured groups of triangles (3D models)
(removed in SDK 3.0)

I3DUtil Allows access to the transformation matrices and unit vectors used
by the 3D engine (removed in SDK 3.0)

ICallHistory Grants access and modification to the native call history records

ICamera Enables a standardized interface for accessing the camera on a
mobile device and record media in various formats

ILogger Provides a standardized data logging interface for logging using a
range of transport mechanisms

IMediaUtil Assists in creating IMedia objects from various input sources and
encoding of new media files

IRecordStore Abstract class for accessing simple key-value stores of records

BREW SDK 3.0
No BREW 3.0 commercial devices are currently available, though they are slated for release
in the second half of 2004.

14
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

 About the BREW SDK

API additions in BREW SDK 3.0
IAClockCtl Allows for the creation of analog clock displays

IBitmapDev Used by various functions dealing with device bitmaps

IModuleSupport Provides module support services to dynamically loaded modules

IPort Generic interface for bidirectional data stream implementing
common interfaces

IRscPool Enables memory and interface grouping for many resources with
identical lifetimes

IThread Provides the capability to implement cooperative multithreading

IWebEng Abstract base class allowing BREW modules to extend the
functionality of IWeb

API removals in BREW SDK 3.0

I3D

I3DModel

I3DUtil

IBTAG

IBTSDP

IBTSIOPORT

IDIB

15
QUALCOMM Proprietary

16
QUALCOMM Proprietary

Installing the BREW SDK

From the BREW SDK download page, select the desired version of the BREW SDK and
click Install. A web-based installer guides you through the installation process.

Installation Directory
Generally, it is best to install the BREW SDK to the default directory specified by the
installer. Changing the installation directory does not have an adverse impact in most cases,
though in BREW 1.x installing to a directory containing a ‘.’ (period) may cause issues when
executing the Emulator.

NOTE: The Emulator was changed to Simulator in the SDK 3.0 and will henceforth be
referred to as the Simulator.

BREWDIR
During the installation process, you are prompted to set/update the BREWDIR environment
variable, or leave it unchanged. Microsoft Visual Studio, as well as makefiles generated by
the BREW Add-Ins for Microsoft Visual Studio, uses this environment variable. For practical
purposes, it should be set to the directory of the SDK intended for the majority of
development work. If multiple versions of the BREW SDK are installed on an individual
computer, the BREWDIR variable must be changed prior to beginning development in each
version of the SDK. If the environment variable is not changed, it is necessary to modify
makefiles generated by the secondary BREW SDK installations; the developer manually
adds the proper versions of the BREW API libraries to new BREW applications created
using the application wizard.

SDK core components
BREW Compressed
Image Authoring
Tool (BREW 1.1+)

Allows customization of device skin files used by the Simulator to simulate the
appearance and capabilities of a mobile device. This tool is obsolete in BREW
3.0+, as the BREW Simulator incorporates all the functionalities.
Documentation for this application is available in the BREW Device
Configurator Guide (BREW 1.1, 2.x), or the “BREW Device Configurator”
section of the BREW Online Help (BREW 2.0+).

BREW Device
Configurator (BREW
1.x, 2.x)

Allows customization of device skin files used by the Simulator to simulate the
appearance and capabilities of a mobile device.This tool is obsolete in BREW
3.0+, as the BREW Simulator incorporates all the functionalities.
Documentation for this application is available in the BREW Device

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 Installing the BREW SDK

Configurator Guide (BREW 1.1, 2.x), or the “BREW Device Configurator”
section of the BREW Online Help (BREW 2.0+).

BREW Emulator
(BREW 1.x, 2.x)

The Emulator provides a device-like environment for running BREW
applications on a PC, which assists in the debugging process. In BREW SDK
3.0+, the BREW Simulator has replaced the BREW Emulator. Detailed
Emulator documentation is available in the “BREW Emulator” sections of the
BREW SDK User’s Guide (BREW 1.1, 2.x) and BREW Online Help (BREW
2.x).

BREW MIF Editor Used for creating and modifying an application’s Module Information File
(MIF), which contains important information about the classes and
applications supported by a module. Documentation for this application is
available in the BREW MIF Editor Guide (BREW 1.1, 2.x), or the “BREW MIF
Editor” section of the BREW Online Help (BREW 2.0+).

BREW Resource
Editor

To enhance inter-platform portability, developers should place resources
within BREW Applet Resource (BAR) files, which can be compiled using the
Resource Editor. Documentation for this application is available in the BREW
Resource Editor Guide (BREW 1.1, 2.x), or the “BREW Resource Editor”
section of the BREW Online Help (BREW 2.0+).

BREW Simulator
(BREW 3.0+)

Encapsulates the functionality of the BREW Emulator and Device
Configurator, allowing the execution of BREW applications on a modifiable
simulated device environment. For complete documentation on Simulator
usage, consult the “BREW Simulator” section of the BREW SDK User
documents (BREW 3.0+).

Documentation
BREW API Reference
(BREW 1.x, 2.x)

Contains detailed information on the BREW APIs and helper methods
available within the SDK, which will be an especially valuable resource
during BREW development. This information is also available as an online
help (CHM) file in BREW 2.0+.

BREW BCI Guide
(BREW 1.1, 2.x)

Provides additional information on the BREW Compressed Image format, as
well as usage of the BREW Compressed Image Authoring Tool. The
information contained in this guide is also available in the “BREW
Compressed Image Tool” section of the BREW Online Help (BREW 2.0+).

BREW Device
Configurator Guide
(BREW 1.x, 2.x)

Provides instruction on using the BREW Device Configurator to customize
the appearance and functionality of Emulator device skins. The information
contained in this guide is also available in the “BREW Device Configurator”
section of the BREW Online Help (BREW 2.x).

BREW MIF Editor
Guide (BREW 1.x,
2.x)

Assists in using the BREW MIF Editor for creating and modifying application
MIF files. The information contained in this guide is also available in the
“BREW MIF Editor” section of the BREW Online Help (BREW 2.0+).

BREW Resource
Editor Guide (BREW
1.x, 2.x)

Contains instructions for using the BREW Resource Editor to create and
compile BREW Applet Resources. The information contained in this guide is
also available in the “BREW Resource Editor” section of the BREW Online
Help (BREW 2.0+).

BREW Sample
Application Guide

Summarizes the sample applications included with the SDK. Each version of
the BREW SDK includes a collection of source code for several applications

17
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 Installing the BREW SDK

(BREW 2.0+) demonstrating the API functions. This provides a valuable resource for
developers seeking examples of functional BREW programs.

BREW SDK User’s
Guide (BREW 1.x,
2.x)

This document provides an overview of fundamental aspects of BREW,
including programming techniques, troubleshooting assistance for a variety
of common problems, and an overview of the applications included in the
SDK.

BREW Utilities Guide
(BREW 1.1, 2.x)

Covers topics relevant to the BREW Utilities included in the particular SDK
version. In BREW 3.0+, this information was incorporated into the BREW
SDK User Docs.

Online help
BREW API Reference (BREW 2.0+) Contains detailed information on the BREW APIs and helper

methods available within the SDK, which will be an
especially valuable resource during BREW development.

BREW Online Help (BREW 2.x) This document provides an overview of fundamental aspects
of BREW, including programming techniques,
troubleshooting assistance for a variety of common
problems, and an overview of the applications included in
the SDK. In BREW 3.0+, this guide has been split into
separate BREW Programming Concepts and BREW SDK
User Doc components.

BREW Programming Concepts
(BREW 3.0+)

Offers valuable information on programming within the
BREW environment, including event-handling techniques,
module design, and BREW extension guidelines. This
information is also contained within the BREW Online Help
guide in previous versions of BREW.

BREW SDK User Doc (BREW 3.0+) Documents the applications comprising the SDK and
provides troubleshooting advice for SDK problems. This
information is also contained within the BREW Online Help
guide in previous versions of BREW.

Utilities
2Bit Tool (BREW 2.0+) Facilitates conversion between 4-bit and 2-bit BMP formats

for editing purposes. For usage specifics on this and other
BREW Utilties, consult the BREW Utilities Guide, included as
part of the BREW SDK User Docs document in BREW SDK
3.0 and greater, and as a standalone document in previous
SDK versions.

