LUALCONMVW

CDMA Technologies

Tutori3D

User Guide
80-V6449-1 Rev. A
August 22, 2003

Submit technical questions at:
https://brew-support@qualcomm.com

QUALCOMM Proprietary

Restricted Distribution: This document contains critical information about QUALCOMM products and may not
be distributed to anyone that is not an employee of QUALCOMM without the approval of Configuration

Management.

All data and information contained in or disclosed by this document is confidential and proprietary information of
QUALCOMM Incorporated, and all rights therein are expressly reserved. By accepting this material the recipient
agrees that this material and the information contained therein is held in confidence and in trust and will not be used,
copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written
permission of QUALCOMM Incorporated.

QUALCOMM is a registered trademark and registered service mark of QUALCOMM Incorporated. cdma2000® is
a registered trademark of the Telecommunications Industry Association (TIA USA). Other product and brand names
may be trademarks or registered trademarks of their respective owners.

Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. law
prohibited.

QUALCOMM Incorporated
5775 Morehouse Dr.
San Diego, CA 92121-1714
U.S.A.

Copyright © 2003 QUALCOMM Incorporated. All rights reserved.

Contents

I 118 o Yo [0 Yo o] o P 4
LLL PUIPOSE ...ttt e r et r e nre e 4

L2 S0P ettt R R R R R Rt Rt e Rt et r b nrenne s 4

IR I O] 1)Y= T 010 USSP 4

1.4 REVISION NISTOIY ...ttt 5

1.5 TECNNICAI @SSISLANCEottt bbbt 5
o (0101 0 ST PRSP 5

2 TULONI3D APPHICALION ..o e e e e e e eaaaens 6
B0 - U] T T oSS 6

2.2 UL NOTES ...ttt bbbt h e ettt e bt e b et e b e e e hb e e st e e nbe e nbe e nreenbeennnas 7

2.3 ApPlication EVENT PrOCESSINGeiviiieeieerieeseeseeeiteesteesteesteesreesreesraeasteeteesreesreesneesnneaneeenees 9

3 TULONIBD TULOITAIS ...ttt e e e e eeaeees 10
3.1 TraNSTOIMMALIONS.c.ei ettt sttt e steereesteere e tesbeeneeseeeneeneenneas 10
B0 (o - 4[] o PSSR 10

TN I = 1] - 4] o ST 12

KT (0] =T £] LSRR 13
3.2 L FOCAI IBNGLN . e 14

3.2.2 VIBW TBPEN....ee ettt 15

3.2.3 SCIrEEN MAPPING ...evvvitiititete ettt bttt b e enes 17

3.2.4 ClipPiNg reCTANGIE.......cuiiiieeieeee s 19

3.3 Lighting @and MALErialS...........ooviriiiiiiiiiiiii s 21
3.3.1 DireCtion @and COIONcviiiieeiee et 21

IR T V.- (- T | SR 24

3.4 Textures and BIENING ..o 27
34,1 TEXEUIE TENAERTING ...vvivieeteteiei ettt bbbttt 27

3.4.2 AIPha BIENAING ...c.voivieecece e e 31

3.4.3 PErspeCtiVe COITECLION......cc.ciieie ettt te e e e e 33

80-V6449-1 Rev. A 2 QUALCOMM Proprietary

Tutorl3D Contents
Figures
Figure 2—1: Keypad layout and key names............cooceeriiiiniiiniiiiniienieeniceee e 7
Figure 2-2: TutorI3D Main MEnUccoviiiriiiiiiiiiiieniee ettt 8
Figure 2-3: (a) Projections screen (b) View Depth tutorial screenccccceeeveeenneeenee. 8
Figure 3—1 Rotation tutorial SCreen Shot.........ccccceveiviiniiniiniiiniiencececee e 10
Figure 3-2: Translation tutorial SCTeen SOtceccveeeeiririieriiieeieeeiee e 12
Figure 3—3 Focal length tutorial SCIEeN.......ccc.eevuieiiiiiiiiiiiieeeeeee e 14
Figure 3—4 View depth tutorial SCreen Shotcccceviiiiiiiieiiieniinieiie e 15
Figure 3—5 Screen mapping tutorial screen Shot..........occeevveiiiiiinieiiiiiiniienieceeeeeeee 17
Figure 3-6 Clipping rectangle tutorial screen Shotc..coccecverinievicninieneneneencneeeenn 19
Figure 3—7 Lighting direction and color tutorial screen shots showing different
JIHING MOAESeeeiiieeiieeieeeiee ettt ettt et e st e e tte e et e steeesaeesnseeenseesnnes 22
Figure 3-8 Material tutorial screen shots. (a) shiny green material (b) dull green
INALETIAL ... eeteetie ettt sttt ettt b e shee s e saaeeas 25
Figure 3-9 3D object rendered with (a) flat shading and (b) smooth shading................. 28
Figure 3—10 Texture rendering tutorial screen Shot...........ccceceevieniiniiniiniincieeeeenee, 29
Figure 3—11 Screenshots of the alpha blending tutorial showing various levels of
ALPRNA ettt ettt et e et e et e sabeeens 31
Figure 3—12 Screen shots of the perspective correction tutorial showing perspective
correction (a) enabled and (b) disabled............cooovvvveiiiiiiiiiiiee e 33
Tables
Table 1-1 ReviSion hiStOTYccoiiiiiiiiiiiiiiiieieeeetc ettt 5
Table 3-1 Command keys for the Rotation tutorialcceceevieniiinieniienieniieeeieeen 11
Table 3-2 Command keys for the Translation tutorial..........cc.cccoeveieiriiiiniiiniiineeeeeee 12
Table 3-3 Command keys for the focal length tutorialcccooveeiiiiiiiiiiniiiieeee 14
Table 3-4 Command keys for the view depth tutorialc..ccooeeviiniiniiniiniiiieeee, 16
Table 3-5 Command keys for the screen mapping tutorialccccceveerieniienninnenniennen. 18
Table 3-6 Command keys for the clipping rectangle tutorialccccoeceevieniinnenniennen. 19
Table 3-7 13D lighting modes and ProOPErtiescccueeereeerueeriieeenieenieeniieeneee e esieeenes 21
Table 3-8 Command keys for the lighting direction and color tutorial..............cccccuee.ee. 23
Table 3-9 Command keys for the material tutorialccceoveiiiiiiniiiiiiiinieeeeeeeee 26
Table 3-10 I3D texture Wrap MOAEScoceeevuirrieeiieeniienientente ettt ettt st eee s 27
Table 3-11 I3D render MOAEScooeeriiriiriiiiiieieeterterte ettt 28
Table 3-12 Command keys for the texture rendering tutorial..........ccoccevceeriirsiinnennieennen. 29
Table 3-13 Command keys for the alpha blending tutorial..........c.ccoceniiniinniniinnennen. 32
Table 3-14 Alpha value levels, ranges, and number of values in range............cccccecueneee. 32

80-V6449-1 Rev. A 3 QUALCOMM Proprietary

1

~N o o b~ W

o]

10
11

12
13
14

16
17
18
19
20
21

22

23
24

25

26

27

28

1

Introduction

1.1 Purpose

The TutorI3D application is an interactive tutorial of the I3D Graphics APL. Its purpose is to
demonstrate the capabilities of I3D by allowing users to interactively change parameters and
states, and visualize the resulting changes. Also, TutorI3D serves as an example of a dynamically
downloadable I3D BREW™ application, and as such is a good starting point for application
developers.