NMEA Logger Tool (BREW 2.0+) Allows retrieving recorded GPS activity from a GPS or GNSS
device for simulating GPS behavior within the Simulator.

Purevoice Converter (BREW 1.1+) This application allows conversion of audio files from WAV to
Qualcomm’s Purevoice (QCP) format, which offers
compression benefits at very little compromise of audio
quality.

18
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 Installing the BREW SDK

Common issues

System requirements

If your computer fails to meet the minimum system requirements, the BREW SDK
installation fails.

• Internet Explorer version 5.5 SP2 or higher with 128-bit encryption

• Windows NT 4.0, Windows 2000, or Windows XP

• Administrator privileges for your computer

The BREW SDK is currently available for installation on Windows platforms only; due to the
requirement for Unicode text encoding capabilities, Windows 9x and ME are not supported.

Additional resources
Please address any problems with accessing the SDK download page to brew-
support@qualcomm.com. Be sure to include a detailed description of the problem
encountered as well as any pertinent error messages.

19
QUALCOMM Proprietary

mailto:brew-support@qualcomm.com
mailto:brew-support@qualcomm.com
mailto:brew-support@qualcomm.com

20
QUALCOMM Proprietary

Writing BREW Applications

This guide assumes that development is performed within the Microsoft Visual Studio 6.0
environment, which is the officially supported development studio. Authoring BREW
applications using later versions of Microsoft Visual Studio (Visual Studio .NET) is also
possible. Consult the Creating BREW™ Applications Using Visual Studio .NET guide for
specifics on importing BREW projects into the Visual Studio .NET environment.

This section presents an overview of the BREW development process, including the basic
steps necessary to write a functional BREW application. For a more in-depth tutorial on
writing your first BREW application refer to the Creating a BREW™ Application from Scratch
document, which details the creation of an application with key handling and resource files.

Creating a new application with the BREW Application
Wizard
The BREW Application Wizard facilitates the creation of new BREW projects by providing a
generic code framework for your application. The wizard is automatically installed with
BREW SDK 1.1 and above. To use the BREW Application Wizard, launch Microsoft Visual
Studio and click File>New to create a new project (File → New). The BREW Application
Wizard appears within the available project type menu (see Figure 1 Invoking the BREW
Application Wizard). Enter the desired project name and location and click OK to start the
wizard.

NOTE: To function properly on all versions of BREW, filenames should not contain
uppercase letters. Filenames containing uppercase characters are not allowed on the mobile
device; additionally, they cause errors during emulation in BREW SDK 3.0+. Your
application’s name must begin with alphabetical characters; applications downloaded over
the air have MIF and directory names containing only numbers, and BREW treats these files
differently. For example, an application directory named helloworld is renamed as something
similar to 1234 when downloaded over the air. Failing to follow this convention may lead to
fatal errors in your application. Additionally, note that it is not safe to assume that you will
know the name of your MIF file or application directory when the application has been
downloaded to a device over the air.

 Writing BREW Applications

Figure 1 Invoking the BREW Application Wizard

The first step in the Application Wizard is to specify the interfaces your application uses (see
Figure 2. BREW Application Wizard step 1). Checking boxes within this window inserts a
#include preprocessor directive within your source code, providing access to the API
methods supporting the specified functionality. You need to provide additional #include
directives for any other header files required by the APIs used in the application (see the
BREW API Reference for this information).

NOTE: Selecting support for interfaces within the Application Wizard is not equivalent to
specifying privilege levels within the application MIF. If your application requires privileges,
you must specify the appropriate access rights using the MIF Editor. See Setting privileges
for details. Find information on the privilege levels required for various APIs within the
corresponding section of the BREW API Reference.

21
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

 Writing BREW Applications

Figure 2. BREW Application Wizard step 1

After adding support for the desired interfaces, click Next to advance the wizard to the
second and final step (see Figure 3. BREW Application Wizard step 2).

Figure 3. BREW Application Wizard step 2

Alternatively, you can click Finish to create your project immediately, without disabling pre-
generated source code comments. In this step, the wizard prompts you to launch the BREW

22
QUALCOMM Proprietary

 Writing BREW Applications

MIF Editor to create a MIF for your module. The MIF contains important information about
the classes and applications supported by a module, such as the applet name and icon.
While you may start application development before you create a MIF, you must do so
before testing the application within the Simulator or loading to a mobile device; see Using
the BREW MIF Editor for details. You may also opt to disable the automatic generation of
source code comments, though you may find the comments helpful in developing your first
BREW applications. After you click Finish, the wizard completes its processes, and a
window appears, summarizing the actions taken (see Figure 4. New Project Information
window).

Figure 4. New Project Information window

To view the newly created code, close the New Project Information window, and open the
helloworld.c file (the name of this file will depend on the name of your project) from the
project workspace FileView (). The wizard-generated code is presented below, with a
description of the important sections.

23
QUALCOMM Proprietary

 Writing BREW Applications

Figure 5. New project workspace

NOTE: If you are developing your application for a version of the BREW SDK located in a
directory other than the location specified by the BREWDIR environment variable, the
AEEAppGen.c, AEEModGen.c, and libraries linked with your application will be incorrect. To
remedy this error, you must manually replace the files in your project with the correct version
(a tedious and error-prone process), or change the value of the BREWDIR variable.
Changing the value of the BREWDIR is the preferred solution, as the project may later be
safely compiled under other versions of the SDK by simply updating the environment
variable.

Changing the BREWDIR environment variable
The BREWDIR variable is modified through the Environment Variables section of your
computer’s System Properties. Right-click on My Computer > Properties > Advanced >
Environment Variables to access the window. Scroll down through the list of user variables
until you find the entry for BREWDIR. This should be set to the root directory of the target
SDK installation (see Figure 6. Modifying environment variables).

NOTE: If you change the BREWDIR environment variable while an application using the
variable is running (for example, an MS-DOS command prompt or Visual Studio), you must
close and reopen that application for the changes to take effect.

24
QUALCOMM Proprietary

 Writing BREW Applications

Figure 6. Modifying environment variables

Skeletal code generated by the BREW Application Wizard
The wizard generated code is included below. Important sections of the code (numbered)
are discussed afterwards

/*===

FILE: helloworld.c
===*/

/*===
INCLUDES AND VARIABLE DEFINITIONS
== */

#include "AEEModGen.h" // Module interface definitions

#include "AEEAppGen.h" // Applet interface definitions
#include "AEEShell.h" // Shell interface definitions

#include "helloworld.bid"

25
QUALCOMM Proprietary

 Writing BREW Applications

/*---
Applet structure. All variables in here are reference via "pMe->"
---*/

typedef struct _helloworld {

 AEEApplet a ; // First element of this structure must be
AEEApplet
 AEEDeviceInfo DeviceInfo; // always have access to the hardware device
information
 IDisplay *pIDisplay; // give a standard way to access the Display
interface
 IShell *pIShell; // give a standard way to access the Shell
interface

 // add your own variables here...

} helloworld;

/*---
Function Prototypes
---*/
static boolean helloworld_HandleEvent(helloworld* pMe, AEEEvent eCode,
 uint16 wParam, uint32
dwParam);

boolean helloworld_InitAppData(helloworld* pMe);
void helloworld_FreeAppData(helloworld* pMe);

/*===
FUNCTION DEFINITIONS
== */

/*===
FUNCTION: AEEClsCreateInstance
===*/

int AEEClsCreateInstance(AEECLSID ClsId, IShell *pIShell, IModule *po, void
**ppObj)
{
 *ppObj = NULL;

 if(ClsId == AEECLSID_HELLOWORLD)
 {
 // Create the applet and make room for the applet structure
 if(AEEApplet_New(sizeof(helloworld),
 ClsId,
 pIShell,
 po,

26
QUALCOMM Proprietary

 Writing BREW Applications

 (IApplet**)ppObj,
 (AEEHANDLER)helloworld_HandleEvent,
 (PFNFREEAPPDATA)helloworld_FreeAppData))
 // the FreeAppData function is called after sending EVT_APP_STOP to
the HandleEvent
 // function

 {
 //Initialize applet data, this is called before sending EVT_APP_START
 // to the HandleEvent function
 if(helloworld_InitAppData((helloworld*)*ppObj))
 {
 //Data initialized successfully
 return(AEE_SUCCESS);
 }
 else
 {
 //Release the applet. This will free the memory allocated for the
applet when
 // AEEApplet_New was called.
 IAPPLET_Release((IApplet*)*ppObj);
 return EFAILED;
 }