The purpose of this document is to give a general overview of the application, including the user
interface, and to explain certain aspects of the source code, particularly the 3D graphics-related
code. The mechanisms required to create a dynamic 13D application for the BREW platform are
also discussed.

The majority of I3D APIs are demonstrated in the application. By reading this document and
looking at the application, one will gain a good understanding of 13D and how to incorporate 3D
graphics features, such as models, transformations, and lighting into an I3D BREW application.

1.2 Scope

This document is meant to complement the TutorI3D application. As such, this document is
aimed at anyone who is interested in familiarizing themselves with the I3D API. All the
information needed to develop an I3D application on the BREW platform is presented. This
document assumes the reader understands the basics of 3D graphics terms and techniques, and
has a reasonable understanding of the BREW API. The I3D API guide should accompany this
document as references are made to API functions throughout this document.

1.3 Conventions

Function declarations, function names, type declarations, and code samples appear in a different
font. For example: #include

Code variables appear in angle brackets. For example: <number>
Commands and command variables appear in a different font. For example: copy a: *. * b:

Parameter types are indicated by arrows:
- Designates an input parameter
« Designates an output parameter
o Designates a parameter used for both input and output

80-V6449-1 Rev. A 4 QUALCOMM Proprietary

10

11

Tutorl3D Introduction

1.4 Revision history

The revision history for this document is shown in Table 1-1.

Table 1-1 Revision history

Version Date Description

A Aug 2003 Initial release

1.5 Technical assistance

For assistance or clarification on information in this guide, email QUALCOMM CDMA
Technologies at brew-support@ qualcomm.com.

1.6 Acronyms

For definitions of terms and abbreviations, refer to Application Note: Software Glossary for
Customers (CL93-V3077-1).

80-V6449-1 Rev. A 5 QUALCOMM Proprietary

1

9

10
11
12
13
14
15
16
17

18
19
20

21
22

23
24

25
26
27

2 Tutorl3D Application

The TutorI3D application is an interactive tutorial on the I3D API. It demonstrates how to use
BREW 3D APIs, I3D, I3Dmodel, and 13Dutil.

It contains tutorials which demonstrate the following 13D features:
m Transformations

= Projections

= Lighting and materials

s Textures and blending

2.1 Starting-up

You can run TutorI3D in the BREW Emulator on a PC or on a target phone that supports BREW.
To run in the Emulator, you will need the BREW SDK installed on your system, as well as the
13D Extension. Both of these can be downloaded from the BREW website. Once the SDK is
installed, check to see if the file named I3DExtension.dll exists in the Bin\Modules directory of
the BREW SDK. If it does not, you will first need to install the extension using the instructions
provided with the extension. Once this is done, and the TutorI3D is on your system, start-up the
BREW emulator. At this point you will need to point the emulator to the directory where
TutorI3D is installed. To do this:

1. Go to File —> Change Applet Dir, select the directory where the TutorI3D.mif file is
installed, then click OK. This should be one directory above where the TutorI3D.dII is
installed.

2. Next, go to Tools —> Settings, verify that the Specify MIF Directory check box is not
checked, then click OK.

When using the left and right arrow keys, you should be able to scroll to the TutorI3D
application icon.

3. Once it is selected, to start up the application click SELECT on the phone image (same as
hitting ENTER on the keyboard). You should now see the Main Menu for the TutorI3D
application.

80-V6449-1 Rev. A 6 QUALCOMM Proprietary

a b W N P

10
11

13
14
15
16
17

18

19

TutorI3D Tutorl3D Application

To run on a target device, you will need a data connection between your computer and the
device, and a tool to browse the device’s file system. Using this tool, you must first create a
directory named tutori3d (all lowercase), in the root brew directory on the device. Copy
the tutori3d.mif file from your computer to the root brew directory on the device. Also,
copy the following files to the newly created tutori3d directory:

O tutori3d.mod

O tutori3d.bar

o all files ending in a .g3d extension. These are the model files used by the app
o The signature file for the device. This should accompany the device

The required files are now on the device, and you can start-up TutorI3D as you would any other
BREW application on the device.

2.2 Ul notes

Throughout this document, key names will be used. Figure 21 provides a layout of a keypad
with key names which may not be obvious. The displayed keypad is that for the toucan display.
Note that your keypad may look quite different and the location of the keys may also be different.
Consult your device’s manual for the location where the CLR, SELECT, SEND and END keys
are located.

Ao Keys

CLR SELECT

SEMD END

Figure 2-1: Keypad layout and key names

80-V6449-1 Rev. A 7 QUALCOMM Proprietary

TutorI3D Tutorl3D Application

1 The first screen you will see on the starting-up TutorI3D is the Main Menu as seen in Figure 2-2.

NOTE The fonts shown in the screen shots in this document may be different from the fonts you will
actually see when running TutorI3D, depending on which BREW fonts are installed.

TuterI3D - Main Menu

Q Projections

Lighting and Materials

Textures and Blending

5 Figure 2-2: TutorI3D Main Menu

6 Using the up and down arrow keys, you can change selections on the main menu.

7 m Pressing the SELECT key will bring you forward one menu. For example, pressing SELECT

8 on PROJECTIONS in the main menu will bring you to the screen shown in Figure 2-3a. At the
9 bottom of this screen are the menu options for Projections. Use the left and right arrows to

10 scroll between them, and press SELECT to enter into one of the tutorials. Figure 2-3b

1 provides the screen for the View Depth tutorial.

Praojections nearPln =1

farPln = 3072
Model 2 = 600

4 IEEERI L N Wiews Depth 5 Press "# for Help

12 Figure 2-3: (a) Projections screen (b) View Depth tutorial screen

80-V6449-1 Rev. A 8 QUALCOMM Proprietary

o g A W N P

~

10
11

12
13

14

15

=
o

17

18

19

Tutorl3D Application

The tutorial screen is broken up into three parts. At the top of the screen is the API function
related to the tutorial. In Figure 2-3b, the function is I3D_setviewDepth (). The parameters to
the function are also specified, and the ones that are variable, meaning these the user can change
dynamically in TutorI3D, are given in a yellow font color. The middle part of tfhe screen is the
3D drawing window where the scene will be drawn. The bottom of the screen is the information
area where the current values of the parameters are given, as well as other relevant information.