 } // end AEEApplet_New

 return(EFAILED);
}

/*===
FUNCTION SampleAppWizard_HandleEvent
===*/

static boolean helloworld_HandleEvent(helloworld* pMe, AEEEvent eCode,
uint16 wParam, uint32 dwParam)
{

 switch (eCode)
 {
 // App is told it is starting up
 case EVT_APP_START:
 // Add your code here...

 return(TRUE);

 // App is told it is exiting
 case EVT_APP_STOP:

27
QUALCOMM Proprietary

 Writing BREW Applications

 // Add your code here...

 return(TRUE);

 // App is being suspended
 case EVT_APP_SUSPEND:
 // Add your code here...

 return(TRUE);

 // App is being resumed
 case EVT_APP_RESUME:
 // Add your code here...

 return(TRUE);

 // An SMS message has arrived for this app. Message is in the dwParam
above as
 // (char *)
 // sender simply uses this format "//BREW:ClassId:Message", example
 //BREW:0x00000001:Hello World
 case EVT_APP_MESSAGE:
 // Add your code here...

 return(TRUE);

 // A key was pressed. Look at the wParam above to see which key was
pressed. The key
 // codes are in AEEVCodes.h. Example "AVK_1" means that the "1" key was
pressed.
 case EVT_KEY:
 // Add your code here...

 return(TRUE);

 // If nothing fits up to this point then we'll just break out
 default:
 break;
 }

 return FALSE;
}

// this function is called when your application is starting up
boolean helloworld_InitAppData(helloworld* pMe)
{
 // Get the device information for this handset.

28
QUALCOMM Proprietary

 Writing BREW Applications

 // Reference all the data by looking at the pMe->DeviceInfo structure
 // Check the API reference guide for all the handy device info you can
get
 pMe->DeviceInfo.wStructSize = sizeof(pMe->DeviceInfo);
 ISHELL_GetDeviceInfo(pMe->a.m_pIShell,&pMe->DeviceInfo);

 // The display and shell interfaces are always created by
 // default, so we'll asign them so that you can access
 // them via the standard "pMe->" without the "a."
 pMe->pIDisplay = pMe->a.m_pIDisplay;
 pMe->pIShell = pMe->a.m_pIShell;

 // Insert your code here for initializing or allocating resources...

 // if there have been no failures up to this point then return success
 return TRUE;
}

// this function is called when your application is exiting
void helloworld_FreeAppData(helloworld* pMe)
{
 // insert your code here for freeing any resources you have allocated...

 // example to use for releasing each interface:
 // if (pMe->pIMenuCtl != NULL) // check for NULL first
 // {
 // IMENUCTL_Release(pMe->pIMenuCtl) // release the interface
 // pMe->pIMenuCtl = NULL; // set to NULL so no problems trying
to free later
 // }
 //

}

API library includes

To use the methods in a particular BREW API, the corresponding header file must be
included in your application. Information on the necessary header files for each API is
contained within the BREW API Reference.

NOTE: To prevent the introduction of static and global data, do not link standard C libraries
to your BREW application. As such, standard C library routines (for instance, strcat(),
malloc(), sprintf()) cannot be used within BREW. Helper functions are provided for the most
commonly used C functions; see the BREW API Reference for more details. Additionally,

29
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

 Writing BREW Applications

floating-point operations may only be performed through the floating-point helper functions.
These limitations are the result of the ARM platform, not BREW itself.

Class ID file

Before compiling your application,, you must generate a class ID file. This file contains a
unique 32-bit identification code (8-digit hexadecimal value), which is used by the BREW
interface creation mechanism. For testing on a local system, it is sufficient to generate a
local class ID through the MIF Editor, though QUALCOMM must issue a unique ID to
applications intended for distribution. For more information on obtaining class ID files, see
the Using the BREW MIF Editor.

Applet structure

Any objects used during the lifetime of your application should be placed within the applet
structure. As static and global variables are not permitted within BREW, the applet structure
provides a mechanism for achieving similar behavior. The applet structure is received as a
parameter in most BREW methods, which allows access to the structure members.
Typically, the elements of the applet are all initialized within the application’s data
initialization method, and deallocated in the application’s data free method. Consolidating all
allocations and deallocations decreases the chance of memory access errors and memory
leaks.

NOTE: The first element of your applet structure must be an AEEApplet object so the
AEEApplet_New() method can properly initialize your applet.

AEEClsCreateInstance() method

This is a required method for all applications. BREW automatically invokes this routine to
create an instance of your applet in memory prior to sending the EVT_APP_START. Within
this method AEEAppletNew() is called, registering the event handler, data initialization
(optional), and data deallocation functions. All initialization activities specific to your
application are performed in your data initialization function; it should not be necessary to
modify the AEEClsCreateInstance() method.

30
QUALCOMM Proprietary

 Writing BREW Applications

Event handler

All BREW applications must contain an event handling function, which is registered in the
call to AEEAppletNew() within the AEEClsCreateInstance() method. Events are passed to
this function by the BREW layer, where the application performs the appropriate actions. In
the BREW event-handling environment, events must be handled within a limited timeframe,
and all processing must be completed before the next event may be received. After
receiving an event, the handler code should return TRUE to indicate successful handling, or
FALSE if the event is not handled. Event codes supported by BREW (AEE Events) are listed
within the Data Types section of the BREW API Reference
Programming Concepts Guide

. Consult the BREW
 for more information on event-handling rules and principles in

BREW.

Applet data init method

This method is used to perform any initialization code required by the applet. Typically, this
function is used to instantiate the members of your applet structure or allocate memory for
buffers, returning a Boolean value to indicate whether the process was successful. By
placing all your allocation code in a single method, you reduce the potential for neglecting to
properly instantiate a member of the applet structure.

Applet data free method

The applet data free method is used for deallocation of all resources and any additional
procedures required for the application to safely terminate. In general, this is accomplished
by calling the corresponding XXX_Release() method for objects that were instantiated
through ISHELL_CreateInstance(), using FREE() on memory allocated through MALLOC(),
and canceling all pending timers. All resource allocations performed in your applet’s data
initialization method should be deallocated within this method.

31
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 Writing BREW Applications

Common issues
If the BREW Applications Wizard is not available within Visual Studio’s New Project window,
you may need to install a newer version of the BREW Add-Ins for Microsoft Visual Studio.

Additional resources
As previously mentioned, the Creating a BREW™ Application from Scratch document
provides an excellent tutorial for writing a BREW application with simple event handling and
a resource file. The example programs included with the SDK installation (documented in
the BREW Sample Applications Guide

contains a general overview of the BREW environment and BREW development

principles.

) are also a valuable resource in learning BREW;
these enable you to analyze functional BREW code. For any specific usage details on the
various BREW APIs, consult the BREW API Reference. The BREW Programming Concepts
Guide

32
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

33
QUALCOMM Proprietary

Using the BREW MIF Editor

You must create a MIF before you place your application on a BREW device or within the
BREW Simulator. The MIF contains important information about your application, such as
the name, icons, class ID, and privilege levels. The BREW MIF Editor, described in this
section, provides an easy tool for creating this file.

Generating a class ID
To ensure unique class ID numbers across all developers, applications intended for
distribution must generate a class ID through the BREW Generators page, which requires
authentication. For testing purposes, generating a local class ID file using the MIF Editor is
sufficient.

To generate a local class ID file (see Figure 7. Local Class ID generation), click New
Applet, then enter the applet name in the subsequent window and click Locally. Provide a
class ID value (in hexadecimal form) that you know is not already in use, and click
Generate. Save the file within your project directory so it will be available for #include
directives.

Figure 7. Local Class ID generation

 Using the BREW MIF Editor

If you open the resulting BID file in a text editor (see Figure 8. Sample Class ID file), note
that the class ID is specified as a #define macro using the convention
AEECLSID_<PROGRAM NAME>, which allows you to refer to this value within your
application by using a #include directive. In the future, you create new local class ID files by
editing this constant’s name and value.