In any of the tutorial windows, you can press # to get a help listing for the current tutorial. This
will tell you what keys do what in this tutorial. It is recommended that you take a look at the help
menu every time you are entering a new tutorial to get an idea of the functional keys. Chapter 3 of
this document explains the key commands for each tutorial in greater detail than the help menus
built into the application.

= Pressing # in any of tutorials will bring up the help screen for that tutorial. Pressing it again,
will hide it.

m Pressing CLR in any of the menus or tutorials will take you back one screen

m Pressing END at any screen exits the application

2.3 Application event processing

For application event processing:
m EVT_APP_START — initialize and bring up the main menu of the TutorI3D application

m EVT_APP_STOP — exits the TutorI3D, and frees all necessary data

80-V6449-1 Rev. A 9 QUALCOMM Proprietary

1

N

~N o o b~ W

10
11

12

13

14
15
16
17

3 Tutorl3D Tutorials

3.1 Transformations

The transformation tutorials in TutorI3D are rotation and translation. You can enter the rotation
tutorial, rotate a model, and then enter the translation tutorial to translate the model in its already
rotated state. Or, vice-versa, you can first translate the model then proceed to rotate him in the
already translated position. In other words, the two tutorials allow you to arbitrarily rotate and
translate a model.

3.1.1 Rotation

The rotation tutorial allows you to arbitrarily rotate 3D models around the x, y, z axis using the
I3D API. The main API function utilized to do this is I3DUtil_GetRotateMatrix(). A screen
shot of this tutorial is provided in Figure 3—1.

x angle: 1664 = 146 deg

y angle: 416 = 36 deg

z angle: 2592 = 227 d
{Note: Pi = 2048

Press "%’ for Help

Figure 3-1 Rotation tutorial screen shot

This tutorial provides a model in the center and the model’s axis extruding from the model. The
bottom of the screen provides the amount of rotation in each axis in Q12 format, as well as in
degrees. The currently selected rotation axis is shown in pink. Important to note is the fact that
these rotations are based on the model’s local axis.

80-V6449-1 Rev. A 10 QUALCOMM Proprietary

N

10
11

12

13
14
15

16

17

18

19

20

21

22

23

24

25

26

27
28

29
30

31

32

33

34

Tutorl3D Tutorials

Later in the translation tutorial, the model is translated along the screen x,y,z. Table 3-1 provides
the command keys for this tutorial.

Table 3-1 Command keys for the Rotation tutorial

Key Action
Up arrow Increase rotation
Down arrow Decrease rotation
1 Select x axis
2 Select y axis
3 Select z axis

At the top of Table 3-1, you can see that ang (angle of rotation), and axis (the axis to rotate about)
are variables. Users select which axis they want to rotate about and increase/decrease the angle of
rotation about that axis.

Note that the angle of rotation in Q12 is with respect to 2048 being PI. If you want to rotate by
P1/4 radians, the Q12 angle is 2048 / 4 = 512, and if you want to rotate by x-degrees, the Q12
angle is 2048/180 * x. The information area of the screen provides both the Q12 rotation angle,
and the number of equivalent degrees for each axis.

Code example

The following is the example code for increasing the rotation of a model around the x-axis, and
drawing it. The 13D_startFrame () will need to be called to actually begin rendering the
frame.

RotateXAndDraw (MyApp* pMe, AEE3DTransformMatrix* transform, int
rotation_angle)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init

// pMe->pModel: Pointer to the model instance

// pMe->m_ p3DUtil: I3DUtil instance created on application init
// transform: current transformation matrix for the model

// rotation_angle: angle to rotate in Q12

AEE3DTransformMatrix ml;

Do range checking on rotation_angle (range is -4096 to 4096, ie. -2PI to
2PI)

I3DUtil_GetRotateMatrix (pMe->m_p3DUtil, rotation_angle, &ml,
AEE3D_ROTATE_X); I3DUtil_MatrixMultiply (pMe->m_p3DUtil, transform, &ml);

I3DModel_SetSegmentMVT (pMe->pModel, transform, -1);
I3DModel_Draw (pMe->pModel, pMe->m_p3D) ;
}

80-V6449-1 Rev. A 11 QUALCOMM Proprietary

w N

10
11

12

13

14
15
16

17
18
19

TutorI3D

Tutorl3D Tutorials

3.1.2 Translation

The translation tutorial allows you to translate a model arbitrarily along the X,y,z axis using the
I3D API. The main API function utilized to do this is I3DUtil_SetTranslationMatrix(). A
screen shot of this tutorial is shown in Figure 3-2.

I3DUt_SetTranslationbdatri

wvectx = -20 << 18
wecty = =00 £ 16
vectz = 490 << 16

Presz "#' for Help
Figure 3-2: Translation tutorial screen shot

This tutorial provides a model and the model’s axis extruding. The bottom of the screen provides
the amount of translation in each axis in Q16 format (note the 16-bit shifts). The currently
selected translation axis is shown in pink. It is important that the translation is done based on the
screen’s X,y,Z axis, not the model’s, as is done in the rotation tutorial. Table 3-2 provides the
command keys for this tutorial.

Table 3-2 Command keys for the Translation tutorial

Key Action
Up arrow Increase translation
Down arrow Decrease translation
1 Select x axis
2 Select y axis
3 Select z axis

At the top of Figure 3-2, you can see that vect (translation vector to set) is a variable. Users select
which axis they want to translate along and increase/decrease the amount of translation along that
axis.

The components of the translation vector are in Q16 format. This means the range for each
component is (-65536 to 65536). The fact that you are shifting up 16 bits for each component
means that you increase/decrease the translation by an integer amount every time.

80-V6449-1 Rev. A 12 QUALCOMM Proprietary

10

11

12

13

14

15

16

17

18

20
21

22

23

24

25

26
27

Tutorl3D Tutorials

Code example

The following is a code example for applying a fixed translation to a model and drawing it. Note
that 13D_startFrame () will need to be called to actually begin rendering the frame.