F

N
a

A
A
n
a
y
i
(

#ifndef HELLOWORLD_BID
#define HELLOWORLD_BID

#define AEECLSID_HELLOWORLD 0xDEADBEEF

#endif //HELLOWORLD_BID
igure 8. Sample Class ID file

OTE: If the class ID specified in your MIF differs from the class ID used in your code, your
pplication will not run properly. Be sure that the two values are identical.

pplication name and icons
fter creating the BID file, the class ID field of the MIF is automatically updated with the
ewly generated value. The next step is to specify your application’s name and icons, which
re used to display your application within the BREW Application Manager. Enter the title of
our application in the Name field, and then select a valid image for the Icon. Additional
mages may be added by clicking Advanced, and modifying the Image and Thumbnail fields
see Figure 9. Specifying the application title and icons).

34
QUALCOMM Proprietary

 Using the BREW MIF Editor

Figure 9. Specifying the application title and icons

NOTE: To ensure compatibility between various BREW devices, the maximum dimensions
of your images should be:

Icon: 26*26

Thumbnail: 16*16

Image: 65*42

35
QUALCOMM Proprietary

 Using the BREW MIF Editor

Setting privileges
If your application uses APIs that require application privilege levels, you must modify the
MIF privilege levels accordingly, or your application will fail. To specify privilege levels, click
General, and click the boxes corresponding to the required privilege levels (see Figure 10.
Specifying privileges). Information on the privilege levels required for various APIs is found
in the API Reference Guide.

Figure 10. Specifying privileges

After making these modifications to the MIF file, click File > Save using the name of your
application. The preferred directory structure for your application directories and MIFs is
shown in Figure 11. BREW directory structure. Placing the MIFs and application directories
in the same folder simplifies the process of specifying directory settings within the Simulator,
and models the actual file system arrangement of the BREW device.

36
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

 Using the BREW MIF Editor

Figure 11. BREW directory structure

Additional resources
The MIF settings covered in this section are vital to the BREW environment and must be
specified prior to starting your application. As you become more experienced in BREW, you
may modify more of the MIF’s attributes. Consult the BREW MIF Editor Guide for more
detailed assistance on using the BREW MIF Editor.

37
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

38
QUALCOMM Proprietary

Using the BREW Resource Editor

Resource files are an important part of ensuring code portability across various mobile
devices, each with its own limitations and capabilities. For instance, by storing all strings
used by the application within a resource file, you allow portability of the application to
another language by simply creating a new resource file with the translated strings. You may
code the application to check the language settings used on the device, and load the
appropriate resource file at runtime.

Another example of a situation where resources aid in code portability is the case in which
an application is developed for devices with widely varying screen dimensions. By creating
device-specific resource files containing images properly sized for the target device, porting
the application becomes a matter of switching resource files. Some carriers also place a
restriction on the number of files a BREW application may contain; resource files provide a
convenient solution to reducing an application’s file count.

Creating string resources
To add a new string to your resource file, click Resource > New String. This action opens
the Image Resource creation window (see Figure 12. Adding string resources). Within this
window, you specify the Resource Name (used to access the resource), the String Format
(be sure that your target device supports the selected character encoding), and Value
(actual string). Optionally, you may modify the assigned Resource ID. Click OK after
completing the fields in this window.

NOTE: Resource IDs must be unique across resource types within the resource file; error
messages appear if duplicate IDs are entered.

 Using the BREW Resource Editor

Figure 12. Adding string resources

Creating image resources
Adding an image resource to the resource file is accomplished through a similar procedure.
From the Resource menu, select New Image, and the Image Resource window opens (see
Figure 13. Adding image resources). Enter the Resource ID and Resource Name, click
Browse, and select a valid image in a supported file format. A preview of the image appears
within the Image Resource window; click OK if everything looks correct.

Figure 13. Adding image resources

39
QUALCOMM Proprietary

 Using the BREW Resource Editor

Creating sound resources
As of this writing, the BREW Resource Editor does not provide native support for sound files.
However, sound files may be added as images to work around this issue. To add a sound
resource, follow the above steps for adding image resources, but enter your sound file into
the Image Path rather than an image.

Within your application, use the ISHELL_LoadResData() or ISHELL_LoadResDataEx()
methods to retrieve the information stored in the resource with ResType parameter
RESTYPE_IMAGE. This returns a pointer to a memory block containing a MIME header and
the raw data. The first byte in the MIME header indicates the offset where the actual raw
data begins. To access the raw sound data, you must do something similar to the following
example:

void * ptrMIME, ptrData;

 // get a pointer to the beginning of the (header + raw data) memory block
ptrMIME = ISHELL_LoadResData(pIShell, MYRESOURCEFILE, MYRESOURCEID,
RESTYPE_IMAGE);

 // add the data offset to find where data begins
ptrData = (byte *)ptrMIME + *(byte *)ptrMIME;

Compiling resource files for use in BREW
After adding all resources to the resource file, you must compile it. Resource files are stored
in the BREW Resource Intermediate (BRI) format until compilation, at which point the BREW
Applet Resource (BAR) file is created, along with a resource header file used to access the
resources within your code. To compile the BRI file, select Build Qualcomm .BAR/.h Files
from the Build menu. If the compilation operation is successful, a confirmation window
opens, listing the files generated as a result (see Figure 14. Compiling a BRI file).

40
QUALCOMM Proprietary

 Using the BREW Resource Editor

Figure 14. Compiling a BRI file

This resulting header file (see Figure 15. Sample resource header file) is included within
your application, where the constants are used to access the resources within the file.

F

A
T
t
a

#ifndef MYRESOURCES_RES_H
#define MYRESOURCES_RES_H

// WARNING: DO NOT MODIFY THIS FILE
// AUTO-GENERATED BY BREW Resource Editor

#define MYRESOURCES_RES_FILE "myresources.bar"

#define A_STRING 1
#define AN_IMAGE 5001

#endif // MYRESOURCES_RES_H

igure 15. Sample resource header file

dditional resources
he BREW Resource Editor is also used to create a wide variety of dialog control types, but

hat is a topic beyond the scope of this guide. For additional usage information on this
pplication, read the BREW Resource Editor Guide.

41
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

42
QUALCOMM Proprietary

Using the BCI Authoring Tool

The BCI Authoring tool provides a simple interface for converting images into the BREW
Compressed Image (BCI) format and creating BCI animations. Compressing image files
reduces the size of the image and increases the display speed, both of which provide
desirable benefits.

Creating BCI images
This process is as simple as opening a supported graphics file and then resaving it as a BCI.
To open an image, click the File menu and select Open Image File. Browse to an image file
in a supported graphics type and open it; the image appears in the BCI Authoring Tool
window (see Figure 16. Opening image files).

Figure 16. Opening image files

If everything looks as expected, select Save As from the File menu, and save the new
image file.

Animating BCI images
Adding animation to a BCI image is also a very simple procedure. Follow the steps above to
open all the frames in your animation; the images are appended to your animation in the
order they are opened (see Figure 17. BCI animation frames).

 Using the BCI Authoring Tool

Figure 17. BCI animation frames

The default frame duration for each frame in your animation is 150 ms.To modify this value,
click the desired frame and select Frame Duration from the Edit menu. A dialog box opens,
allowing you to specify a new duration for the frame (see Figure 18. Modifying frame
durations).

Figure 18. Modifying frame durations

After saving your BCI animation, you can preview the result by selecting Animate from the
BCI menu (see Figure 19. Previewing animation). The resulting animation plays, allowing
you to judge if the frame durations have been appropriately specified to achieve the proper
animation effect.

43
QUALCOMM Proprietary

 Using the BCI Authoring Tool

Figure 19. Previewing animation

Additional resources
Consult the BREW BCI Guide for more help on using the BCI Authoring Tool.

44
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

45
QUALCOMM Proprietary

Compiling BREW Applications for Simulation

After writing your BREW application, you can build a DLL for use by the Simulator. First,
ensure that you created a MIF for your application and generated a valid class ID file (see
the Using the BREW MIF Editor for more details).

Specifying DLL destination
The default location for your DLL file is a subdirectory created within your application
directory named Debug. Unfortunately, the Simulator is not able to execute your application
properly unless the application DLL resides within the application directory. To specify the
proper destination for your project DLL, change your project’s linking options by selecting
Project > Settings > Link. The Output file name is listed as Debug/<projectname>.dll;
remove the Debug/ prefix (see Figure 20. Changing DLL output).