TranslateAndDraw(MyApp* pMe)

{

/I pMe: pointer to application instance structure

/ pMe->m_p3D: 13D instance created on application init

/I pMe->pModel: Pointer to the model instance

/ pMe->m_ p3DUtil: I3DULtil instance created on application init

AEE3DTransformMatrix transform;

AEE3DPoint vect = {0, -40<<16, 100 << 16}; //translate -40in Y, and +100in Z
I3DULtil_SetldentityMatrix(pMe->m_p3DUtil, &transform);
I3DULIl_SetTranslationMatrix(pMe->m_p3DUtil, &vect, &transform);
I3DModel_SetSegmentMVT(pMe->pModel, &transform, -1);
I3DModel_Draw(pMe->pModel, pMe->m_p3D);

}

3.2 Projections

The projection tutorials in TutorI3D demonstrate the various 13D APIs that control how a scene is
projected onto the display. There are four projection tutorials in TutorI3D:

m adjusting focal length

= adjusting the view depth

= adjusting the screen mapping
= setting a clipping rectangle

m The tutorials will affect one another, meaning that you can, for example, change the focal
length first, then change the view depth and the screen mapping and view the overall result.

80-V6449-1 Rev. A 13 QUALCOMM Proprietary

-

~N o o A W N

10
11
12

13

14

15

TutorI3D

Tutorl3D Tutorials

3.2.1

NOTE

Focal length

The focal length tutorial allows you to increase or decrease the focal length of a scene. Increasing
the focal length makes less of the scene apparent, and decreasing it makes more of a scene
apparent. Objects that are placed at a depth equal to the focal length of the scene, are the ones that
will appear to be most in focus, and will be more accurately rendered. The main API function
utilized in this tutorial is I3D_SetFocalLength (). A screen shot of this tutorial is shown in
Figure 3-3

F-:--::-alLeru-;Tl'uI::fl-:aru;ﬂ':::l

flength = 336

Press “# for Help

Figure 3-3 Focal length tutorial screen
This tutorial provides a model in the center of the scene and allows you to adjust the focal length.

The information screen provides the current value of the focal length. The two command keys for
this tutorial are shown in Table 3-3.

Table 3-3 Command keys for the focal length tutorial

Key Action

Up arrow Increase focal length

Down arrow Decrease focal length

The range of the focal length is the same as the range for the z-buffer, that is 1 to 32767.

80-V6449-1 Rev. A 14 QUALCOMM Proprietary

10

11

12

13

14

15

16

17

18
19
20
21
22
23
24
25
26

27

28

Tutorl3D Tutorials

Code example

The following is example code for incrementing the current focal length by a specified amount.
The new focal length will be applied to the next frame that is rendered.
IncrementFocallLength(MyApp* pMe, int focal_increment)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init

// focal_increment: Amount to increment current focal length by

uint32 focalLength;
I3D_GetFocalLength (pMe->m_p3D, &focallength)
focalLength += focal_increment;
Do range checking on focalLength (range is 1 to 32767)
I3D_SetFocalLenght (pMe->m_p3D, focalLength)

3.2.2 View depth

The view depth tutorial allows you to change the depth of the scene. The view depth is defined by
two imaginary planes called the near clipping plane and the far clipping plane. Objects at a depth
which is in between these two planes are visible and will be rendered, while objects closer to the
viewer than the near plane or farther away than the far plane, will not be visible and will not be
rendered. Setting an appropriate view depth for a scene is important because it determines the
amount of depth detail that is present. Having a large view depth will allow you to render scenes
with lots of depth and detail, at the cost of more computations to render the scene. The main API
function utilized in this tutorial is I3D_SetvViewDepth(). A screen shot of this tutorial is
provided in Figure 3—4.

depthinearPln, farPln)

nearPln = 571
farPln = 3072
Model 2 = 600

Pressz "#' for Help

Figure 3—-4 View depth tutorial screen shot

80-V6449-1 Rev. A 15 QUALCOMM Proprietary

N o o A WO N P

10

11

12
13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

TutorI3D

Tutorl3D Tutorials

NOTE

This tutorial allows you to select the near plane or the far plane and adjust the depth of that plane.
In the information screen at the bottom, the current depth of the near and far plane is displayed, as
well as the depth of the model in the scene. Increasing or decreasing the near or far plane through
the model will cause only cross sections of the model to be displayed, as only the parts of the
model within the view depth will be rendered. Notice that in Table 3-4, a portion of the model lies
outside the view depth, and is therefore not rendered. Table 3-4 provides the command keys for
this tutorial.

Table 3-4 Command keys for the view depth tutorial

Key Action
Up arrow Increase plane depth
Down arrow Decrease plane depth
1 Select the near plane
2 Select the far plane

The range of the view depth is 1 to 32767. This means the near and far plane can be anywhere
in this range as long as the near plane is closer to the viewer than the far plane, closer a smaller
number

Code example

The following is example code for incrementing the current value of the near plane and the far
plane by a specified amount. The new focal length will be applied to the next frame that is
rendered.

IncrementViewDepth(MyApp* pMe, int nearPlanelIncrement, int
farPlaneIncrement)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init

// nearPlaneIncrement: Amount to increment the current near plane value by

// farPlaneIncrement: Amount to increment the current far plane value by

uintl6 nearPlane, farPlane;
I3D_GetViewDepth (pMe->m_p3D, &nearPlane, &farPlane);
Do range checking on nearPlane + nearPlaneIncrement (range is 1 to 32767)
Do range checking on farPlane + farPlaneIncrement (range is 1 to 32767)
nearPlane += nearPlanelIncrement;
farPlane += farPlaneIncrement;
I3D_SetViewDepth (pMe->m_p3D, nearPlane, farPlane);
}

80-V6449-1 Rev. A 16 QUALCOMM Proprietary

-

© 0o N o g »~ W N

N =
A w N P O

15
16

17
18

19

20

Tutorl3D Tutorl3D Tutorials

3.2.3 Screen mapping

The screen mapping tutorial allows you to change the scale and location of objects that are drawn
into an I3D scene. Four parameters define the screen mapping in I3D. These are the x scale, the y
scale, the x shift, and the y shift. The first two are the scaling factor for the scene. Whenever
objects are drawn into the scene, the scaling factors are applied in the x direction and the y
direction to increase or decrease the size of objects in the respective direction. In this manner, you
can set the aspect ratio of the scene. A scaling factor of 1 in each direction means no scaling will
be applied. The next two parameters, x shift and y shift, specify the amount of translation to be
applied to every object drawn to the scene. Objects are usually centered at the point (0,0),
meaning that when they are drawn, they will be placed at the point (0,0) in the I3D coordinate
system. The point (0,0) in the I3D coordinate system is the top left of the display. Therefore, if x
shift and y shift are 0, the model will be drawn at the top left corner of the screen. To specify the
middle of the screen as the origin, you can make x shift and y shift the middle of the screen, then
all models will be drawn in the center of the screen.

Important to note is that changing any of the screen mapping parameters changes it for the entire
scene and not just for a single model.

The API function used to change the screen mapping is I3D_SetScreenMapping (). A screen
shot of this tutorial is provided in Figure 3-5.

x seale: zx = 4096
y zoale: =y = 4096
¢ shift: == = B8
s shift: =y = 90

Press "' for Heln

Figure 3-5 Screen mapping tutorial screen shot

80-V6449-1 Rev. A 17 QUALCOMM Proprietary

a A W NP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Tutorl3D Tutorials

The information screen at the bottom displays the current values of the four screen mapping
parameters. Users are able to select and adjust any of the four parameters. The x scale and y scale
parameters are in Q12 format, where 4096 means no scaling. The x shift and y shift parameters
are specified in pixels. Table 3-5 provides the location of the new origin after applying the shift.
The command keys for this tutorial are given in Table 3-5.

Table 3-5 Command keys for the screen mapping tutorial

Key Action
Up arrow Increase screen mapping parameter
Down arrow Decrease screen mapping parameter
1 Select x scale
2 Select y scale
3 Select x shift
4 Select y shift

Code example

The following is example code to set up the screen mapping for unit scaling and for setting the
13D origin to be the center of the screen.

SetupScreenMapping (MyApp* pMe)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init
// pMe->cxScreen: Width of the display screen
// pMe->cyScreen: Height of the display screen.
int xShift, yShift;

//moves the origin to the center of the screen
xShift = pMe->cxScreen/2;
yShift = pMe->cyScreen/2;

// 1 << 12 = 4096 (unit scaling)
I3D_SetScreenMapping (pMe->m_p3D, 1<<12, 1<<12, xShift, yShift))
}

80-V6449-1 Rev. A 18 QUALCOMM Proprietary

0 N o o A~ W N

10

11
12
13
14
15
16

17

18

19

Tutorl3D Tutorials

3.2.4 Clipping rectangle

The clipping rectangle is a 2D area in which the I3D scene is visible. All objects that fall within
the bounds of the clipping rectangle will be rendered and visible. Everything outside of the
clipping rectangle will not be rendered. Therefore, a scene with a large clipping rectangle will
display more of the scene, but will take more time to render, and a scene with a small clipping
rectangle will display less of the scene but will take less time. By default, the clipping rectangle is
the entire screen. The API function used to change the current clipping rectangle is
I3D_SetClipRect (). A screen shot of the clipping rectangle tutorial is given in Figure 3-6.

left = rectx = 39
top y: recty = 33

width: rect.dx = 64
height: rect.dy = 83

Pressz "#' for Heln

Figure 3-6 Clipping rectangle tutorial screen shot

In Table 3-6 we have the model in the middle of the scene, and a clipping rectangle which only
allows a portion of the model to be visible. Note that normally the outline of the clipping
rectangle will not be drawn. It’s drawn here to facilitate visualization. The information screen
shows the coordinate of the upper left corner of the clipping rectangle, as well as its width and
height. The values are specified as pixels. Users can select and adjust any of the four rectangle
parameters in this tutorial. The command keys for the tutorial are given in Table 3-6.

Table 3-6 Command keys for the clipping rectangle tutorial

Key Action
Up arrow Increase rectangle parameter
Down arrow Decrease rectangle parameter
1 Select upper left x coordinate of rectangle

Select upper left y coordinate of rectangle

2
3 Select rectangle width
4 Select rectangle height

The rectangle parameters are in pixels.

80-V6449-1 Rev. A 19 QUALCOMM Proprietary

10

11

12

13

14

15

16

17

18

19

20

Tutorl3D Tutorials

Code example

The following is example code to set the I3D clipping rectangle. The rectangle’s upper left corner
is 1/3 away from the left edge, and 1/3 down from the top. It’s width and height are 1/4 of the
width and height of the screen respectively.

SetupClippingRectangle (MyApp* pMe)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init
// pMe->cxScreen: Width of the display screen
// pMe->cyScreen: Height of the display screen.
AEERect clipRect;

clipRect.x = pMe->cxScreen/3;
clipRect.y = pMe->cyScreen/3;
clipRect.width = pMe->cxScreen/4;
clipRect.height = pMe->cyScreen/4;

I3D_SetClipRect(pMe->m_p3D, &clipRect)
}

80-V6449-1 Rev. A 20 QUALCOMM Proprietary

a A W N

17
18
19
20
21
22

23
24
25
26
27

28
29
30
31

32

33

TutorI3D

Tutorl3D Tutorials

3.3 Lighting and materials

3.3.1

The lighting and materials tutorials in TutorI3D demonstrate the various I3D APIs that are used
to set up lighting and material effects. The use of these APIs can make a big difference in adding
realistic detail to a 3D scene. Two tutorials are used here to demonstrate these APIs. They are the
lighting direction and color tutorial and the material tutorial.

Direction and color

The type of light used in I3D is directional light. This means the light source is at infinity, and
heads along a specified direction vector. Whenever the light rays intersect an object, the rays are
reflected in many different directions. The ones that reach the eye cause the object to light up.
The color of the light determines how the object will light up. Light that hits a surface straight on
will light a surface up more intensely than if it is at an angle, because much less scattering occurs
on the reflected rays. Most of the reflected rays in this case will reach the eye. As the angle
between the object surface and the light direction vector increase, the intensity of the light begins
to diminish.

Different lighting models, based on the above principles, can be used to simulate very realistic
effects. The two lighting models used in I3D are diffused light and specular light.

Diffused light is based on the principle that not all reflected light rays will reach the eye again.

the parts of the object whos reflected rays do reach the eye should be lit up, and the intensity is
based on the angle of the reflected rays. The parts of the object whos reflected rays do not reach
the eye should not be lit up. Diffused light, falls off slowly across the object’s surface, making a
smooth transition between the parts that are lit and the parts that are not. As a result, diffused light
will light up a fairly large portion of an object.

The specular light model is based on the second principle that light that hits a surface straight on,
at no angle, will scatter much less. Therefore, most of the reflected rays will reach the eye,
causing an intense bright spot on the object. This is known as a specular highlight. The intensity
of this highlight falls off very rapidly across the surface of the object, so it only lights up a small
region of the object.

Both diffused lighting and specular lighting can have their own direction and color. However,
having both diffused and specular light, and each having their own color and direction, can be
computationally intensive. For this reason, I3D has four different lighting modes as shown in

Table 3-7.

Table 3-7 13D lighting modes and properties

Lighting mode Description

Diffused White diffused light; can only modify direction.

Color Diffused Diffused light with color; can modify direction and color.

Diffused and Color Specular White diffused light with color specular light. Can modify diffused
direction and specular color. Specular direction is shared with
diffused.

Color Diffused and Color Specular Color diffused light with color specular light. Can modify diffused
direction and color, and specular direction and color.