 Compiling BREW Applications for Simulation

Figure 20. Changing DLL output

Building an application DLL
After changing the default DLL output directory, your application is ready to compile into a
DLL. This process is accomplished by selecting Build <projectname>.dll from the Build
menu (see Figure 21. Building the DLL).

NOTE: The DLL file is only used by the Simulator. Compiling your application into a MOD for
the BREW device requires a separate procedure, detailed in the Loading BREW
Applications to the Mobile Device section.

46
QUALCOMM Proprietary

 Compiling BREW Applications for Simulation

Figure 21. Building the DLL

If the build process does not complete successfully, you must debug your application. For
more information on solving common BREW code errors, see the Common Issues section.

Running your application
After successfully building your application DLL, you can choose to run it within the
Simulator. To do so, select Execute from the Visual Studio Build menu (see Figure 22.
Running the DLL).

47
QUALCOMM Proprietary

 Compiling BREW Applications for Simulation

Figure 22. Running the DLL

The first time you run your application, you are prompted to enter the name of an
executable; you must select Browse and specify the appropriate version of the Simulator
from the Bin directory of your BREW SDK installation (see Figure 23. Specifying the
executable).

48
QUALCOMM Proprietary

 Compiling BREW Applications for Simulation

Figure 23. Specifying the executable

Common issues
Many issues encountered during the compilation process are the result of linking errors. The
following steps are designed to assist in resolving most linking errors you may encounter
while programming in BREW.

Read the BREW API Reference

Verify that you are using the correct names for BREW constants, methods, interfaces, and
structure members.

Include all necessary header files

If header files are not included, the compiler cannot recognize the symbols specified in your
code. The BREW API Reference contains a listing of the required header files for each
interface.

49
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 Compiling BREW Applications for Simulation

Ensure linking is performed against the proper library versions

If your BREWDIR environment variable was not properly specified for the targeted version of
BREW, applications created using the BREW Application Wizard will link projects to the
incorrect version of libraries. To check that the proper libraries are used, right-click on the
files within your project workspace window, and select Properties. In the resulting Header
File Properties window, verify that the File name is correct for the intended BREW version
(see Figure 24. Checking library versions). For information on changing the BREWDIR
variable, see Changing the BREWDIR environment variable.

Figure 24. Checking library versions

Close any applications using your DLL

If another application is currently using your DLL (for example, the Simulator), compilation
fails with an error message of

LINK : fatal error LNK1168: cannot open helloworld.dll for writing
Error executing link.exe.

To solve this problem, Visual Studio must have complete access to the DLL.

Additional resources
The BREW API Reference guide proves valuable in diagnosing most errors encountered
during the BREW compilation process.

50
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

51
QUALCOMM Proprietary

Running BREW Applications on the Simulator

The BREW Simulator provides a convenient environment for running and debugging your
applications prior to transferring them to a mobile device.

Device skins
The Simulator is installed along with a default set of device skins (QSC files), located in the
Devices folder of your BREW installation. Additional device skins are available for download
by authenticated developers from the Phone Details page. To change the device skin used
by the Simulator, select Load Device from the File menu. Select a new device skin and click
Open; the Simulator’s appearance is modified to reflect the specified skin (see Figure 25.
Changing device skins).

 Running BREW Applications on the Simulator

Figure 25. Changing device skins

NOTE: Device skins allow you to test your application using the appearance and limitations
of the intended device, but they do not completely replicate the specific device environment.

52
QUALCOMM Proprietary

 Running BREW Applications on the Simulator

The Simulator and its device skins should not replace testing your application directly on the
device. Many phones have known issues are not reproduced in the Simulator.

Modifying device skins
Prior to BREW 3.0, the Device Configurator handles the modifications of attributes of device
skins. This functionality permits developers to specify the attributes of the device used for
emulation, though the OEM typically provides the appropriate values. Developers who have
not been authenticated and cannot download new device skins may also want to modify the
device skin to more closely reflect the specifications of the targeted mobile platform. For
more information on using the Device Configurator, see the BREW Device Configurator
Guide.

As of BREW 3.0, the BREW Simulator incorporates the functionality of the Device
Configurator with the use of Device Packs (DPK files). Device Packs are modifiable directly
within the Simulator; see the BREW Simulator section of the BREW SDK User documents
for more details.

Specifying Simulator directories
To locate and load your application, the Simulator must be configured with the proper
directories for loading MIFs and applets. Failing to configure the Simulator with the correct
directories causes errors when trying to run your application.

The MIF directory is the directory that contains your MIF files, while the application directory
is the parent directory containing all your applet directories. For instance, in Figure 26.
Sample directory structure, the BREW applications directory is both the MIF directory and
the application Directory.

Figure 26. Sample directory structure

In the Simulator, the application directory is specified by selecting Change Applet Dir from
the File menu. In the following window, you should select the directory containing your
applet folders (see Figure 27. Changing the applet directory).

53
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 Running BREW Applications on the Simulator

Figure 27. Changing the applet directory

The MIF Directory may be changed by selecting Settings from the Tools menu (see Figure
28. Changing the MIF directory). If you use the same directory to hold both your application
folders and your MIFs, clear the Specify MIF Directory check box; otherwise you will need
to select the appropriate MIF directory and click OK.

Figure 28. Changing the MIF directory

In the BREW Simulator, the application and MIF directories may be changed through the
Properties tab. If the Properties tab is not enabled, show it by selecting Properties in the
View menu (see Figure 29. Changing the MIF and application directories in the Simulator).
Within this tab, change the applet and MIF directories by modifying the corresponding fields,
and click Apply to confirm the changes.

54
QUALCOMM Proprietary

 Running BREW Applications on the Simulator

Figure 29. Changing the MIF and application directories in the Simulator

Running your application
After the Simulator has been properly configured with the correct MIF and application
directories, run your application by simply navigating to the proper icon within the application
menu (see Figure 30. Application menu), using the mouse to interact with the device
buttons or using the keyboard for mapped keys. Click Select on the device skin or press
Enter on your keyboard to start the highlighted application.

55
QUALCOMM Proprietary

 Running BREW Applications on the Simulator

Figure 30. Application menu

Advanced Simulator capabilities
The Simulator has the capability of mimicking external stimulus to your application, such as
GPS readings or incoming voice calls and SMS messages. For more information on
harnessing these capabilities, see the BREW Emulator section of the BREW SDK User
Guide, or the BREW Simulator portion of the BREW SDK User documents in BREW 3.0+.

Common issues

ISHELL_CreateInstance() or API methods unexpectedly failing

Not all APIs and API methods are supported by the Simulator. For example, instances of the
IVocoder and ICamera interfaces cannot be created on the Simulator. Other API capabilities
may not be completely supported, such as sending outgoing SMS messages with
ITAPI_SendSMS(). In these cases, you may find that ISHELL_CreateInstance() fails with
return value ECLASSNOTSUPPORT. These errors also occur if your application has not
specified the necessary privilege levels within your MIF.

Mixed-case name warning displayed

BREW applications may not have uppercase letters in their filenames and application
directories. Mixed-case filenames in the Emulator do not generate error messages. The
Simulator was modified to imitate the behavior of the BREW environment regarding
file/directory naming conventions, and it a warning message (see Figure 31. Mixed case
naming warning) appears when it encounters a violation. Failure to follow naming rules may
result in you’re the malfunction of your application.

56
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 Running BREW Applications on the Simulator

Figure 31. Mixed case naming warning

To determine which file and directory names are causing the violation, click Output Window
and inspect the log; the offending file or directory names are shown (see Figure 32.
Resolving naming violations). Rename these files and modify your application code as
appropriate.

Figure 32. Resolving naming violations

The application’s icon is not displayed

If you are unable to see your application’s icon within the Application Manager screen, the
Simulator is unable to find the MIF file for your application. Make sure that you have created
the MIF file using the BREW MIF Editor, and you properly specified the Emulator’s MIF
directory (see Specifying Simulator directories).

NOTE: Some device skins may not display your application if you have not provided a valid
icon within the MIF. Try switching to another device skin or providing a valid application icon
within your MIF.