80-V6449-1 Rev. A 21 QUALCOMM Proprietary

a A W NP

© 0w N o

10

11
12
13
14
15
16
17
18
19
20
21

22
23

Tutorl3D Tutorials

The lighting modes in Table 3-7 are in order from the least computationally intensive to the most
intensive. The API function used to change lighting modes is I3D_SetLightingMode (), and
the function for changing light settings is I3D_SetLight (). TutorI3D allows you to cycle
between the different lighting modes described in Table 3-7, and change the direction and color
of the diffused and specular lights and visualize the corresponding changes.

Figure 3—7(a-d) are screen shots of the tutorial showing the different lighting modes. Notice from
Figure 3—7 how the different lighting modes affect rendering the model. In Figure 3—7a, we have
only white diffused light. We can see that the left side of the ball is lit up while the right side is
dark. Figure 3—7b is similar except now the diffused light has color. At the bottom of the
information screen we can choose to change both the direction and color.

Figure 3—7c and d add specular lighting. We can see the specular highlight, and the detail it adds
to the scene. Also, we can see how small the area of coverage for the specular light is. In the
Diffused and Color Specular mode, seen in Figure 3—7c, the direction is shared between the
diffused and specular light, so changing the diffused direction will also change the specular
direction. In this mode the diffused light is white and cannot be changed, but the specular color
can be changed. Figure 3—7d shows the Color Diffused and Color Specular mode, where each
light has its own direction and color. The currently selected light type, diffused or specular, is
highlighted in blue in the information screen. The currently selected parameter of the light type is
highlighted in pink. For example, in Figure 3—7c, the blue color component of the specular light
is selected. Users can increase/decrease the currently selected item. Table 3-8 below shows the
command keys for this tutorial.

etLightflight) tLight{light)

13D _SetLightilight)

DIFFUSED COLOR_DIFFUGED
light.dir-Diff={12626,00328, 10176} light.colorDif f=(255,127, 100,000
light dir-Diff={12536,00328, 10176}
Press '# for Help Press *#' for Help
(a) Diffused (b) Color Diffused

Press "#' far Help

N

OIFFUSED CoLOR_SPECULAR COLORE_DIFFUSED_CoOLOR_SPECULAR
light.dirDiffS08464,056212, 12920} light.calorDiff={015, 127, 100,000}
light.colorSpec=(265,236, 1670000 light.dirDiff=-14 168,02 984, 076600

light.colorSpec=255,236,148,0007%
light.dirSpec={-08412, 00122, 16076)

Press '# for Help

(¢) Diffused and Color Specular (d) Color Diffused and Color Specular

Figure 3-7 Lighting direction and color tutorial screen shots showing different
lighting modes

80-V6449-1 Rev. A 22 QUALCOMM Proprietary

~N o o b~ W

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

Tutorl3D Tutorials

Table 3-8 Command keys for the lighting direction and color tutorial

Key(s) Action
Up/down Increase/decrease selected lighting parameter
(1,2,3) (x,y,2) light direction component select
(4,5,6,7) (red, green, blue, alpha) color component select
8 Toggle between diffused and specular light
9 Toggle the lighting mode

The directional vectors for lighting are in Q14 format, meaning the range is from (-16384 to
16384) for each component. Also, the vector must be a unit vector, so increasing the x direction
vector may also reduce the value of the y and z components to make the overall vector a unit
vector (a unit vector is a vector where the magnitude is equal to 1). The color components are in
the range (0 to 255).

Code example

The following is an I3D code example for setting the lighting mode to color diffused and color
specular, as well as setting up individual parameters for diffused and specular lighting.

SetupLighting (MyApp* pMe)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init

// pMe->m_ p3DUtil: I3DUtil instance created on application init

AEE3DPoint direction;
AEE3DLight light_value;

AEE3DColor colorDiffused = {255,127,100,0}; // diffused color
AEE3DColor colorSpecular = {220,220,220,0}; // specular color
AEE3DPoint srcDirection = {0,0,16384}; // point into the center of

the scene

I3D_SetLightingMode (pMe->m_p3D,
AEE3D_LIGHT_MODE_COLOR_DIFFUSED_COLOR_SPECULAR) ;

// Make the direction vector a unit wvector.

//GetUnitVector returns a Q12 unit vector. Shift up 2 bits

//to get a Q14 unit vector as SetLight expects
I3DUtil_GetUnitVector (pMe->m_p3DUtil, &srcDirection, &direction);
direction.x <<= 2;

direction.y <<= 2;

direction.z <<= 2;

// set the diffused light for the scene.
light_value.color = colorDiffused;

light_value.direction = direction;

80-V6449-1 Rev. A 23 QUALCOMM Proprietary

11
12
13
14

15
16
17
18

19
20

21
22

TutorI3D Tutorl3D Tutorials
light_value.type = AEE3D_LIGHT DIFFUSED;
I3D_SetLight (pMe->m_p3D, &light_value) ;
// set the specular light for the scene (use same direction as specular)
light_value.color = colorSpecular;
light_value.type = AEE3D_LIGHT_SPECULAR;
I3D_SetLight (pMe->m_p3D, &light_value) ;
}
3.3.2 Material

The material of an object determines the various visual aspects of that object. For example, the
color of the object’s surface, how much light the object reflects, the amount of light emitted by
the object, and so on. I3D has three material properties that can be modified. They are: color,
shininess, and emissive.

The color of an object’s material determines the surface color of the object. Also, it determines
the color of light that will light up the surface. For example, if we apply a blue material to an
object, the object will only light up when a blue light is applied to it. A red light will not light up
the object.

Shininess determines the amount of light that is reflected by the object as opposed to being
absorbed. It can give an object a metallic look or a more dull look.

The emissive of an object determines the amount of light the object naturally emits. This is
independent of any light sources in the scene. This can give an object a glowing look.

80-V6449-1 Rev. A 24 QUALCOMM Proprietary

A W N P

© 0 N o u

10

11
12

TutorI3D

Tutorl3D Tutorials

The API function used in I3D to set material properties is I3D_SetMaterial (). Screen shots of
the TutorI3D material tutorial shown in Figure 3—8a provides a green material with high shininess
and emissive. Note that a low value for shininess means high shininess. Figure 3—8b provides the
same color material as Figure 3—8a, but, is more dull looking because of the shininess value.

Important to note here, is that the material color set by calling I3D_SetMaterial() only affects
subsequent calls to I3D_RenderTriangles, I3D_RenderTriangleFan (), and

I3D_RenderTriangleStrip().

I3DModel_Draw () is unaffected by this color because Q3D

models have their own material colors. The emissive and shininess set by I3D_SetMaterial (),

affects calls to I3DModel_Draw(,) as well as the other render functions.

ethdateriallmat)

ethiateriallnat]

mat.color = (022,201,026, 2057
rmat.zhininess =000
rmat.emissive =005

Press “# for Help

mat.color ={022,201,026,205
rmat.shininess =100
rmat.ernissive =010

Press “# for Help

(a)

(b)

Figure 3-8 Material tutorial screen shots. (a) shiny green material (b) dull green

material

80-V6449-1 Rev. A

25

QUALCOMM Proprietary

A WM P

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

TutorI3D

Tutorl3D Tutorials

NOTE

TutorI3D allows users to select any of the material parameters and increase/decrease them. The
information screen provides the current values of the material color, shininess and emissive. The
currently selected material parameter is highlighted in pink. The command keys for this tutorial
are given in Table 3-9.

The range for all the material parameters is (0 to 255).

Table 3-9 Command keys for the material tutorial

Key(s) Action
Up/Down Increase/decrease selected material parameter
(1,2,3,4) (red, green, blue, alpha) color component select
5 Shininess select
6 Emissive select

Code example

The following is an I3D code example for setting the material properties. Subsequent calls to
I3D_RenderTriangles, I3D_RenderTriangleFan(), and I3D_RenderTriangleStrip ()
will be affected by all these material properties. Subsequent calls to I3DModel_Draw () will be
affected by the emissive and shininess values set here.

SetupMaterial (MyApp* pMe)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init
AEE3DMaterial material;

material.color.r = 22;
material.color.g = 200;
material.color.b = 36;
material.shininess = 5;
material.emissive = 10;

I3D_SetMaterial (pMe->m_p3D, &material)

80-V6449-1 Rev. A 26 QUALCOMM Proprietary

a A W N

10
11

12
13
14
15
16
17

18
19
20
21

22

23

TutorI3D

Tutorl3D Tutorials

3.4 Textures and blending

The textures and blending tutorials in TutorI3D demonstrate the I3D APIs that are used to apply
textures to objects, including the perspective correction capability, and also demonstrates the
alpha blending capability. Three tutorials are included in this section: texture rendering, alpha
blending, and perspective correction.

3.4.1 Texture rendering

A texture is simply an image that can be applied to the surface of 3D objects. Different textures
can be applied to the same objects in order to give them a specific look. For example, a wood
texture can be applied to a cube to make it look like a wooden crate, or a marble texture can be
applied to the same cube to make it look like a marble crate. A popular method of putting water
into a 3D scene is to apply a water texture to a wide and thin surface.

If the surface of the object is not directly facing the viewer, or the object is placed far into the
scene for example, then the texture must be interpolated to the proper dimensions and orientation
before being applied. 13D uses the “nearest” method for interpolation. In this method, the pixel in
the source texture nearest to the pixel in the destination texture (by location) is copied to the pixel
in the destination texture. Another, more computationally intensive method of interpolation,
would be to blend a number of source pixels to get a single destination pixel.

What if the size of an object’s surface is larger than the size of the texture? In this case, the
texture needs to be wrapped before being applied to the surface. One example of texture wrapping
is to repeat the texture and apply this new texture to the object’s surface. I3D provides a number
of wrap methods, as shown in Table 3-10.

Table 3-10 13D texture wrap modes

Wrap mode Description
Repeat The original texture is repeated and applied to the object
Mirror The original texture is mirrored and applied to the object
Clamp Pixels outside the texture range use the border pixel of the original
texture.
Border Pixels outside the texture range use a predefined color

80-V6449-1 Rev. A 27 QUALCOMM Proprietary

Tutorl3D Tutorl3D Tutorials

Another important question to answer, is how are the vertex colors taken into account when
textures are applied to an object’s surface? There are numerous schemes to combine the object’s
surface colors with the texture colors. In I3D, you specify how they are combined using the
render modes, which are described in Table 3-11. The render mode determines how to color the
object using the vertex colors, and also how to combine these with the texture colors.

a b W N P

6 Table 3-11 13D render modes

Render mode Description

Flat Shading Each triangle is filled with the same color as the color of the first
vertex. The texture colors are not used

Flat Texture Fast Shading Flat shading for surface colors, then average the surface colors with
the texture colors

Flat Texture Shading Flat shading for the surface colors, then blend the surface colors with
texture colors

Smooth Shading Each triangle is filled with the colors interpolated across all three
vertices

Smooth Texture Fast Shading Smooth shading for the surface colors, then average the surface
colors with the texture colors

Smooth Texture Shading Smooth shading for the surface colors, then blend the surface colors
with the texture colors.

Texture Replace Only texture colors used. Surface colors are not used

8 The render mode plays a significant role in determining the speed of rendering. Flat shading is
9 very fast, but low quality, while smooth shading is slower, because of the interpolations, but

10 higher quality. Figure 3-9 provides the same 3D object rendered with both flat shading and

1 smooth shading. In Figure 3-9a, each triangle has only one color, which allows us to see the

12 rendered triangles. In Figure 3-9b however, the color within each triangle is interpolated across
13 the 3 vertice,s giving a much smoother surface and yielding a higher quality render.

14

15 (a) Flat Shading (b) Smooth Shading

16 Figure 3-9 3D object rendered with (a) flat shading and (b) smooth shading

80-V6449-1 Rev. A 28 QUALCOMM Proprietary

o g A~ W N P

~

10

11

12
13

14

15

16

Tutorl3D Tutorials

The I3D API function for setting the render mode is I3D_SetRenderMode (), and the API
function for setting a texture is I3D_SetTexture (). These API functions will specify the
render mode and texture for subsequent calls to I3D_RenderTriangles(),
I3D_RenderTriangleStrip(), and I3D_RenderTriangleFan (). Objects drawn using
I3DModel_Draw () have shading and textures specified as part of the model data, so these objects
are not affected by I3D_SetRenderMode (), or I3D_SetTexture().

The texture rendering tutorial of TutorI3D draws a textured 3D model, and allows user to change
the render mode, the wrap mode, texture image itself, and to view the results. Table 3-10 provides
a screen shot of this tutorial using a wood texture applied to a cube.

TEXTURE_REPLACE

tex. type=0IFFUSED, fex.sample=NEAREST|
texrap_s =WRAF_REFEAT

texrap_t =WRAF_REFEAT

tex BorderColorIndesx =255

Figure 3-10 Texture rendering tutorial screen shot

I3D limits the width and height of the texture image to be a power of 2 no greater than 256. The
bit depth of texture images is limited to 8 bits per pixel.

The command keys for this tutorial are shown in Table 3-12.