57
QUALCOMM Proprietary

 Running BREW Applications on the Simulator

Figure 33. Emulator with incorrect MIF directory

Application has been unloaded error message displayed

If the Simulator shows the error message in Figure 34. Emulator unable to find DLL when
you start your application, it was unable to find the proper DLL file. This is frequently caused
by an erroneous application directory specification (see Specifying Simulator directories).
Verify that your application’s directory contains a valid DLL; if not, build your application’s
DLL in Visual Studio (see Building an application DLL). Also verify that you have configured
Visual Studio to write the DLL file within the application directory and not the Debug folder
(see Specifying DLL destination).

58
QUALCOMM Proprietary

 Running BREW Applications on the Simulator

Figure 34. Emulator unable to find DLL

Unknown error (1) message displayed

This error message (see Figure 35. Application initialization code failure) is displayed when
your application returns EFAILED within the AEEClsCreateInstance() method. Typically
EFAILED is returned when your class data init function fails, which depends on the
implementation of the function. See the above section on ISHELL_CreateInstance() or API
methods unexpectedly failing; verify that all your memory allocation statements are
completing correctly. You may need to insert debug statements or breakpoints into your
code so you can isolate the cause of these error conditions; consult the Debugging BREW
applications on the Simulator section below for additional help on this topic. The
AEEClsCreateInstance() method also fails if there is a mismatch in the class ID specified in
the MIF and the ID included in your source code.

59
QUALCOMM Proprietary

 Running BREW Applications on the Simulator

Figure 35. Application initialization code failure

BREW Simulator fails

If the BREW Simulator fails while starting your application, it is probably a memory access
violation, such as accessing a null pointer or attempting to release the same pointer twice.
When this occurs, the Simulator fails, and a message similar to the one in Figure 36.
Memory access violation, appears. Verify all your memory accesses to verify that you are
not performing any illegal operations. For more information on debugging this type of error,
refer to Debugging BREW applications on the Simulator below.

60
QUALCOMM Proprietary

 Running BREW Applications on the Simulator

Figure 36. Memory access violation

Additional resources
See the section on Troubleshooting BREW within the BREW SDK User Guide and BREW
SDK User documents. This chapter contains a listing of common error messages
encountered while running the Simulator and solutions to these problems.

61
QUALCOMM Proprietary

62
QUALCOMM Proprietary

Debugging BREW applications on the Simulator

There are two primary strategies available for debugging program behavior in BREW. The
first is to use DBGPRINTF() for simple error-checking print statements; the other is to debug
the application with Visual Studio while running in the Simulator.

DBGPRINTF()
Any information printed using the DBGPRINTF() helper function is displayed in the output
window when the application is run in the Simulator, or on the BREW Logger when the
application is run on the mobile device. This is helpful for inspecting the value of variables
and debugging the application flow of control; however, it is not as robust as taking
advantage of the Visual Studio debugging functionality. Inset calls to DBGPRINTF() as
necessary in your code, open the output window in the Simulator by selecting View >
Output Window while your application is running, and observe the results (see Figure 37.
DBGPRINTF() output). For more information on the DBGPRINTF() helper function, consult
the BREW API Reference.

Figure 37. DBGPRINTF() output

Debugging in Visual Studio
To launch a debug session in Visual Studio, select Start Debug > Go in the Build menu
(see Figure 38. Starting a debug session). A warning window (see Figure 39. Debugging
information warning) opens the first time you debug your application; this warning window
may be safely ignored.

https://brewx.qualcomm.com/brew/sdk/download.jsp

 Debugging BREW applications on the Simulator

Figure 38. Starting a debug session

Figure 39. Debugging information warning

When you start debugging, the Simulator is invoked. Start your application as normal within
the Simulator; control returns to Visual Studio when the Simulator fails, or a breakpoint is
reached. Note that this tool greatly facilitates debugging memory access issues, as Visual
Studio indicates exactly which line of code is responsible for the failure (see Figure 40.
Memory access violation).

63
QUALCOMM Proprietary

 Debugging BREW applications on the Simulator

Figure 40. Memory access violation

If breakpoints were specified, control returns to Visual Studio as soon as failure reaches the
line of code containing the breakpoint. This is most useful for debugging non-failing code
logic issues. To specify a breakpoint, right-click on the desired line of code and select
Insert/Remove Breakpoint from the resulting pop-up menu (see Figure 41. Adding
breakpoints).

64
QUALCOMM Proprietary

 Debugging BREW applications on the Simulator

Figure 41. Adding breakpoints

After the breakpoint is reached, use Visual Studio’s debugging tools to inspect relevant
variables and function call parameters and review your code to diagnose the causes of your
program’s undesired behavior (see Figure 42. Displaying debug windows). Make sure the
necessary debugging windows are open by selecting View > Debug Windows > Variables,
Memory, or something.).

65
QUALCOMM Proprietary

 Debugging BREW applications on the Simulator

Figure 42. Displaying debug windows

After all the necessary information appears, use the Debug menu to review your code and
note the behavior of these watched variables (see Figure 43. Advancing program
execution).

66
QUALCOMM Proprietary

 Debugging BREW applications on the Simulator

Figure 43. Advancing program execution

Additional resources
For more information on Microsoft Visual Studio’s debugging capabilities, consult the Visual
Studio references.

67
QUALCOMM Proprietary

68
QUALCOMM Proprietary

Loading BREW Applications to the Mobile Device

Before you load your application to a mobile device, you must compile it into a MOD file for
the ARM processor. The officially supported compilation solution is the ARM Realview Cross
Compiler, part of the ARM Developer Suite. For more information on the ARM Realview
Cross Compiler and information on obtaining a free 45-day demo version, follow the
appropriate link from the BREW Compilation Tools page.

Generating ARM makefiles
Compilation with the Realview Cross Compiler requires an appropriate makefile; the
simplest way to generate a suitable makefile is through the automated makefile wizard in the
BREW Add-ins for Microsoft Visual Studio. After installing the add-ins, you must enable the
BREW Add-Ins toolbar within Visual Studio. To do so, select Customize from the Tools
window, and in the Customize dialog check the box next to the BREW Addins listing on the
Add-ins and Macro Files tab (see Figure 44. Enabling the BREW Add-ins toolbar).

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp?page=dx/devmisc

 Loading BREW Applications to the Mobile Device

Figure 44. Enabling the BREW Add-ins toolbar

The toolbar (see Figure 45. BREW Add-ins toolbar) has buttons for ARM and GNU makefile
generation, as well as quick links to the BREW MIF Editor, BREW Resource Editor, BREW
Simulator, and BREW Online Help. Clicking the appropriate makefile generation button
creates a valid makefile within your application directory.

69
QUALCOMM Proprietary

 Loading BREW Applications to the Mobile Device

Figure 45. BREW Add-ins toolbar

Compiling for ARM
After creating a makefile for your application, open a command prompt window and navigate
to your application directory. At the prompt, type:

nmake /f <makefile name> all

This invokes the nmake utility with your makefile, compiling the application for ARM.

NOTE: If you are trying to compile the sample applications provided in the SDK with the
supplied makefiles, verify that you have the proper version of the ARM Developer Suite
installed to meet the makefile prerequisites. Running a makefile designed for a different
version of the ARM Developer Suite may result in an unusable compilation.

NOTE: Applications targeted for big-endian (Nokia) handsets will need to specify the big-
endian compilation option. To do so, modify the appropriate line within the compiler code
generation options section, assuming a makefile generated using BREW Add-Ins, to read:

END = -bigend

GCC compilation
For developers on a tight budget, GCC may be used to compile BREW applications. The
appropriate support files are available on the BREW Compilation Tools page. GCC
makefiles may be generated with the BREW Add-Ins for Visual Studio following the
procedure outlined above. Note that QUALCOMM does not provide assistance for GCC-
specific issues; the GCC support files are provided merely for your convenience.

Generating test signatures
A test signature is necessary to start your application on a handset. Authenticated
developers generate test signatures on the BREW Generators page.

70
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp?page=dx/compilers
https://brewx.qualcomm.com/brew/sdk/download.jsp?page=dx/generators
https://brewx.qualcomm.com/brew/sdk/download.jsp?page=dx/generators

71
QUALCOMM Proprietary

About the BREW Tools Suite

The BREW Tools Suite provides a collection of tools to facilitate loading and testing your
application on a mobile device. To download the BREW Tools Suite, you must be an
authenticated developer.

Contents
BREW AppLoader The BREW AppLoader provides an interface for

accessing the file system of your mobile device,
which allows a developer to remove applications,
modify directories, and copy applications to the
handset for testing.

BREW AppSigner This tool is used to digitally sign an application,
which is necessary for submission.

BREW Logger Logger connects to a device and displays
debugging information printed with
DBGPRINTF().

The Grinder The Grinder is an enhancement to the Simulator
that allows for the automatic generation of testing
events (for example, key entry). Events may be
randomly generated or specified through the use
of Perl scripting.

Connecting to a device
When you run AppLoader or Logger, you are prompted with a connection window. Within
this window, specify the DLL used to communicate with the mobile device (default is
QCOMOEM.dll) and the port used to communicate with the phone (see Figure 46. BREW
Tools connection window). Select the proper port setting and click OK to connect with the
device.

 About the BREW Tools Suite

Figure 46. BREW Tools connection window

BREW AppLoader
After connecting to the handset, the AppLoader shows the deivce’s BREW file system (see
Figure 47. BREW file system), including information about the free memory available.

NOTE: The AppLoader cannot rename files directly on the handset or copy certain file types
to your PC for security reasons.

Figure 47. BREW file system

To load an application to a handset, you will need to create a directory with your
application’s name under the brew root folder (see Figure 48. Creating the application
directory).

72
QUALCOMM Proprietary

 About the BREW Tools Suite

Figure 48. Creating the application directory

Within this directory, copy all files used by your application and the test signature file (files
may be copied by dragging from a Windows file explorer into the AppLoader window) (see
Figure 49. Application directory contents). Copy your application’s MIF to the brew directory
(see Figure 50. MIF location).

73
QUALCOMM Proprietary

 About the BREW Tools Suite

Figure 49. Application directory contents

Figure 50. MIF location

The device must be power-cycled before you can run your application; select Device >
Reset from the BREW AppLoader menu to trigger a device reset (see Figure 51. Resetting
the device). After resetting your device, start your application within the BREW environment.

NOTE: You must have a valid test signature in your application directory and a test-enabled
handset, or your application is deleted when you power-cycle the phone.

74
QUALCOMM Proprietary

 About the BREW Tools Suite

Figure 51. Resetting the device

BREW AppSigner
The BREW AppSigner is used to digitally sign application packages prior to submitting
completed applications for True BREW testing; Its functionality is beyond the scope of this
guide. For information on using the BREW AppSigner, consult the BREW AppSigner Help
guide, included in the BREW Tools Suite installation.

NOTE: The SIG file created by AppSigner is not a handset signature file and should not be
uploaded to the handset.

BREW Logger
After you connect to the handset through the standard BREW Tools connection window,
select Connect from the File menu (see Figure 52. Connecting to the BREW device). To
begin logging, select Start Logging from the Configure menu (see Figure 53. Starting
logging operations); the BREW Logger Log Output window displays all log messages.This
process displays information printed using DBGPRINTF() while running on the BREW
device, facilitating the debugging process. Certain features of the BREW Logger are
scriptable with Perl; see the BREW Logger Guide for more information.

75
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp
https://brewx.qualcomm.com/brew/sdk/download.jsp

 About the BREW Tools Suite

Figure 52. Connecting to the BREW device

Figure 53. Starting logging operations

76
QUALCOMM Proprietary

 About the BREW Tools Suite

The Grinder
The Grinder may be used for the automated testing of your application and is beyond the
scope of this guide. For information on using The Grinder, consult The Grinder Help guide,
included in the BREW Tools Suite installation.

Common issues
The BREW Tools Suite may sometimes encounter difficulties while attempting to connect to
a device. Following these steps will resolve most conflicts and connection issues:

• Check that all cables and devices are securely connected.

• Ensure that you are using a data cable that is compatible with your handset.

• Try power-cycling the mobile device.

• Terminate all applications outside of the BREW Tools Suite that have access to
the device or COM port. Sometimes these applications may be running in the
system tray or invisible, so you might need to uninstall the offending software.

Using BREW Tools Suite 2.1.2+ for non-3.0 BREW devices
By default, the BREW Tools Suite 2.1.2 expects a BREW 3.0 device. If you are connecting
to a phone running an earlier version of BREW, you need to edit the <BREW TOOLS
DIRECTORY>\OEMLayer\QCOMOEM.INI file to add support. When you open this file, you
see this line:

[BREW Version Information]
Version=3

To connect to a device running an earlier version of BREW, you must modify the Version
field accordingly. For example:

[BREW Version Information]
Version=2

would allow BREW Tools Suite to connect to a BREW 2.x device.

Connecting with USB cables
USB data cables require special drivers, typically provided by the cable manufacturer, to
mimic the behavior of a serial cable. Be sure that you have a recent set of drivers for the
cable installed on your computer. Contact the cable manufacturer or vendor for more
information about obtaining these drivers.

77
QUALCOMM Proprietary

 About the BREW Tools Suite

Setting COM port
If your COM port is not available for selection on the connection dialog, you may need to
change the COM port assignment in Windows. To change the port assignment, open the
Device Manager and right-click on My Computer > Properties > Hardware > Device
Manager, Change the COM port number for the desired port by selecting the desired COM
port > Port Settings > Advanced > COM Port Number (see Figure 54. Changing COM
settings).

78
QUALCOMM Proprietary

 About the BREW Tools Suite

Figure 54. Changing COM settings

Non-MSM chipsets
Connecting to a non-MSM based handset (for example, Nokia phones) requires special
procedures and may require a big-endian compilation. See the Loading BREW Applications
to the Mobile Device section for more information on big-endian/little-endian compilation.
Nokia phones require a hardware dongle for hardware connection, which is separate from
the data cable. You will also need to download a special DLL package (available under the
appropriate device information page), and follow the instructions to install the files. Once the
dongle has been connected, launch AppLoader and select the appropriate OEM Layer DLL

79
QUALCOMM Proprietary

 About the BREW Tools Suite

(see Figure 55. Selecting an OEM layer DLL for non-MSM devices). The AppLoader should
now be able to connect to the device.

Figure 55. Selecting an OEM layer DLL for non-MSM devices

Killing OEMServerLayer.exe
If you have previously been able to connect to your device but are now unable to do so
(usually occurs after abnormal exits of BREW Tools applications), you may need to manually
terminate the OEMServerLayer.exe process. Open the Windows Task Manager by pressing
Ctrl+Alt+Del and selecting Task Manager. Terminate the OEMServerLayer.exe process
(see Figure 56. Terminating the OEM layer server process). After this process has been
terminated, try connecting to your handset.

80
QUALCOMM Proprietary

 About the BREW Tools Suite

Figure 56. Terminating the OEM layer server process

Additional resources
For more information on the BREW Tools Suite components, read the documentation
included with the installation.

81
QUALCOMM Proprietary

https://brewx.qualcomm.com/brew/sdk/download.jsp

82
QUALCOMM Proprietary

Running BREW Applications on the Mobile Device

After loading your application to the BREW handset (see About the BREW Tools Suite
section above for information on this procedure), start the application through the BREW
Application Manager interface on your handset. Your carrier may have given the BREW
Application Manager a proprietary name; for example, Get It Now on Verizon, U-Magic on
China Unicom, BellSouth Interactivo on BellSouth. The procedure to invoke the BREW
Application Manager varies between handset models and carriers; check your handset
manual if you have questions on the proper sequence. Due to the characteristics of the
mobile environment, your application may not work as anticipated. This section lists the
major causes of erroneous application behavior on a mobile device and provides guidance
on resolving these issues.

Watchdog timer
The BREW environment limits the amount of time any process may run without yielding
through a watchdog timer. If your application trips this watchdog timer, it terminates, and the
handset may power-cycle. Many factors can cause your application to trigger the watchdog
timer, though the most common culprit is improper looping within your application. BREW
uses an event-driven application model, so a program should never implement busy-waiting
or perform loops that are likely to monopolize the processor for extended periods.