Table 3-12 Command keys for the texture rendering tutorial

Key(s) Action
Change the Wrap_s mode. This is the wrapping mode in the horizontal direction
Change the Wrap_t mode. This is the wrapping mode in the vertical direction

Change the texture image

Change the render mode

a|lbh|lwN|F

Change the texture image

80-V6449-1 Rev. A 29 QUALCOMM Proprietary

N o o A~ W N

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25
26

27

28

29

30
31

32

33

34

35

36

Tutorl3D Tutorials

Code example

The following is an I3D code example for setting the render mode to “texture replace” and for
loading a texture from a resource file and setting it as the current texture for rendering.
Subsequent calls to I3D_RenderTriangles, I3D_RenderTriangleFan(), and
I3D_RenderTriangleStrip () will be affected by render mode and the new texture.
Subsequent calls to I3DModel_Draw () will not be affected, as these models have their own
shading properties and textures.

SetupTexture (MyApp* pMe)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init
AEE3DTexture texture;

// set the render mode to texture replace. Vertex colors will not be
used.

I3D_SetRenderMode (pMe->m_p3D, AEE3D_RENDER_TEXTURE_REPLACE) ;

//setup the texture properties.

texture.type = AEE3D_TEXTURE_DIFFUSED;
texture.SamplingMode = AEE3D_TEXTURE_SAMPLING_NEAREST;
texture.Wrap_s = AEE3D_TEXTURE_WRAP_REPEAT;
texture.Wrap_t = AEE3D_TEXTURE_WRAP_REPEAT;
texture.BorderColorIndex = 255;

texture.pImage = ISHELL_LoadResBitmap (pMe->a.m_pIShell, RES_FILE_ID,
MY_TEX) ;

if (texture.pImage)

{

// set the texture and release since I3D_SetTexture() will increase
the ref. count

I3D_SetTexture (pMe->m_p3D, &texture);
IBITMAP_Release (texture.pImage) ;

80-V6449-1 Rev. A 30 QUALCOMM Proprietary

-

© 0o N o 0 b~ W N

10
11
12
13

14
15

Tutorl3D Tutorials

3.4.2 Alpha blending

Alpha blending can give the appearance that 3D objects are transparent/translucent. This is
accomplished by performing a weighted average of background pixels and the object’s pixels to
get the final pixel value. The alpha value of the object determines the weight of the components.
Changing the weights allows the background or the object to be more dominant in the final pixel
value. In this manner, objects can have different degrees of translucency, from completely
transparent to fully opaque. In I3D, alpha blending is a capability that must be enabled using
I3D_Enable (AEE3D_CAPABILITY_BLENDING). This is because rendering with alpha blending
requires more computations.

The alpha blending tutorial in TutorI3D allows users to change the alpha value of a model and see
how this affects its appearance when drawn in front of a background. Figure 3-11 provides screen
shots of this tutorial with various levels of alpha for the object, and Table 3-13 provides the
command keys.

30 _EnableBlending)

3D _EnableiBlending)

flpha E;Ien-:.ling: ENRELED

Fipha Blending ENABLED
alpha=95 alpha = 159
Press '#' for Help Press “#" for Help

130 _Enal |:I|E-|::EI|E'F| ding :|

Flpha Blending ENRBLED Flpha Blending: ENABLED
alpha = 223 alpha = 255

Prezs “#" for Help Press “#" for Help

Figure 3-11 Screenshots of the alpha blending tutorial showing various levels of
alpha

80-V6449-1 Rev. A 31 QUALCOMM Proprietary

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Tutorl3D Tutorials

Table 3-13 Command keys for the alpha blending tutorial

Key(s) Action

Up/down Increase/decrease alpha value

1 Enable/disable Alpha blending

The range of alpha values is (0 to 255), however, I3D only supports five different levels of
alpha, meaning the range is broken up into levels. The levels are shown below in Table 3 14.

Table 3-14 Alpha value levels, ranges, and number of values in range

Level Range of values Number of values in range
Level O: (transparent) 0to 31 32
Level 1: 321095 64
Level 2: 96 to 159 64
Level 3: 160 to 223 64
Level 4: (opaque) 224 to 255 32

Code example

The following is an I3D code example for enabling alpha blending, and setting the alpha value for
a model. Notice that the code below is modifying the model data. Because of this, it’s very
important that the code below be executed either before or after a frame render, and not during a
frame render. Read the section about I3D events in the I3D API guide to learn about when it’s
appropriate to modify model data.

SetAlpha (MyApp* pMe)

{

// pMe: pointer to application instance structure

// pMe->m_p3D: I3D instance created on application init

// pMe->model: model data
int 1i;
int alphavValue = 128;

I3D_Enable (AEE3D_CAPABILITY_ BLENDING) ;

for(i=0; i < pMe->model->NumVertices; i++)

{
// change alpha for all vertices in the model
pMe->model->Vertex[i] .alpha = alphaValue;

}

}

80-V6449-1 Rev. A 32 QUALCOMM Proprietary

1

a b W N

© 0w N O

10

11

12
13

14

15

16

17

18

19

20

Tutorl3D Tutorl3D Tutorials

3.4.3 Perspective correction

Perspective correction is a method that takes the depth (Z coordinate) of an object in 3D space
into account when applying a texture to it. Without perspective correction, textured objects will
appear to shift and tear in an unrealistic way. In I3D, perspective correction is a capability that is
enabled by calling I3D_Enable (AEE3D_CAPABILITY_ PERSPECTIVE_CORRECTION).

The perspective correction tutorial in TutorI3D, provides a textured object drawn with
perspective correction enabled, and allows the user to disable perspective correction in order to
see how it affects rendering the textured object. Figure 3—12 provides screen shots of this tutorial
with perspective correction enabled and disabled. Notice how the texture “tears” when
perspective correction is disabled.

130 _Enablel

Perzpective Correction: ENABLED

Press “#' for Help Press “#" for Help

(a) Enabled (b) Disabled

Figure 3-12 Screen shots of the perspective correction tutorial showing
perspective correction (a) enabled and (b) disabled

The only command key for this tutorial is the 1 key, which will enable/disable perspective
correction.

Code example

To enable perspective correction simply call:
I3D_Enable (AEE3D_CAPABILITY_ PERSPECTIVE_CORRECTION)

All subsequent texture mapping will take perspective into account.

3 TutorI3D Tutorials

80-V6449-1 Rev. A 33 QUALCOMM Proprietary

	Introduction
	Purpose
	Scope
	Conventions
	Revision history
	Technical assistance
	Acronyms

	TutorI3D Application
	Starting-up
	UI notes
	Application event processing

	TutorI3D Tutorials
	Transformations
	Rotation
	Translation

	Projections
	Focal length
	View depth
	Screen mapping
	Clipping rectangle

	Lighting and materials
	Direction and color
	Material

	Textures and blending
	Texture rendering
	Alpha blending
	Perspective correction