Memory alignment
Improperly aligned memory accesses on the ARM processor cause your application to fail.
In the ARM environment, 16-bit quantities must be at even addresses, and 32-bit quantities
must be at addresses divisible by 4. Members of structures must be properly aligned as well;
the ARM compiler automatically pads structures to ensure that all members are correctly
aligned. If you use a PACKED structure, the structure members are arranged with single-
byte memory alignment, and you must take special care in accessing the members to avoid
misaligned memory access. Generally the best way to conserve space in a structure is to
declare the members in order of decreasing size; this minimizes the amount of padding
inserted by the compiler while retaining proper member alignment.

 Running BREW Applications on the Mobile Device

Heap usage
Applications running in BREW may fail if proper precautions are not taken to verify that heap
memory allocations complete successfully. BREW applications should always inspect the
return value of any dynamic memory operations to ensure that the result is valid, and the
application should exit gracefully after detecting an error.

Stack usage
Care should be taken to minimize the stack usage on the BREW device. Most devices have
a relatively small stack space, so overrunning the stack is very possible if proper
programming techniques are not used.

• Avoid deep recursive chains. Each recursive call has the overhead of an
additional stack frame, which can quickly fill the stack.

• Minimize the use of automatic variables. If possible, shift local buffers and
automatic variables used across multiple methods to the applet structure. This
relocates the allocated memory from the stack to the heap. Use pointers to pass
structures to methods; this prevents the structure from being copied on the
resulting stack frame.

DBGPRINTF()/File logging
If you connect to your device using the BREW Logger (refer to About the BREW Tools Suite
for more information), you can inspect the information printed using the DBGPRINTF()
function. Unfortunately, some devices do not properly support DBGPRINTF(). To work
around this limitation, you need to log to a file. The function below is used to perform simple
file logging for a specified input string.

#include "AEEFile.h"
#define LOGFILE "log.txt"

void LogToFile(const char * const buf)
{
 AEEApplet * app = (AEEApplet *)GET_APP_INSTANCE();
 IShell * pIShell = app->m_pIShell;
 IFileMgr * pIFileMgr;
 if (ISHELL_CreateInstance(pIShell, AEECLSID_FILEMGR, (void **)&pIFileMgr)
== SUCCESS)
 {
 IFile * pIFile;

 if (IFILEMGR_Test(pIFileMgr, LOGFILE) != SUCCESS)
 pIFile = IFILEMGR_OpenFile(pIFileMgr, LOGFILE, _OFM_CREATE);

83
QUALCOMM Proprietary

 Running BREW Applications on the Mobile Device

 else
 pIFile = IFILEMGR_OpenFile(pIFileMgr, LOGFILE, _OFM_APPEND);

 if (pIFile != NULL)
 {
 JulianType jt;
 char timestamp[30];

 GETJULIANDATE(GETTIMESECONDS(), &jt);

 SPRINTF(timestamp, "[%02d:%02d:%02d] ", jt.wHour, jt.wMinute,
jt.wSecond);
 IFILE_Write(pIFile, timestamp, STRLEN(timestamp));

 IFILE_Write(pIFile, buf, STRLEN(buf));
 IFILE_Write(pIFile, "\r\n", 2);
 IFILE_Release(pIFile);
 }

 IFILEMGR_Release(pIFileMgr);
 }
}

Common issues

Application removed when handset power-cycled

If your application has been removed from the phone after power-cycling, the most likely
cause is that your phone has not been test-enabled. To test-enable your phone, it must be
sent to the QUALCOMM phone center.

Signature failures

Any errors in your test signature result in a digital signature failure when you launch your
application. Some of the common causes for signature failures are shown below.

1026 (Signature file missing) No signature file was found; ensure that a signature file is
generated and placed within the application directory.

1028 (Expired signature) Try generating a new signature file, the lifetime on the previous
signature may have expired. Also verify that your handset has the
proper date and time set.

1030 (Invalid ESN) Check that your signature was generated using the proper ESN. If
an error was made during signature generation, you must
generate a new signature with the correct ESN.

84
QUALCOMM Proprietary

 Running BREW Applications on the Mobile Device

Interpreting error codes

When an application returns a specific error code to indicate the cause of the failure, you
must refer to the AEEError.h file to figure out the meaning for a given value.

NOTE: Error values in the AEEError.h file are given in the form of a decimal offset number
added to a hexadecimal base error code. To find the actual error code value, you may need
to perform a conversion between decimal and hexadecimal before performing the addition.
For example, AEE_NET_ECONNREFUSED is defined as NET_ERROR_BASE+17, where
NET_ERROR_BASE is 0x200. In this case, the actual error code would be 0x211 = 529,
NOT 0x217 = 535.

Unexpected behavior on a particular device

Some devices have known issues that cause undesirable behavior in BREW. For a listing of
known issues and possible workarounds, consult the proper Device Data Sheet on the
BREW Devices page.

85
QUALCOMM Proprietary

86
QUALCOMM Proprietary

Where to go for help

Many of the issues that are encountered while programming in BREW are discussed in the
documentation included in the relevant installation package. Be sure to familiarize yourself
with the guides for general BREW questions; the search feature within the guide is also used
to locate information relevant to specific issues. If you are unable to find a solution in the
documentation, check the developer section of the QUALCOMM BREW website.
QUALCOMM maintains an extensive list of FAQs and technical assistance articles to aid in
resolving BREW problems. Further assistance may also be found in the BREW Developer
Forums, where developers from around the world discuss a wide variety of issues related to
the BREW environment.

http://brewforums.qualcomm.com/

	Contents
	Introduction
	About the BREW SDK
	BREW SDK 1.0
	API additions in BREW SDK 1.0

	BREW SDK 1.1
	API additions
	SDK utility additions

	BREW SDK 2.0
	API additions
	SDK utility additions

	BREW SDK 2.1
	API additions in BREW SDK 2.1

	BREW SDK 3.0
	API additions in BREW SDK 3.0
	API removals in BREW SDK 3.0

	Installing the BREW SDK
	Installation Directory
	BREWDIR
	SDK core components
	Documentation
	Online help
	Utilities
	Common issues
	System requirements

	Additional resources

	Writing BREW Applications
	Creating a new application with the BREW Application Wizard
	Changing the BREWDIR environment variable
	Skeletal code generated by the BREW Application Wizard
	API library includes HT(TH
	Class ID file HT(TH
	Applet structure HT(TH
	AEEClsCreateInstance() method HT(TH
	Event handler HT(TH
	Applet data init method HT(TH
	Applet data free method HT(TH

	Common issues
	Additional resources

	Using the BREW MIF Editor
	Generating a class ID
	Application name and icons
	Setting privileges
	Additional resources

	Using the BREW Resource Editor
	Creating string resources
	Creating image resources
	Creating sound resources
	Compiling resource files for use in BREW
	Additional resources

	Using the BCI Authoring Tool
	Creating BCI images
	Animating BCI images
	Additional resources

	Compiling BREW Applications for Simulation
	Specifying DLL destination
	Building an application DLL
	Running your application
	Common issues
	Read the BREW API Reference
	Include all necessary header files
	Ensure linking is performed against the proper library versi
	Close any applications using your DLL

	Additional resources

	Running BREW Applications on the Simulator
	Device skins
	Modifying device skins
	Specifying Simulator directories
	Running your application
	Advanced Simulator capabilities
	Common issues
	ISHELL_CreateInstance() or API methods unexpectedly failing
	Mixed-case name warning displayed
	The application’s icon is not displayed
	Application has been unloaded error message displayed
	Unknown error (1) message displayed
	BREW Simulator fails

	Additional resources

	Debugging BREW applications on the Simulator
	DBGPRINTF()
	Debugging in Visual Studio
	Additional resources

	Loading BREW Applications to the Mobile Device
	Generating ARM makefiles
	Compiling for ARM
	GCC compilation
	Generating test signatures

	About the BREW Tools Suite
	Contents
	Connecting to a device
	BREW AppLoader
	BREW AppSigner
	BREW Logger
	The Grinder
	Common issues
	Using BREW Tools Suite 2.1.2+ for non-3.0 BREW devices
	Connecting with USB cables
	Setting COM port
	Non-MSM chipsets
	Killing OEMServerLayer.exe
	Additional resources

	Running BREW Applications on the Mobile Device
	Watchdog timer
	Memory alignment
	Heap usage
	Stack usage
	DBGPRINTF()/File logging
	Common issues
	Application removed when handset power-cycled
	Signature failures
	Interpreting error codes
	Unexpected behavior on a particular device

	Where to go for help

